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I. I NTRODUCTION

The NML (Normalized Maximum Likelihood) universal
model has certain minmax optimal properties but it has two
shortcomings: the normalizing coefficient can be evaluatedin
a closed form only for special model classes, and it does
not define a random process so that it cannot be used for
prediction. We present a universalconditional NML model,
which has minmax optimal properties similar to those of the
regular NML model [9], [8], [1]. However, unlike NML, the
conditional NML model defines a random process which can
be used for prediction. It also admits a recursive evaluation
for data compression. The conditional normalizing coefficient
is much easier to evaluate, for instance, for tree machines than
the integral of the square root of the Fisher information in the
NML model. For Bernoulli distributions, the conditional NML
model gives a predictive probability, which behaves like the
Krichevsky-Trofimov predictive probability [3], [9], actually
slightly better for extremely skewed strings. For some model
classes, it agrees with the predictive probability found earlier
by Takimoto and Warmuth, [10], as the solution to a different
more restrictive minmax problem.

We also calculate the CNML models for the generalized
Gaussian regression models, and in particular for the cases
where the loss function is quadratic, and show that the
CNML model achieves asymptotic optimality in terms of the
mean ideal code length. Moreover, the quadratic loss, which
represents fitting errors as noise rather than prediction errors,
can be shown to be smaller than what can be achieved with
the NML as well as with the so-called plug-in or the predictive
MDL model.

II. T WO MINMAX PROBLEMS

Consider the model classMk = {f(xn; θ)}, θ =
θ1, . . . , θk, and data sequencesxn = x1, . . . , n, for n =
1, 2, . . . . Let m be the smallest numbert for which the ML
estimateθ̂t = θ̂(xt) can be computed. Actually, by letting
k vary the numberm could be reduced, but for the sake of
simplicity we keep it fixed. The number

log 1/f(xn; θ̂n)

has been considered as the ideal target for the code length
obtainable with the model class, [1], which, however, is not
attainable, becausef(xn; θ̂n) is not a probability distribution.
This leads to the minmax problem

min
q

max
xn

log
f(xn; θ̂n)

q(xn)
,

with the solution due to Shtarkov, [9],

f̂NML(xn;Mγ) =
f(xn; θ̂(xn))

Cn
(1)

Cn =

∫

f(yn; θ̂(yn))dyn.

This has been generalized to general parametric model classes
in [7] to provide a universalNormalized Maximum Likelihood,
NML, model with excellent properties. However, the normaliz-
ing coefficient can be evaluated easily only for restricted model
classes, and the model does not define a random process. This
means that it cannot be used for prediction and its evaluation
for data compression is difficult.

Given a sequence of integerst0 = m + 1 < t1 < . . . , <
ts = n consider

L(xn; θ̂t0 , . . . , θ̂ts
) =

log 1/f(xm; θ̂m) +

s−1
∑

j=0

tj+1−1
∑

t=tj

log 1/f(xt+1|xt; θ̂tj+1
)

as the ideal target for the code length obtainable with the
model class. This in general provides a shorter target for the
attainable code length than the previous one, and in fact gives
a larger likelihood than the traditional ‘maximum likelihood’.
The maximizing family of ML estimates{θ̂t} is obtained for
t0 = m+1, t1 = m+2, . . . , n, or that the maximum likelihood
is actually given by

f(xn) = f(xm; θ̂m)

n
∏

t=m+1

f(xt|xt−1; θ̂t). (2)

This suggests the following minmax problem. For allt > m

min
q(x|xt−1)

max
x

log
f(xt−1, x; θ̂(xt−1, x))

q(x|xt−1)
. (3)

The solution is given by theconditional NML models

f̂(xt|xt−1) =
f(xt; θ̂(xt)

Kt
(4)

Kt =

∫

f(xt−1, x; θ̂(xt−1, x))dx.

This is proved the same way as the solution to Shtarkov’s
problem: First, replacing the numerator by the density function
(4) does not change the solution, and the maximized ratio
of the two density functions (4) andq(x|xt−1), which is not
smaller than unity, is made unity when the latter is selected



equal to the former. We mention that there is another maxmin
problem in terms of the mean code length with the same
solution, [8], namely

max
g

min
q

Eg log
f(X |xt−1; θ̂(xt−1, X))

q(X |xt−1)
,

where the expectation is taken with respect tog = g(x|xt−1)
ranging over all distributions. The maxmin value equals the
minmax value. Finally, these minmax–maxmin problems also
hold unconditionally.

It is clear that the normalizing coefficientKt, which in
general is a function ofxt−1, is easier to calculate, at least
numerically, than the normalizing coefficient in the NML
universal model.

III. M ARKOV MODELS

We begin with the Bernoulli classB = {P (x; p)}, where the
parameterp = P (1). The ML estimate is given bŷp(xn) =
n1/n, wheren1 =

∑

t xt is the number of 1’s inxn. If n0 =
n − n1 the maximized likelihood is

P (xn; n1/n) =
(n1

n

)n1
(n0

n

)n0

.

The conditional NML predictive probability can be written as

P̂ (1|xn) =
(n1 + 1) e(n1)

(n0 + 1) e(n0) + (n1 + 1) e(n1)
, (5)

wheree(n0) = (1 + 1/n0)
n0 ande(n1) = (1 + 1/n1)

n1 ; take
e(k) = 1 for k = 0.

The same conditional probability function̂P (1|xn) was
found in [9], where it was shown to converge to the
Krichevsky-Trofimov predictive probability

PKT (1|xn) =
n1 + 1/2

n + 1
.

It was also found later in [10], in effect, as the solution to the
following minmax problem

min
θ

max
x

log
f(xt−1, x; θ̂(xt−1, x))

f(x|xt−1; θ)
. (6)

This type of minmax problem is much harder to solve than
the minmax problem (3), and the authors’ derivation is quite
complicated. Furthermore, the solution requires boundedness
restrictions on the dataxn, even for the exponential family
of models studied in the cited reference, unless the data are
bounded as in the Bernoulli case. Since in the Bernoulli case
the solution to the wider problem (3) lies in the same Bernoulli
family it clearly has to coincide with the solution to (6).

Neither Krichevsky-Trofimov predictive probability nor the
related Laplace probability,

PL(1|xn) =
n1 + 1

n + 2
,

has been shown to have any particular optimality property.
Takimoto and Warmuth [10] showed that for the Bernoulli

models, the regret of the CNML model (4) satisfies for all
sequences the inequality

R(f̂ , xn) := ln 1/f̂(xn)−ln 1/f(xn; θ̂(xn)) ≤ 1

2
ln(n+1)+

1

2
,

and that the worst case sequence is when the string of length
2n has n-1 ones, or, in effect, the random string.

For data compression the performance in the worst case
sequence is less important than the per symbol code length as
a function of the symbols’ occurrence counts. The common
performance index is the regret, which, however, taken alone
gives a misleading picture of the performance of a code
because its relevance depends on the per symbol code length.
The CNML probabilities are not determined by the symbols’
occurrence counts only, and the analysis appears to be difficult.
Instead we calculate in Figure 1 its worst case regret as wellas
the per symbol code length for strings of length 30, and also
show for the sake of comparison the well known analytically
computed results of three other models, the Laplace and
Krichevsky-Trofimov predictors as well as the NML universal
model (1). We see clearly, that all the models give about equal
per symbol code length, except for strings where the ratio of
the count of symbol one to the length of the strings is close to
zero or one. These are precisely the strings where significant
compression can be obtained, and we see that the CNML
code gives the best compression for them – even better than
the Krichevsky-Trofimov predictor. We also see that although
the Laplace predictor has by far the smallest regret for other
strings, its significance is minor.

Shtarkov also gave the conditional CNML probabilities for
Markov classes of models. For the sake of completeness and
the reason that they solve the minmax problem (3) we rederive
them for binary Markov models and tree machines. Since the
Markov class does not belong to the exponential family the
techniques given in [10] to solve the narrower problem (6) will
not work. However, the solution to the wider problem happens
to remain in the Markov class, and the same solution solves
also the narrower minmax problem.

Consider a Markov model, either of a fixed or variable order,
defined by a tree machine with state spaceS = {s}. The states
are sequences of binary strings and the state transitions are
defined as followss 7→ (s, xt), where(s, xt) is the longest
suffix of the concatenate of the strings and the symbolxt

that falls inS. For instance ifS = 0, 01, 11, then(01, 0) = 0,
and (01, 1) = 11, and so on. The model is defined by the
states, the state transitions, and the binary probabilities θ =
{P (0|s), s ∈ S} at the states. Hence, given an initial states0

and its probabilityP (s0), which we set to unity for it cancels
in the following formulas, the probability of the stringxn is
given by

P (xn; θ) =
∏

t

P (xt|s(xt−1)),

where the states(xt) is the longest suffix of the stringxt =
x1, . . . , xt that falls inS.
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Fig. 1. The per-symbol code-length and regret for four universal models in the Bernoulli case.

The maximized likelihood is given by

P (xn; θ̂(xn)) =
∏

s

ns

n

∏

i

(

ni|s

ns

)ni|s

, (7)

where ni|s = ni|s(x
n) denotes the number of times the

sequencesi occurs in xn and ns =
∑

i ni|s. Also, n =
∑

s ns. Puttings = s(xn) we then obtain with straightforward
calculations the conditional

P̂ (1|xn) =
(n0|s + 1)e(n0|s)

(n0|s + 1)e(n0|s) + (n1|s + 1)e(n1|s)
.

We see that this generalizes the Bernoulli case in a natural
way. The generalization to non-binary alphabets is straightfor-
ward as shown in [9].

IV. GENERALIZED GAUSSIAN FAMILY

We consider the family of regression models

f(yn|Xn; λ) = Z−n
λ e−λ

Pn
t=1

|yt−ŷt|
α

, (8)

where yn = y1, . . . , yn are real-valued data,Xn =
[x̄1, . . . , x̄n] is the k × n regressor matrix of columns̄xt,
ŷt = F (x̄t, η) a regression function with ak-component vector
parameterη, andλ andα positive parameters, the latter kept
constant. The normalizing coefficient is given by then’th
power of

Zλ =
2

α
λ−1/αΓ(1/α), (9)

and it is seen not to depend onη.
The maximum likelihood value ofλ is given by

λ̂n =
n

α
∑n

t=1 |yt − ŷt|α
, (10)

which depends on all the past and the present values ofŷt.
Let η̂t = η̂(yt, Xt) denote the ML estimate of the parameter
η; i.e. one that minimizes the sum

t
∑

i=1

|yi − F (x̄i, η)|α.

The maximized likelihood is given by its negative logarithm
for t > m as

ln 1/f(yt|Xt; λ̂t) =
t

α
ln(e/λ̂t) + t ln

2Γ(1/α)

α
, (11)

where λ̂t = λ̂(η̂t, . . . , η̂m) depends on all the past ML
estimates. Regard̂yt = F (x̄t, η̂t) as a function ofyt, given
the other variables. Witĥei = yi − ŷi put

ŝm =

m
∑

i=1

|yi − F (x̄t, η̂m)|α (12)

ŝt =
t
∑

i=m+1

|êi|α = ŝt−1 + |êt|α. (13)

By (3) define the conditional density functions fort > m

f̂(yt|yt−1) =
1

Kt

(

1 +
|yt − ŷt|α

ŝt−1

)−t/α

(14)

Kt =

∫
(

1 +
1

ŝt−1
|yt − ŷt|α

)−t/α

dyt,

wherem + 1 is the smallest value oft for which θ̂(yt, Xt) is
defined. Notice that̂yt for t > m depends onyt through the
estimateη̂t = η̂(yt|Xt), which makeŝet a fitting error called
for in the minmax problem (3) rather than a prediction error.
Given an initial density functionq(ym) we get the density
function

f̂(yn|Xn) =

n
∏

t=m+1

f̂(yt|yt−1)q(ym). (15)

We are mainly interested in the Gaussian caseα = 2 and the
absolute value case,α = 1, where the normalizing integrals
can be evaluated in a closed form.

A. Gaussian family

We consider the linear-quadratic regression problem, where
the datayn, Xn are modeled as follows

yt = b′x̄t + ǫt =

k
∑

i=1

bixt,i + ǫt, (16)



{ǫt} being an iid sequence from a normal distribution of zero
mean and varianceσ2. The regressor matrixXt consists either
of fixed numbers, not given byyn, or as in AR models it is
given by the columns of̄xt = col{yt−1, . . . , yt−k}. Consider
the representation of the data

yt = b′tx̄t + êt =

k
∑

i=1

bt,ixt,i + êt, (17)

where the ML estimates, written now as row vectorsb′i =
bi,1, . . . , bi,k, are given by

bt = θ̂(yt|Xt) = Vt

t
∑

j=1

x̄jyj (18)

Vt = (XtX
′
t)

−1

the prime ’ indicating the transpose. For the sake of compar-
ison consider also the representations

yt = b′t−1x̄t + et (19)

yt = b′nx̄t + ǫ̂t(n). (20)

The predictorx̄′
tbt−1 of yt is sometimes called the ’plug-in’

predictor, because the parametersb of the process are replaced
by the ML estimates from the latest past data, not includingyt.
The resulting model (19) is widely studied, [2], [6], [4], [11],
and it defines the linear quadratic PMDL (Predictive MDL)
model or the Least Squares model ifσ is kept fixed.

Write in (8) λ = 1/(2σ2), which gives the maximized
likelihood (2πeσ̂2

t )−t/2, where

σ̂2
t = (1/t)

t
∑

i=1

(yi − x̄′
ibt)

2. (21)

The conditional density function fort > m is by (14)

f̂(yt|yt−1) =
1

Kt

(

1 +
(yt − ŷt)

2

ŝt−1

)−t/2

ŝt =

t
∑

i=1

(yi − ŷi)
2

Kt =

∫ ∞

−∞

(

1 +
(yt − ŷt)

2

ŝt−1

)−t/2

dyt.

To get the normalizing integral we write first

ŷt = x̄′
tbt = dtyt + ȳt (22)

dt = x̄′
tVtx̄t (23)

ȳt = x̄′
tVt

t−1
∑

i=1

yix̄i, (24)

whereȳt does not depend onyt. Then

Kt =

∫ ∞

−∞

[

1 +
(1 − dt)

2

ŝt−1

(

y − ŷt

1 − dt

)2
]−t/2

dy.

By change of variables

z = [y − ŷt/(1 − dt)](1 − dt)/
√

ŝt−1

the integral becomes

Kt =

√

ŝt−1

1 − dt

∫ ∞

−∞

(1 + z2)−t/2dz

=

√

ŝt−1

1 − dt

√
πΓ

(

n − 1

2

)

/Γ(n/2), (25)

the second equality by the fact thatz is seen to have Student’s
z-distribution.

The conditional density function is then given by

f̂(yt|yt−1) =
1

Kt

[

1 +
(1 − dt)

2

ŝt−1

(

y − ȳt

1 − dt

)2
]−t/2

.

(26)
With a density functionq(ym|Xm) for the initial data, which
we do not pick here, we get

f̂(yn|Xn) = q(ym|Xm)

n
∏

t=m+1

f̂(yt|yt−1)/Kt. (27)

We give without proof the asymptotic mean ideal code
length for the case where the data are generated by (16), and
the regressor variables̄xt are nonrandom satisfying

1

n

n
∑

1

x̄ix̄
′
i → Σ, (28)

the limit being a positive definite matrix. For all positiveδ
and all large enoughn

1

n
E ln 1/f̂(yn|Xn) ≤ 1

2
lnσ2 +

k + δ

2n
lnn. (29)

Further, under the assumption (28) even for a random regressor
matrix

n
∑

t=m+1

ê2
t =

n
∑

t=m+1

e2
t (1 − dt)

2 (30)

n
∑

t=m+1

e2
t (1 − dt) =

n
∑

t=m+1

ǫ̂2t (n) (31)

n
∑

t=m+1

ê2
t <

n
∑

t=m+1

ǫ̂2t (n) <

n
∑

t=m+1

e2
t , (32)

whereǫ̂t(n) = yt−x̄′
tbn. Moreover, when the regressor matrix

is constant
n
∑

t=m+1

Eê2
t = σ2

(

(n − m) −
n
∑

t=m+1

(1 − dt)

)

(33)

n
∑

t=m+1

Ee2
t = σ2

(

(n − m) +

n
∑

t=m+1

1/(1 − dt)

)

(34)

n
∑

t=m+1

Eǫ̂2t (n) = σ2(n − m). (35)

We see that the fitting errors are the smallest under the
representation (17), which defines the CNML model, not
only for the worst case sequence or in the mean but for
all sequences. However, only the representation (19) and its



prediction errors define a code length for the data, and if we
add the necessary code lengths to the CNML and NML fitting
errors representing noise we get code lengths, and the resulting
probabilities of course will have to intersect. Finally, Also the
CNML model defines a predictor for the data, which agrees
with that obtained with the representation (19).

B. Laplace distribution

The second important case is the absolute value loss func-
tion, α = 1. The main difficulty in the applications is that the
ML estimates are difficult to obtain. For this reason, one may
settle for linear estimates, which we do as well.

The conditional density functions fort > m are given by

f̂(yt|yt−1) =
1

Kt

(

1 +
(1 − dt)|yt − ȳt/(1 − dt)|

ŝt−1

)−t

,

whereŝt =
∑t

i=1 |yi− ŷi|. The normalizing constant becomes

Kt = 2

∫ ∞

0

(

1 +
1 − dt

ŝt−1
|yt − ȳt/(1 − dt)|

)−t

dyt

= 2
ŝt−1/(t − 1)

1 − dt
(1 − ȳt/st−1)

1−t,

where we changed the variables

u = 1 + (1 − dt)|yt − ȳt/(1 − dt)|/ŝt−1.

Againm+1 is the smallest value oft for which θ̂(yt, Xt) = bt

is defined.
We get further

f̂(yn|Xn) = 2m−nq(ym|Xm)ŝ−n
n ŝm

m

n
∏

t=m+1

1 − dt

t − 1
,

for someq(ym|Xm) to be chosen. We get then

f̂(yn|Xn)

= 2−(n−m)q(ym|Xm)ŝ−n
n sm

m

n
∏

t=m+1

(1 − dt)(t − 1)ŝt−1
t−1.
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