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Last week: Simulation of gene expression

X is system state, i.e. numbers of each molecule species
Reactions:

αj1Xij1 + · · ·+ αjnXijn → βj1Xoj1 + · · ·+ βjnXojn , j = 1, . . . ,M

c are the known reaction rates

I Stochastic simulation algorithm (SSA; Gillespie, 1977)

1. Sample time until next reaction (τ)
2. Sample which reaction (depends on rates), simulate it

I Deterministic differential equation model

I Stochastic differential equation model
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Warmup for this week

I Given a set of observed variables, how to select ones that are
related?

I ... that are causally related?

I How to infer gene regulatory relationships?
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related?
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I How to infer gene regulatory relationships?



Learning goals for this week

I To understand reasons for difference of correlation and causality

I To recognise basic regulatory network inference methods

I To design regulatory network inference projects

I To apply simple methods for regulatory network inference



What is a gene regulatory network?

I How should the arcs be interpreted?

I Interaction active somewhere?
I Interaction active at a given condition?
I Rate-limiting interaction at a given condition?
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https://xkcd.com/552/, CC-BY-NC



Correlation and causation

Image from Messerli (2012), doi:10.1056/NEJMon1211064



Correlation and causation examples

I Drownings and ice cream sales in the summer

I Number of pirates and global average temperature

I Diet, health and lifestyle

I . . .



Linear dependence

I As we saw, correlation does not imply causation.

I Assume two random variables X and Y related by

X = a · Y + ε

I We can equivalently solve

Y = (X − ε)/a

I Similar reasoning also applies with non-linear dependencies

I In general not possible to tell which of two variables causes
which



Direct and indirect links

I In general, we would like to distinguish between direct and
indirect links

I Assume three random variables X , Y and Z related by

Y = b · Z + εY

X = a · Y + εX

I X will also depend on Z :

X = a · b · Z + a · εY + εX

I Similar reasoning also applies with non-linear dependencies

I Additional assumptions needed to separate direct and indirect
links



How to infer causality

I Interventions
I Randomisation

I Double blinding

I Clever experimental design





https://xkcd.com/925/, CC-BY-NC



Two networks producing identical output

4 FUNDAMENTAL LIMITATIONS OF NETWORK RECONSTRUCTION
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FIGURE 1. Networks producing the same node trajectories are indistinguishable. Two
drastically different networks shown in the left —representing two different interspecific inter-
action matrices— produce identical node trajectories x(t) under the generalized Lotka-Volterra
(GLV) model, despite they have different edge-weights, sign-pattern, connectivity and degree
sequence. It is impossible to reconstruct any of these properties of the network, simply because
we cannot decide which one of the two networks produced the observed node trajectories. Here
the node dynamics is given by the GLV model ẋi = rixi +

P

j aijxixj that has the form (1)
taking fij = xixj and ui(t) = rixi(t), with ri a known species growth rate. See Fig.S2 for
additional details.
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In other words, v
1

is indistinguishable from v

2

if the line (or more generally, hyperplane) passing
through them is parallel to the kernel of Mi, or equivalently, if this line is a fiber of the quotient space
Rn

/ kerMi (see Fig. 2).
Now let P : V ✓ Rn ! Y be the property of the interconnection vector we want to reconstruct,

where V is its domain and Y its image. For example, Y = {�1, 0, 1}n if P is the sign pattern, or
Y = {0, 1}n if P is the connectivity pattern. The domain V becomes smaller than Rn when we use

Image from Angulo et al. (2015), arXiv:1508.03559



What can help

I Combining data sets from different modalities

I Diverse data, perturbations

I Prior information, e.g. sparsity

I . . . ?
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Typical data types

1. TF knockouts

2. Expression data

3. TF binding data

4. (Chromatin accessibility data)

5. (Chromatin 3D structure data)



TF knockout data

I Experimental intervention to disable a gene

I Measure gene expression afterwards
I Challenge: dramatic perturbation

I Example fruit fly genes: eyeless, tinman
I Are we still studying the same network?



Expression data

I Data under diverse conditions
I Time series are very helpful

I Otherwise difficult to identify dynamical parameters that may
confound the network

I Experimental design—measurements are expensive!



TF binding data

I Useful for establishing a mechanism
I But:

I Not all regulators bind directly to DNA (could bind via other
TFs)

I How to map enhancers to genes?



Computational alternatives

Figure from Pique-Regi et al. (2011), doi:10.1101/gr.112623.110
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Regulatory network inference methods

I Modelling various data sets
I Modelling knockouts
I Dynamical models of time series
I Prior knowledge from TF binding

I Regression methods

I Correlation and mutual information based approaches



Modelling knockouts

I Typical workflow: compare the expression of a gene before and
after knockout or other perturbation

I Can also check the sign of change

I Combine data from multiple experiments to work out the
network
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Linear dynamical systems

dX(t)

dt
= AX(t)

I Here A is a matrix of regulatory links
I Why:

I Simple representation
I Efficient inference algorithms

I Why not:
I Unrealistic



Two regulators

0 + 0 = 0

1 + 0 = 1

0 + 1 = 1

1 + 1 = 2



Limit behaviour

I Consider a 1D linear differential equation:

dx(t)

dt
= ax(t)

I This has a solution (check!):

x(t) = Ceat

I Assume x(0) > 0. As t →∞, either{
x(t)→∞ If a > 0

x(t)→ 0 If a < 0
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Limit behaviour

dX(t)

dt
= AX(t)

I In higher dimensions possibilities are only slightly more
complex:

I |X(t)| → ∞
I |X(t)| → 0
I X(t) approaches a harmonic oscillator (sine curve)

I The behaviour depends on the eigenvalues of A



Non-linear dynamical systems

I More complex models
I Why:

I Realistic model

I Why not:
I More difficult to learn: more choices, more parameters
I Less efficient algorithms



Granger causality

I Assume a linear discrete-time dynamical model between two
variables x1(t) and x2(t):

x1(t) =

p∑
j=1

a11,jx1(t − j) +

p∑
j=1

a12,jx2(t − j)

x2(t) =

p∑
j=1

a22,jx2(t − j) +

p∑
j=1

a21,jx1(t − j)

I If a model with a12 6= 0 explains x1 better, it is said that x2
Granger-causes x1.

I This provides evidence that x2 may cause x1
I But: Granger causality 6= causality
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Partial correlation

I Regular correlation coefficient

ρXY = Corr(X ,Y ) =
Cov(X ,Y )

σXσY

can be confounded by indirect links
I Possible solution: partial correlation given additional variables

Z
I Informally: compute the correlation of residuals of linear

regression models given Z



Gaussian Markov random field

I Undirected graphical model, edges denote dependence

I Gaussian marginals ⇒ multivariate Gaussian joint distribution
N (µ,Σ)

I Theorem: {i , j} 6∈ E ⇒ (Σ−1)i ,j = 0

I In words: the precision matrix Σ−1 is sparse with non-zero
elements corresponding exactly to edges in the dependency
graph



Graphical lasso

I Previous sparsity property suggests model structure learning
algorithms that promote such sparsity

I Given observations X , we aim to estimate the precision matrix
Θ = Σ−1 by minimising

− log p(X |Θ) + α · pen(Θ),

where the first term is negative log-likelihood and the second
term is penalty that encourages sparsity

I Ideally pen(Θ) = #{(i , j)|θij 6= 0} but computationally difficult
I Graphical Lasso: pen(Θ) =

∑
i ,j |θij |

I Efficient convex optimisation + sparsity



Limitations of static interaction models

I Self-interactions?

I Loops resolved through time?

I Directionality difficult or impossible to resolve
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Learning goals for this week

I To understand reasons for difference of correlation and causality

I To recognise basic regulatory network inference methods

I To design regulatory network inference projects

I To apply simple methods for regulatory network inference



Tasks for the study circle on Thursday

Paper:

I D. Marbach et al..
Wisdom of crowds for robust gene network inference.
Nature Methods 9(8): 796–804 (2012).
doi:10.1038/nmeth.2016

Task for all:

I Read the paper to form an overview of the topic.

I You will not need to understand the details.



Next week: guest lectures

See the course website for details!
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