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Abstract— Universal codes/models can be used for data com-
pression and model selection by the minimum description length
(MDL) principle. For many interesting model classes, such as
Bayesian networks, the minimax regret optimal normalized max-
imum likelihood (NML) universal model is computationally very
demanding. We suggest a computationally feasible alternative
to NML for Bayesian networks, the factorized NML universal
model, where the normalization is done locally for each variable.
This can be seen as an approximate sum-product algorithm. We
show that this new universal model performs extremely well in
model selection, compared to the existing state-of-the-art, even
for small sample sizes.

I. I NTRODUCTION

The stochastic complexity of a sequence under a given
model class is a central concept in the minimum description
length (MDL) principle [1], [2], [3], [4]. Its interpretation
as the length of the shortest achievable encoding makes it
a yardstick for the comparison of different model classes. In
recent formulations of MDL, stochastic complexity is defined
using the so called normalized maximum likelihood (NML)
universal model, originally introduced by Shtarkov [5] fordata
compression; for the role of NML in MDL model selection,
see [6], [7], [3], [4], [8].

Since the introduction of the NML universal model in the
context of MDL, there has been significant interest in the
evaluation of NML stochastic complexity for different practi-
cally relevant model classes, both exactly and asymptotically.
For discrete models, exact evaluation is often computationally
infeasible since it involves a normalizing coefficient which is
a sum over all possible data-sets. For continuous cases, the
normalizing coefficient is an integral which can be solved in
only a few cases. Under certain conditions on the model class,
different versions of stochastic complexity (which include two-
part, mixture, and NML forms) have the same asymptotic
form, the so called Fisher information approximation. How-
ever, for small data-sets and for model classes that do not
satisfy the necessary conditions, the asymptotic form is not
accurate [9].

Exact and computationally tractable formulas are rare:
results for multinomial models are given in [10], and for
Bayesian networks with structural restrictions in [11], [12],
[13]; more references can be found in [3] and [4].

In this paper, we introduce thefactorized NML (fNML)
universal model for Bayesian networks. The rest of the paper
is organized as follows: In Sections II and III we discuss
the normalized maximum likelihood (NML) and sequentially
normalized maximum likelihood (sNML) models, respectively.
In Section IV we review the basics of Bayesian networks. The
factorized NML model is introduced in Section V, where it is
also shown to be computationally feasible for all Bayesian
networks. Finally, in Section VI, we present experimental
results, demonstrating that fNML compares favorably in a
model selection task, relative to the current state-of-the-art.

II. NORMALIZED MAXIMUM L IKELIHOOD MODELS

Before describing the sequential NML and factorized NML
models, we fix some notation and review some basic properties
of the well-known NML model. Let
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be an n × m data matrix where each row,xi,: =
(xi,1, xi,2, . . . , xi,m), 1 ≤ i ≤ n, is an m-dimensional ob-
servation vector, and columns ofxn are denoted byx:,j , 1 ≤
j ≤ m.

A parametric probabilistic modelM := {p(xn ; θ) :
θ ∈ Θ}, whereΘ is a parameter space, assigns a probability
mass or density value to the data. Auniversal model for M is
a single distribution that, roughly speaking, assign almost as
high a probability to any data as the the maximum likelihood
parameterŝθ(xn).

Formally, model p̂(xn) is ‘universal’ (in the point-wise
sense) if and only if it satisfies

lim
n→∞

1

n
ln

p(xn ; θ̂(xn))

p̂(xn)
= 0 , (1)

i.e., the log-likelihood ratio, often called the ‘regret’,is al-
lowed to grow sublinearly in the sample sizen. The celebrated
normalized maximum likelihood (NML) universal model [5],



[6] is given by

pNML(xn) :=
p(xn ; θ̂(xn))

Cn

Cn =

∫

Xn

p(xn ; θ̂(xn)) dxn .

It is the unique minimax optimal universal model in the sense
that the worst-case regret is minimal. In fact, it directly follows
from the definition that the regret is a constant dependent only
on the sample sizen:

ln
p(xn ; θ̂(xn))

pNML(xn)
= lnCn .

For some model classes, the normalizing factor is finite onlyif
the rangeXn of the data is restricted, see e.g. [6], [14], [15].
For discrete models, the normalizing constant,Cn, is given by
a sum over all data matrices of sizen × m:

Cn =
∑

xn∈Xn

p(xn ; θ̂(xn)) .

The practical problem arising in applications of the NML
universal model is then to evaluate the normalizing constant.
For continuous models the integral can be solved in closed
form for only a few specific models. For discrete models,
the time complexity of the naive solution, i.e., summing over
all possible data matrices, grows exponentially in bothn and
m, and quickly becomes intractable. Even the second-most
naive solution, summing over equivalence classes of matrices,
sharing the same likelihood value, is usually intractable even
though often polynomial inn.

The usual Fisher information approximation [6]

lnCn =
k

2
ln

n

2π
+ ln

∫

Θ

√

det I(θ) dθ + o(1) ,

where k is the dimension of the parameter space, is also
non-trivial to apply due to the integral involving the Fisher
informationI(θ). Using only the leading term (with or without
2π), i.e., the BIC criterion [16], gives a rough approximation
which, as a rule, performs worse in model selection tasks than
more refined approximations or, ideally, the exact solution, see
e.g. [3, Chap. 9].

III. SEQUENTIALLY NORMALIZED ML M ODELS

A recent family of variants of NML, called thesequentially
(or conditional) normalized maximum likelihood (sNML) [17],
[4] has similar minimax properties like NML but is often
significantly easier to use in practice.

For data matrixxn = (x1,:,x2,:, . . . ,xn,:)
′, the sNML-1

model is defined as

psNML1(x
n) :=

n
∏

i=1

p(xi,: | xi−1 ; θ̂(xi))

Ki(xi−1)
, (2)

Ki(x
i−1) :=

∫

p(xi,: | xi−1 ; θ̂(xi)) dxi,: , (3)

where normalization ensures that each factor in the productis
a proper density function.

There is also another variant of sNML, which we call here
sNML-2. It can be defined in analogy with (2) as follows:

psNML2(x
n) :=

n
∏

i=1

p(xi ; θ̂(xi))

K ′
i(x

i−1)
, (4)

K ′
i(x

i−1) :=

∫

p(xi ; θ̂(xi)) dxi,: .

Using the sNML-2 model is equivalent to predicting the
ith observation using the standard NML model defined for
sequences of lengthi. Formally we have

pNML(xi,: | xi−1) = psNML2(xi,: | xi−1) .

Note that the standard NML model is not in general a
stochastic process, which makes it possible that

pNML(xi,: | xi−1) 6=
∑

xi+1,:

pNML(xi,:,xi+1,: | xi−1) , (5)

and hence, typically two NML models, defined for sequences
of different lengths, give different predictions. In contrast, both
sNML-1 and sNML-2 are by definition stochastic processes,
so that for them we always have an equality in (5).

Regrets Visualized.Figure 1 gives a visualization of the
regrets of four universal models in the Bernoulli case: the
Laplace predictor (“add-one”), the Krichevsky–Trofimov pre-
dictor (“add-half”), sNML-2, and NML. For NML, the initial
sequence probabilities,q(xt), are obtained from a fixed NML
model, defined forn = 5, by summing over the possible
continuations of lengthn−t. For the Bernoulli model, sNML-
1 is equivalent to the Laplace predictor.

Related Work. The sNML-2 model has been analysed
earlier in conjuction with discrete Markov models, including
as a special case the Bernoulli model, by Shtarkov [5] (see his
Eq. 45). Also, Takimoto and Warmuth [18] analyze a slightly
more restricted minimax problem, the solution of which agrees
with sNML-2 for Markov models. Grünwald [4] uses the term
“conditional NML” (CNML) for a family of universal models,
conditioned on an initial sequence without considering the
joint model obtained as a product of such conditional densities.
Our sNML-1 corresponds to his CNML-3, and our sNML-2
corresponds to his CNML-2. The conditional mixture codes
studied by Liang and Barron [19] are also closely related to
sNML, and have similar minimax properties.

IV. BAYESIAN NETWORKS

We will next, in Sec. V, describe a new NML variant,
similar to the sNML models discussed in the previous section.
This new variant gives a computationally feasible universal
model, and a corresponding model selection criterion, for
general Bayesian network models. This section presents the
necessary background in Bayesian networks.

First, let us associate with the columns,x:,1, . . . ,x:,m, a
directed acyclic graph (DAG),G, so that each column is
represented by a node. Each node,Xj, 1 ≤ j ≤ m, has a
(possibly empty) set ofparents, Paj , defined as the set of
nodes with an outgoing edge to nodeXj . Without loss of
generality, we require that all the edges are directed towards



Laplace/sNML-1 Krichevsky–Trofimov sNML-2 NML

Fig. 1. Regrets of four universal models in the Bernoulli case. Each path from the origin (center) to the boundary represents a binary sequence of length
n = 5. Red edges correspond to1s, black edges to0s. The path for sequence01111 is emphasized. The distances from the origin of the branching points
are given by the regretsln[p(xt ; θ̂(xt))/q(xt)] for each prefixxt. The blue circle shows the regret of NML. For the Bernoulli model, Laplace and sNML-1
coincide. Note the similarity between sNML-2 and NML.

increasing node index, i.e.,Paj ⊆ {1, . . . , j − 1}. Figure 2
gives an example.

The idea is to model dependencies among the nodes (i.e.
columns) by defining the joint probability distribution over the
nodes in terms oflocal distributions: each local distribution
specifies the conditional distribution of each node given its
parents,p(Xj | Paj), 1 ≤ j ≤ m. It is important to notice
that these arenot dependencies among the subsequent rows
of the data matrixxn, but dependencies ‘inside’ each row,
xi,:, 1 ≤ i ≤ n. Indeed, in all of the following, we assume that
the rows are independent realizations of a fixed (memoryless)
source.

The local distributions can be modeled in various ways,
but here we focus on the discrete case. The probability of
a child node taking valuexi,j = r given the parent nodes’
configuration,pai,j = s, is determined by the parameter

θj|Paj
(r, s) = p(xi,j = r | pai,j = s ; θj|Paj

) ,

for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, where the notationθj|Paj
(r, s)

refers to the component of the parameter vectorθj|Paj
indexed

by the valuer and the configurations of the parents of
Xj . For empty parent sets, we letpai,j ≡ 0. For instance,
consider the graph of Fig. 2; on each row,1 ≤ i ≤ n,
the parent configuration of columnj = 8 is the vector
pai,8 = (xi,1, xi,5, xi,7); the parent configuration of column
j = 1 is pai,1 = 0, etc.

The joint distribution is obtained as a product of local
distributions:

p(xn ; θ) =

m
∏

j=1

p(x:,j | Paj ; θj|Paj
) . (6)

This type of probabilistic graphical models are called Bayesian
networks [20]. Factorization (6) entails a set of conditional
independencies, characterized by so called Markov properties,
see [21]. For instance, thelocal Markov property asserts that
each node is independent of its non-descendants given its

parents, generalizing the familiar Markov property of Markov
chains.

It is now possible to define the NML model based on (6)
and a fixed graph structureG:

pNML(xn ; G) =

∏m

j=1
p(x:,j | Paj ; θ̂(xn))

Cn

, (7)

Cn =
∑

xn

m
∏

j=1

p(x:,j | Paj ; θ̂(xn)) . (8)

The required maximum likelihood parameters are easily eval-
uated since it is well known that the ML parameters are equal
to the relative frequencies:

θ̂j|Paj
(r, s) =

∣

∣{i : xi,j = r, pai,j = s}
∣

∣

∣

∣{i′ : pai′,j = s}
∣

∣

, (9)

where|S| denotes the cardinality of setS. However, as pointed
out in Sec. II, summing over all possible data matrices is not
tractable except in toy problems wheren andm are both very
small. Efficient algorithms have been discovered only recently
for restricted graph structures [11], [12], [13].

V. FACTORIZED NML M ODELS

As a computationally less demanding alternative to NML
in the context of Bayesian networks, we define thefactorized
NML (fNML) in a similar spirit as sNML. We let the joint
probability distribution be given by a product oflocally
normalized maximum likelihood distributions:

pfNML(xn ; G) :=

m
∏

j=1

p(x:,j | Paj ; θ̂(xn))

Zj(Paj)
(10)

=

∏m

j=1
p(x:,j | Paj ; θ̂(xn))

Z(xn)
, (11)

where

Zj(Paj) =
∑

X′

j

p(X ′
j | Paj ; θ̂(X ′

j , Paj)) (12)
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Fig. 2. An example of a directed acyclic graph (DAG). The parents of node
X8 are{X1, X5, X7}. The descendants ofX4 are{X5, X8}.

is a sum over all possible instantiations of columnx:,j , and

Z(xn) =

m
∏

j=1

∑

X′

j

p(X ′
j | Paj ; θ̂(X ′

j , Paj)) (13)

is the product of the local normalizing factors. The local
normalizing factorsZj(Paj) can be decomposed further into
simple multinomial NML normalization constants, one for
each parent configuration inPaj . Using the recently discov-
ered linear-time algorithm [10] for the multinomial case, the
total computation time becomes feasible even for large sample
sizes and for many variables (columns).

Note that, as can be seen from (9), the maximum likelihood
parameters of each local distribution,θj|Paj

, depend only on
columnx:,j and column(s)Paj . In particular, since we require
Paj ⊆ {1, . . . , j − 1}, we have

p(x:,j | Paj ; θ̂(xn)) = p(x:,j | Paj ; θ̂(x:,1, . . . ,x:,j))

= p(x:,j | Paj ; θ̂(x:,j , Paj)) , (14)

of which the second form, where only the firstj columns
appear, is the one that should be used in (10) by analogy
with (2). Due to the above identity, the expressions can be
used interchangeably.

The sum-product view. It is interesting to compare the
NML and fNML models. Consider Eqs. (7) and (11): the
constant normalizer of NML,Cn, an exponentialsum of
products, is replaced in fNML byZ(xn), a product of sums
that depends on the data. The fNML model can therefore be
seen as ‘cheating’ by using a sum-product algorithm, where
the distributive law (see [22])
{

f(x1, x2) ≡ f(x1)

g(x1, x2) ≡ g(x2)
=⇒

∑

x1,x2

f(x1, x2)g(x1, x2)

=

(

∑

x1

f(x1)

)(

∑

x2

g(x1)

)

(15)

is applied to compute the sum inCn even though the terms
do not actually factor column-wise into independent parts.No
cheating is necessary when the graph is empty, i.e., when
Paj = ∅ for all 1 ≤ j ≤ m. This means that we have

Z(xn) = Cn, which by (7) and (11) implies that for empty
graphspNML andpfNML are equivalent.

The regrets of the two models are easily seen to belnCn

and lnZ(xn), for NML and fNML respectively. Notice also
that the regret of fNML, lnZ(xn), depends on the data
only through the parents,Paj , 1 ≤ j ≤ m, and hence, is
independent of all the leaf nodes, i.e., nodes that have no
descendants. Again, if the graph is empty, all nodes are leafs
and Z(xn) = Cn for all xn so that the NML and fNML
models are equivalent.

Finally, we observe that for fNML the two variants of
sNML, sNML-1 and sNML-2, coincide. Lettingx(j) :=
(x:,1,x:,2, . . . ,x:,j) denote the firstj columns, we obtain

p(x(j) ; θ̂(x(j))) =

j
∏

l=1

p(x:,l | Pal ; θ̂(x:,l, Pal))

= p(x:,j | Paj ; θ̂(xn))

j−1
∏

l=1

p(x:,l | Pal ; θ̂(x:,l, Pal)) ,

where both equalities depend on (14). The last factor on the
right-hand side is independent of columnx:,j . When the above
is normalized with respect tox:,j , this factor cancels and we
are left with p(x:,j | Paj ; θ̂(xn)), which exactly what is
normalized in (10). Hence, it doesn’t matter whether we define
fNML as in (10) or as the product over1 ≤ j ≤ m of the
normalized versions ofp(x(j) ; θ̂(x(j))).

VI. EXPERIMENT

To empirically test performance of the fNML-criterion in
Bayesian network structure learning task, we generated several
Bayesian networks, and then studied how different model
selection criteria succeeded in learning the model structure
from data. The most often used selection criterion for the task
is the Bayesian Dirichlet Equivalence score [23], but due to
its sensitivity to the choice of prior hyperparameter, we chose
two different versions of it:BDe0.5 and BDe1.0. We also
included the Bayesian Information Criterion, BIC. All these
scores can be interpreted to implement some version of the
MDL-criterion.

In the following, we present the results for an experiment in
which we generated 1800 different Bayesian network models,
which we tried to learn back using the data generated from
these models. We generated the networks using 5, 10 and
15 variables, and also varied the number of arcs and the
parameters of the networks. We then generated 1000, 10000
and 10000 data vectors from each network, and tried to
learn the models back using these data samples and different
scoring criteria. It turned out that learning the models back
with these sample sizes was practically possible only for
smallest networks containing 5 nodes. Varying the number
of arcs and the parameters did not seem to have a strong
effect on the outcome. This made it possible to concentrate
on comparing the performance of different scoring criteriafor
different sample sizes (Figure 3).



Fig. 3. Number of correctly learned models in 1800 trials fordifferent sizes of data and different scoring criteria.

The results clearly show that fNML excels with small
sample sizes. With large sample sizes, the difference is not
that big, which is hardly surprising, since asymptotically, they
all converge to the data generating model. This result is signif-
icant, since BDe score(s) can be regarded as the current state-
of-the-art. Furthermore, the fNML score is computationally no
more demanding than the BDe score.
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