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Rank on Binary Strings

Definition
For a binary string B[1..n], rank(i) is the number of 1s in B[1..i ].

(Notice that the number of 0s in B[1..i ] is i − rank(i).)



Succinct Solution

We break B into blocks of length log2 n. We store rank(i) for the
starting position i of every block; this takes a total of

O
(

n
log2 n

· log n
)

= o(n) bits. We then break each block into

mini-blocks of length log n
2 . For each mini-block, we store the

number of 1s between the start of the block and the start of the
mini-block; this takes a total of O

(
n

log n · log log n
)

= o(n) bits.



Succinct Solution

We build a universal table mapping (mini-block, position)-pairs to
ranks within mini-blocks. This table takes
O
(
2log(n)/2 · log n log log n

)
= o(n) bits. In the RAM model, log n

2
bits fit in O(1) machine words, so we can look up a rank in a
mini-block in O(1) time.



Succinct Solution

Theorem
We can store a binary string B[1..n] in n + o(n) bits such that
rank takes O(1) time.



Compressed Solution (Sketch)

We encode each mini-block M of B by writing i) the number of 1s
in M and ii) M’s lexicographic rank among all log n

2 -bit binary
strings with that many 1s. Suppose there are b 1s in M, so we use
log log n + log

(log(n)/2
b

)
+O(1) bits.

If there are roughly the same number of 1s and 0s in M, then
log
(log(n)/2

b

)
≈ log n

2 ; however, the more skewed the distribution is,
the fewer bits we use. Notice we’re little pieces of B separately.
Remember we discussed that as a way to combine Huffman coding
with the BWT?



Compressed Solution (Sketch)

Theorem
We can store a binary string B[1..n] in∑

i

log n

2
· H0(Mi ) + o(n) ≤ nH0(B) + o(n)

bits such that rank takes O(1) time.

We don’t really have time to discuss H0 in this course — but don’t
worry, there’s lots about it in the data compression course.



Wavelet Trees

0 1 0 0 1

1 1 0 0 0

1 11 0 1

0 1 1 1 0

2 5 7 10 11
The wavelet tree for 5, 11, 7, 2, 10.



Wavelet Trees

The root stores the first bits of all the numbers. The root’s left
child stores the second bits of all the numbers that start with a 0;
the root’s right child stores the second bits of all the numbers that
start with a 1. The

Notice the tree has height dlg σe and all the nodes together store
ndlog σe bits unencoded.

In fact, if we encode the bits at all the nodes with our compressed
solution for rank, then we use only nHk(S) + o(n log σ) bits. We
don’t have enough time to discuss Hk in detail, either, but it’s
good!



Rank for Larger Alphabets

3 1 2 0 0 3 1 2 3 3

1 0 1 0 0 1 0 1 1 1

1 0 0 1 3 2 3 2 3 3

1 0 0 1 1 0 1 0 1 1

How many 3s are there up to position 7?



Burrows-Wheeler Transform (BWT)

Recall that BWT[i ] = S[(SA[i ] - 1) mod (n + 1)] 1
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1Again, subject to off-by-one errors depending on whether you count from 0
and whether n includes $.



FM-Indexes

BWT(ALABAR-A-LA-ALABARDA) = ARADL-LL$-BBAAR-AAAA

The partial sums of the frequencies — 1 $, 3 -’s, 8 As, 2 Bs, 1 D,
3 Ls, 2 Rs — are C = 0, 1, 4, 12, 14, 15, 18

Setting $ = 0, - = 1, A = 2, B = 3, D = 4, L = 5, R = 6, we get

2 6 2 4 5 1 5 5 0 1 3 3 2 2 6 1 2 2 2 2



Counting

{$ = 0, - = 1, A = 2, B = 3, D = 4, L = 5, R = 6}

C = 0, 1, 4, 12, 14, 15, 18

2 6 2 4 5 1 5 5 0 1 3 3 2 2 6 1 2 2 2 2

0 1 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0

2 2 1 0 1 3 3 2 2 1 2 2 2 2 6 4 5 5 5 6

1 1 0 0 0 1 1 1 1 0 1 1 1 1 1 0 0 0 0 1

1 0 1 1 2 2 3 3 2 2 2 2 2 2 4 5 5 5 6 6

1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0

0 1 1 1 2 2 2 2 2 2 2 2 3 3 4 5 5 5 6 6

How many occurrences of BAR are there? Of LA?



Counting

{$ = 0, - = 1, A = 2, B = 3, D = 4, L = 5, R = 6}

C = 0, 1, 4, 12, 14, 15, 18

0 1 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0

1 1 0 0 0 1 1 1 1 0 1 1 1 1 1 0 0 0 0 1

1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0

How many occurrences of BAR are there? Of LA?



Locating

We store a binary string indicating the position in the BWT of
every (log1+ε n)th character in S ; we also store each of those
characters’ positions, in the order they appear in the BWT. This

takes a total of O
(

n
log1+ε n

· log n
)

= o(n) bits.

Given the position of a character in the BWT, we use rank to walk
backward until we reach a character whose position in S we have
sampled. We then add to that sampled position the number of
backward steps we have taken. This takes a total of
O
(
log1+ε n · log σ

)
time.



End Result

Theorem
We can store a string S [1..n] over an alphabet of size σ in
nHk(S) + o(n log σ) bits such that, given a pattern P[1..m], we
can count the occ occurrences of P in S in O(m log σ) time and
locate each occurrence in O

(
log1+ε n · log σ

)
time.2

2Actually, we can reduce the log σ to log log σ in the first bound and get rid
of it in the second bound. But not in this course.


