Lecture 6: FM-indexes

March 19th, 2012

Rank on Binary Strings

Definition For a binary string B[1..n], rank(*i*) is the number of 1s in B[1..i].

(Notice that the number of 0s in B[1..i] is i - rank(i).)

We break *B* into blocks of length $\log^2 n$. We store $\operatorname{rank}(i)$ for the starting position *i* of every block; this takes a total of $\mathcal{O}\left(\frac{n}{\log^2 n} \cdot \log n\right) = o(n)$ bits. We then break each block into mini-blocks of length $\frac{\log n}{2}$. For each mini-block, we store the number of 1s between the start of the block and the start of the mini-block; this takes a total of $\mathcal{O}\left(\frac{n}{\log n} \cdot \log \log n\right) = o(n)$ bits.

We build a *universal table* mapping (mini-block, position)-pairs to ranks within mini-blocks. This table takes $\mathcal{O}(2^{\log(n)/2} \cdot \log n \log \log n) = o(n)$ bits. In the RAM model, $\frac{\log n}{2}$ bits fit in $\mathcal{O}(1)$ machine words, so we can look up a rank in a mini-block in $\mathcal{O}(1)$ time.

Succinct Solution

Theorem

We can store a binary string B[1..n] in n + o(n) bits such that rank takes O(1) time.

Compressed Solution (Sketch)

We encode each mini-block M of B by writing i) the number of 1s in M and ii) M's lexicographic rank among all $\frac{\log n}{2}$ -bit binary strings with that many 1s. Suppose there are b 1s in M, so we use $\log \log n + \log {\binom{\log(n)/2}{b}} + O(1)$ bits.

If there are roughly the same number of 1s and 0s in M, then $\log {\binom{\log(n)/2}{b}} \approx \frac{\log n}{2}$; however, the more skewed the distribution is, the fewer bits we use. Notice we're little pieces of B separately. Remember we discussed that as a way to combine Huffman coding with the BWT?

Compressed Solution (Sketch)

Theorem

We can store a binary string B[1..n] in

$$\sum_{i} \frac{\log n}{2} \cdot H_0(M_i) + o(n) \leq nH_0(B) + o(n)$$

bits such that rank takes $\mathcal{O}(1)$ time.

We don't really have time to discuss H_0 in this course — but don't worry, there's *lots* about it in the data compression course.

Wavelet Trees

The wavelet tree for 5, 11, 7, 2, 10.

Wavelet Trees

The root stores the first bits of all the numbers. The root's left child stores the second bits of all the numbers that start with a 0; the root's right child stores the second bits of all the numbers that start with a 1. The

Notice the tree has height $\lceil \lg \sigma \rceil$ and all the nodes together store $n \lceil \log \sigma \rceil$ bits unencoded.

In fact, if we encode the bits at all the nodes with our compressed solution for rank, then we use only $nH_k(S) + o(n \log \sigma)$ bits. We don't have enough time to discuss H_k in detail, either, but it's good!

Rank for Larger Alphabets

How many 3s are there up to position 7?

Burrows-Wheeler Transform (BWT)

Recall that
$$BWT[i] = S[(SA[i] - 1) \mod (n + 1)]^{-1}$$

¹Again, subject to off-by-one errors depending on whether you count from 0 and whether n includes \$.

FM-Indexes

BWT(ALABAR-A-LA-ALABARDA) = ARADL-LL\$-BBAAR-AAAA

The partial sums of the frequencies — 1 \$, 3 -'s, 8 As, 2 Bs, 1 D, 3 Ls, 2 Rs — are C = 0, 1, 4, 12, 14, 15, 18

Setting = 0, - = 1, A = 2, B = 3, D = 4, L = 5, R = 6, we get 2 6 2 4 5 1 5 5 0 1 3 3 2 2 6 1 2 2 2 2

Counting

$$\{\$ = 0, - = 1, A = 2, B = 3, D = 4, L = 5, R = 6\}$$

C = 0, 1, 4, 12, 14, 15, 18

2	6	2	2 4	•	5	1	5	ĺ	5	0	1	3	3	2	2	6	1		2	2	2	2
0	1	C) 1		1	0	1	-	1	0	0	0	0	0	0	1	0)	0	0	0	0
2	2	1	0	1	3	3	3	2	2	1	2	2	2	2		(6	4	5	5	5	6
1	1	0	0	0	1	. 1	L	1	1	0	1	1	1	1			1	0	0	0	0	1
1	0	1	1		2	2	3	3	2	2	2	2	2	2		4	5	5	5		6	6
1	0	1	1		0	0	1	1	0	0	0	0	0	0		0	1	1	1		0	0
0	1	1	1		2	2	2	2	2	2	2	2	3	3		4	Ę	5!	5 5	5	6	6

How many occurrences of BAR are there? Of LA?

Counting

How many occurrences of BAR are there? Of LA?

Locating

We store a binary string indicating the position in the BWT of every $(\log^{1+\epsilon} n)$ th character in *S*; we also store each of those characters' positions, in the order they appear in the BWT. This takes a total of $\mathcal{O}\left(\frac{n}{\log^{1+\epsilon} n} \cdot \log n\right) = o(n)$ bits.

Given the position of a character in the BWT, we use rank to walk backward until we reach a character whose position in S we have sampled. We then add to that sampled position the number of backward steps we have taken. This takes a total of $\mathcal{O}(\log^{1+\epsilon} n \cdot \log \sigma)$ time.

End Result

Theorem

We can store a string S[1..n] over an alphabet of size σ in $nH_k(S) + o(n \log \sigma)$ bits such that, given a pattern P[1..m], we can count the occ occurrences of P in S in $\mathcal{O}(m \log \sigma)$ time and locate each occurrence in $\mathcal{O}(\log^{1+\epsilon} n \cdot \log \sigma)$ time.²

²Actually, we can reduce the log σ to log log σ in the first bound and get rid of it in the second bound. But not in this course.