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Schedule

I Today: Introduction, papers

I Next week: Choosing the topic, instructions for presentations
etc

I Article summaries:

1. October 19th: Submission deadline
2. November 5th: Review deadline
3. November 25th: Final version

I Presentations between early November and Mid December (6-7
sessions)



Data analysis with probabilistic models

The modeling task:

I Construct a (often general-purpose) probabilistic model by
specifying a set of probability distributions

I Observe data

I Fit the model to the data, learning the probability distribution
of the model parameters given the data

I Make predictions (e.g. class labels of future observations) by
averaging over that distribution



Big data

I Big data: Any data collection that is large enough to be
difficult to process with “traditional” technique

I A lot of hype in the business world, but the practical challenges
are real

I Computational neuroscience: Typical session with fMRI
procudes around 3 gigabytes of data (activities of ∼1M brain
voxels every few seconds)

I Computational biology: A typical high-throughput sequencing
run yields 30M-100M sequencing reads of ∼100 nt, some GBs
per sample

I Big business players (Amazon, FB etc) have hundreds of
millions of customers requiring real-time predictions (e.g.
recommender engines, search)



Big data at our department (examples)

I Helsinki Privacy Experiment (50 terabytes of video and audio
of home surveillance)

I 200M text documents covering editorial and social media of
the past year, 60M scientific articles covering the history of
human scientific progress

I Several genomics data sets with 100s high-throughput
sequencing samples, multiple terabytes each set



Probabilistic models for big data

I Probabilistic models often considered to be computationally
heavy; classical papers on MCMC often have only a few
parameters and the sampling chains are long

I This course: What can probabilistic modeling offer for big
data applications?

I Scaling up variational inference
I More efficient samplers, distributed sampling
I Implementation issues not covered: GPU computing or other

forms of scaling up the computational resources, distributed
computing frameworks such as Hadoop, Spark, . . .



Probabilistic graphical models

I Graph illustrates independencies, data generation described
with a set of probability distributions

I Notation: D = {x} is data, θ are the parameters
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Bayesian inference

I Model: p(D, θ) = p(D|θ)p(θ) = p(θ)
∏

n p(xn|θ)

I Given a model, we are typically interested in predictions
p(x|D) =

∫
p(x|θ)p(θ|D)dθ

I The posterior distribution p(θ|D) hence summarizes the model

I Bayes’ rule p(θ|D) = p(D|θ)p(θ)
p(D)

I In principle easy, in practice the quantity
p(D) =

∫
p(D|θ)p(θ)dθ necessitates approximative inference

I On this course: (Mostly) Markov chain Monte Carlo and
variational inference



Variational inference basics

I Idea: approximate the posterior distribution p(θ|D) with
another distribution q(θ) that is analytically tractable

I Learn the approximation by minimizing the distance between
q(θ) and p(θ|D)

I The distance is measured by the Kullback-Leibler divergence
D(q||p) =

∫
q(θ) log q(θ)

p(θ|D)dθ

I ...and the minimization is often converted into maximizing a
lower bound on the marginal likelihood (ELBO):

L =
∫
q(θ) log p(D,θ)

q(θ) dθ = p(D)− D(q||p)

I Predictions then made by replacing
∫
p(x|θ)p(θ|D)dθ by∫

p(x|θ)q(θ)dθ



Mean-field variational inference

I Often q(θ) is factorized as
∏

i q(θi ), so that we can optimize
one factor at a time

I Differentiating wrt to q(θi ) and setting the derivative to zero
provides a closed-form update
log q(θi ) =

∫
q(θ−i ) log p(D, θ)dθ−i + C

I The expectation over all other factors is typically easy to
compute for exponential family distributions with conjugate
priors (and much harder for everything else)

I Leads to an algorithm closely resembling expectation
maximization



Towards more scalable variational inference

I Given a parametric form q(θ|φ) VB is an optimization problem:

L(φ) =
∫
q(θ|φ) log p(D,θ)

q(θ|φ) dθ

I Gradient-based optimization generally applicable:
φ← φ+ δ∇L(φ)

I Natural gradient speeds up convergence: Replace ∇L(φ) with
F−1(φ)∇L(φ), where F (φ) is the Fisher information matrix
consisting of expectations of second derivatives of log q(θ|φ)
(Honkela et al., JMLR 2010)

I Stochastic gradients applicable (Hoffman et al., JMLR 2013);
more about this during the seminar



Variational inference example
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Figure from Honkela et al. (JMLR 2010)



Approximate inference by sampling

I A lot of Bayesian inference boils down to computing integrals

E [f (θ)] =

∫
θ
f (θ)p(θ|D)dθ

I Model predictions, posterior statistics of parameters, . . .

I θ is often high-dimensional which makes these very difficult

I Stochastic approximation:

E [f (θ)] ≈ 1

N

N∑
i=1

f (θi ),

when θi ∼ p(θ|D)

I How to simulate samples following a given distribution?



MCMC basics (Metropolis et al., 1953; Hastings, 1970)

I Idea: construct a Markov chain, whose stationary distribution is
the distribution of interest p(θ|D)

I Requires an unnormalised p∗(θ|D) ∝ p(θ|D)

I In the Bayesian setting typically

p(θ|D) =
p(D|θ)p(θ)

p(D)

which easily yields the unnormalised density

p∗(θ|D) = p(D|θ)p(θ)

I To define the Markov chain, we need to specify a transition
distribution q(θ′|θ)

I The Markov chain is guaranteed to converge if it satisfies
sufficient regularity conditions and the detailed balance
condition

q(θ′|θ)p(θ|D) = q(θ|θ′)p(θ′|D)



Metropolis–Hastings algorithm

I The most widely used MCMC algorithm is the
Metropolis–Hastings algorithm

I Accept–reject mechanism, proposals are accepted with
probability

f (θ′|θ) = min

(
1,

q(θ|θ′)p(θ′|D)

q(θ′|θ)p(θ|D)

)
I This satisfies the detailed balance because

f (θ′|θ)q(θ′|θ)p(θ|D) = min(q(θ′|θ)p(θ|D), q(θ|θ′)p(θ′|D))

= min(q(θ|θ′)p(θ′|D), q(θ′|θ)p(θ|D))

= f (θ|θ′)q(θ|θ′)p(θ′|D)



Gradients in MCMC

I Standard MCMC is based on proposal distributions whose
shape is essentially independent of the target

I E.g. fixed multivariate Gaussian proposals

I Target distribution gradients would allow utilising local shape
I Common algorithms:

I Langevin dynamics MCMC
I Hamiltonian Monte Carlo (a.k.a. hybrid Monte Carlo)

I Both based on constructing a suitable dynamical system and
simulating it



Demo time

http://nbviewer.ipython.org/630ec3bc0d4bbaa94d03

http://nbviewer.ipython.org/630ec3bc0d4bbaa94d03


Stochastic gradients



Papers: MCMC I

M1. S. Ahn, A. Korattikara, M. Welling, Bayesian posterior
sampling via stochastic gradient Fisher scoring, ICML
2012 and M. Welling, Y.W.Teh, Bayesian Learning via
Stochastic Gradient Langevin Dynamics, ICML 2011.

M2. S.Patterson, Y. W. Teh, Stochastic Gradient Riemannian
Langevin Dynamics on the Probability Simplex, NIPS
2013.

M3. S. Ahn, B. Shahbaba, M. Welling, Distributed stochastic
gradient MCMC, ICML 2014.

M4. T. Chen, E. Fox, C. Guestrin, Stochastic Gradient
Hamiltonian Monte Carlo, ICML 2014.



Papers: MCMC II

M5. A. Korattikara, Y. Chen, M. Welling, Austerity in MCMC
Land: Cutting the Metropolis-Hastings Budget, ICML
2014.

M6. D. Maclaurin, R.P. Adams, Firefly Monte Carlo: Exact
MCMC with Subsets of Data, UAI 2014.

M7. W. Neiswanger, E. Xing, C. Wang, Asymptotically Exact,
Embarrassingly Parallel MCMC, UAI 2014; S.L. Scott, A.W.
Blocker, F.V. Bonassi, H.A. Chipman, E.I. George, R.E.
McCulloch, Bayes and Big Data: The Consensus Monte
Carlo Algorithm, Bayes 250, 2013; and T. Campbell, J. How,
Approximate Decentralized Bayesian Inference, UAI 2014.



Papers: Variational

V1. M.D. Hoffman, D.M. Blei, C. Wang, J. Paisley. Stochastic
Variational Inference, JMLR 2013 (Sections 1-2 and 5)

V2. . . . (Sections 3-4) and R. Ranganath, C. Wang, D.M. Blei, E.
Xing, An Adaptive Learning Rate for Stochastic
Variational Inference, ICML 2013.

V3. M. Titsias, M. Lazaro-Gredilla, Doubly Stochastic
Variational Bayes for non-Conjugate Inference, ICML
2014.

V4. D.J. Rezende, S. Mohamed, D. Wierstra, Stochastic
Backpropagation and Approximate Inference in Deep
Generative Models, ICML 2014.

V5. J. Hensman, N. Fusi, N.D. Lawrence, Gaussian Processes for
Big Data, UAI 2013.

V6. J. M. Hernandez-Lobato, N. Houlsby, Z. Ghahramani,
Stochastic Inference for Scalable Probabilistic Modeling
of Binary Matrices, ICML 2014.



Papers: Other

O1. H. Rue, S. Martino, Approximate Bayesian Inference for
Latent Gaussian Models by Using Integrated Nested
Laplace Approximations, JRSS:B, 2009.

O2. M. Schmidt, N. Le Roux, F. Bach, Minimizing Finite Sums
with the Stochastic Average Gradient, arXiv 2013.

I Own suggestions?



Next steps

Moodle: “58314301 Seminar in Probabilistic Models for Big Data,
autumn 2014”
Registration code: stochastic

For next week:

1. Check the paper list (Moodle or course web page) and have a
look at the papers

2. Mark all papers you are interested in on Moodle by Tuesday 9
September

I Expressed preferences may be used to pre-allocate papers

3. Come to the next session on 10 September with a list of
preferred papers and open mind for non-favourites too!
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