
Lecture 5:
BWT-Based Compression

March 12th, 2012



Plan

Suffix Trees

LZ77 Arrays
Suffix

Huffman MTF BWT

Select
Rank/

Trees
Wavelet

bzip2 FM-indexes

lots of stuff

×××

×

× ×today

today next class

next class

next class



Oops!

I messed up the homework: 4.5 is the same as part of 4.4, so you
can skip it. Sorry!

If you’re feeling enthusiastic, you can try 4.7 (optional!):

Huffman code MTF(BWT(MISSISSIPPI$)). Compare
with what you got for 4.6.



Burrows-Wheeler Transform (BWT)

Recall that BWT[i ] = S[(SA[i ] - 1) mod (n + 1)] 1

A
$

R
-
A
-
L
A
-
A
L
A
B
A
R
D
A
$

A
-
A
L
A
B
A
R
D
A
$

A
-
L
A
-
A
L
A
B
A
R
D
A
$

D
A
$

L
A
-
A
L
A
B
A
R
D
A
$

-
A
-
L
A
-
A
L
A
B
A
R
D
A
$

L
A
B
A
R
-
A
-
L
A
-
A
L
A
B
A
R
D
A
$

L
A
B
A
R
D
A
$

$
A
L
A
B
A
R
-
A
-
L
A
-
A
L
A
B
A
R
D
A
$

-
A
L
A
B
A
R
D
A
$

B
A
R
-
A
-
L
A
-
A
L
A
B
A
R
D
A
$

B
A
R
D
A
$

A
B
A
R
-
A
-
L
A
-
A
L
A
B
A
R
D
A
$

A
B
A
R
D
A
$

R
D
A
$

-
L
A
-
A
L
A
B
A
R
D
A
$

A
L
A
B
A
R
-
A
-
L
A
-
A
L
A
B
A
R
D
A
$

A
L
A
B
A
R
D
A
$

A
R
-
A
-
L
A
-
A
L
A
B
A
R
D
A
$

A
R
D
A
$

1Again, subject to off-by-one errors depending on whether you count from 0
and whether n includes $.



Local and Global Homogeneity

The BWT moves together characters that have similar contexts.
That is, if characters following occurrences of the same context
tend to be the same, then the BWT turns contextual structure
into local homogeneity.

However, since the BWT only permutes the characters, it doesn’t
change the efficacy of Huffman coding, which takes advantage only
of global homogeneity.

How can we turn local homogeneity into global homogeneity?



Move-To-Front (MTF)

MTF is described in your exercise:

For Move-To-Front (MTF) compression, we are given a
string S [1..n] and a list of the characters in the alphabet
in some order. For i from 1 to n, we replace the
character S [i ] by its current position in the list and then
move it to the front of the list. For example, with an
initial list D-E-H-L-O-R-W, MTF turns HELLOWORLD
into 3-3-4-1-5-7-2-7-4-7 (I think). We then encode the
resulting list of integers using, say, Huffman coding.



Example

Let’s look at Hamlet from Project Gutenberg, BWT(Hamlet),
MTF(BWT(Hamlet)) and a simple prefix-free encoding of the
integers in MTF(BWT(Hamlet)) that uses about 2 log x bits to
write each integer x .2

Our final encoding takes up about half a megabyte — three times
as much as the original file Hamlet — but that’s only because it’s
ASCII instead of binary. As a binary file, it would take up about 62
kilobytes, just a little more than the 7-Zip encoding.

2These files are available on Noppa.



PAUSE TO LOOK AT FILES



bzip2

If you check Sourceforge (or Wikipedia) you’ll find that bzip2 is
essentially BWT + MTF + Huffman, with some run-length
encoding (RLE) thrown in. For RLE, we replace (sufficiently long)
runs of duplicate characters by 1 copy of the character and the
length of the run.3

To decompress a file, we decode it with Huffman coding, then
invert MTF, then invert the BWT.

So, you now know how to build one of the most popular
compressors! Well, pretty much. . .

3I didn’t bother with Huffman or RLE.



Next Time

I mentioned before how the BWT can be used as an index. Next
time we’ll see how to build a kind of compressed full-text index
called an FM-index. We’ll use compressed rank/select data
structures to build a wavelet tree, which is a data structure that’s
almost as versatile as a suffix tree — and much smaller.



Plan

Suffix Trees

LZ77 Arrays
Suffix

Huffman MTF BWT

Select
Rank/

Trees
Wavelet

bzip2 FM-indexes

lots of stuff

×××

×

× ×today

today next class

next class

next class


