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Abstract

We develop a nonlinear generalization of
independent component analysis (ICA) or
blind source separation, based on temporal
dependencies (e.g. autocorrelations). We in-
troduce a nonlinear generative model where
the independent sources are assumed to be
temporally dependent, non-Gaussian, and
stationary, and we observe arbitrarily nonlin-
ear mixtures of them. We develop a method
for estimating the model (i.e. separating the
sources) based on logistic regression in a neu-
ral network which learns to discriminate be-
tween a short temporal window of the data
vs. a temporal window of temporally per-
muted data. We prove that the method esti-
mates the sources for general smooth mixing
nonlinearities, assuming the sources have suf-
ficiently strong temporal dependencies, and
these dependencies are in a certain way differ-
ent from dependencies found in Gaussian pro-
cesses. For Gaussian (and similar) sources,
the method estimates the nonlinear part of
the mixing. We thus provide the first rigor-
ous and general proof of identifiability of non-
linear ICA for temporally dependent station-
ary sources, together with a practical method
for its estimation.

1 INTRODUCTION

Nonlinear independent component analysis (ICA) is
one of the biggest unsolved problems in unsupervised
learning. The basic idea is to generalize the highly
successful linear ICA framework to arbitrary, but usu-
ally smooth and invertible, nonlinear mixing functions.
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Thus, the observed data is assumed to be a nonlin-
ear invertible transformation (“mixing”) of statisti-
cally independent latent quantities, and the goal is to
find the mixing function, or its inverse, solely based
on the assumption of the statistical independence of
the latent quantities (“independent components”, or
“sources”). In other words, we want to separate the
original sources from the mixed data. Importantly,
no prior knowledge on the mixing function should be
necessary for the learning.

Nonlinear ICA offers a rigorous framework for unsu-
pervised deep learning, if the nonlinear demixing func-
tion (i.e. the inverse of the nonlinear mixing) is mod-
elled by a deep neural network. However, the demix-
ing function could also be modelled by any of the other
well-known methods for general nonlinear function ap-
proximation, such as kernel methods or Gaussian pro-
cesses.

The fundamental problem here is that in the basic
case the problem is ill-posed: If the latent quantities
are random variables, with no temporal structure (i.e.
independently and identically distributed, i.i.d., over
the set of observations), the original independent com-
ponents cannot be inferred (Hyvärinen and Pajunen,
1999). In fact, there is an infinite number of possible
nonlinear decompositions of a random vector into in-
dependent components, and those decompositions are
not similar to each other in any trivial way. Assum-
ing the mixing function to be smooth may help (Zhang
and Chan, 2008), and in fact estimation of such nonlin-
ear ICA has been attempted by a number of authors
(Deco and Brauer, 1995; Tan et al., 2001; Almeida,
2003; Dinh et al., 2015), but it is not clear to what
extent such methods are able to separate the sources.

A promising approach to nonlinear ICA is to use the
temporal structure of the independent components —
this is called by some authors nonlinear blind source
separation to emphasize the difference from the tempo-
rally i.i.d. case. Using the (linear) autocorrelations of
stationary sources enables separation of the sources in
the linear mixing case (Tong et al., 1991; Belouchrani
et al., 1997). A major advance in the field was to
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show how this framework can be extended to the non-
linear case (Harmeling et al., 2003). Related propos-
als have also been made under the heading “slow fea-
ture analysis” (Wiskott and Sejnowski, 2002), originat-
ing in Földiák (1991), which was extended and thor-
oughly analysed by Sprekeler et al. (2014). Recent
deep learning research (Mobahi et al., 2009; Springen-
berg and Riedmiller, 2012; Goroshin et al., 2015) as
well as blind source separation research (Valpola and
Karhunen, 2002; Hosseini and Deville, 2014) use simi-
lar ideas.

However, there are two fundamental problems with
most research in this direction. First, the objective
functions tend to be heuristic, and there is hardly any
theoretical justification or proof that they will actually
separate the sources. Even the general identifiability
of the mixing models considered is not clear: There
is no proof in the literature that the sources can be
separated under the conditions considered — but see
(Sprekeler et al., 2014) for some results in these direc-
tions, which are discussed in detail below.

The second problem is that even in the linear case,
methods by, or based on Tong et al. (1991) and Be-
louchrani et al. (1997) can only separate sources which
have distinct autocorrelation spectra: If the meth-
ods are applied on sources which have identical au-
tocorrelations, they will fail. However, having sources
with identical autocorrelations is a very realistic sce-
nario. For example, linear features in video data that
only differ by location and/or orientation are likely
to have identical autocorrelations; likewise, two elec-
troencephalography (EEG) sources with alpha oscilla-
tions may have practically identical autocorrelations.
It is clear that the identifiability conditions in the non-
linear case cannot be less strict than in the linear case,
and thus sources with identical autocorrelations can-
not be separated.

Very recently, a rigorous nonlinear ICA theory was
proposed for a different kind of temporal structure,
consisting of the nonstationarity of variances or other
parameters in an exponential family (Hyvärinen and
Morioka, 2017). However, in this paper, we consider
stationary sources, which is the “default” class in time
series analysis, and widely encountered in real data.

Here, we propose a rigorous framework for nonlinear
separation of independent, stationary sources based
on temporal dependencies, as well as a practical algo-
rithm. We formulate a nonlinear mixing model with
explicit conditions on what kind of temporal depen-
dencies are required in the independent source signals
— importantly, without any conditions on the mixing
function except for smoothness and invertibility. Es-
sentially, we require that the sources have sufficiently

strong temporal dependencies, and in particular these
dependencies are different from the dependencies ex-
hibited in Gaussian processes, in a precise sense related
to the cross-derivatives of the joint log-pdf in a short
time window.

We further propose an algorithm which can be mo-
tivated by a simple and intuitive heuristic learning
principle: We learn to discriminate between the ac-
tual observed data and a corrupted version where the
time structure is destroyed by permuting (shuffling)
the time points. The discrimination is performed by
logistic regression with a multi-layer perceptron. Sur-
prisingly, we show that such learning finds the original
sources in a hidden layer, up to trivial or otherwise
simple indeterminacies. This also constitutes a con-
structive identifiability proof of our mixing model.

2 MODEL DEFINITION

In this section, we give a rigorous definition of our
generative model, including some illustrative examples
of sources.

2.1 General Nonlinear Mixing Model

We assume the n observed signals (i.e. time series or
stochastic processes) x1(t), . . . , xn(t) are generated as
a nonlinear transformation f : Rn → Rn of n latent
signals s1(t), . . . , sn(t):

[x1(t), . . . , xn(t)] = f([s1(t), . . . , sn(t)]) (1)

Denoting by x(t) the vector [x1(t), . . . , xn(t)], and like-
wise for s, this can be expressed simply as

x(t) = f(s(t)). (2)

We assume the function f is invertible (bijective) and
sufficiently smooth but we do not constrain it in any
particular way.

2.2 Source Model with Non-Gaussian
Temporal Dependencies

In line with mainstream ICA theory, we assume here
that the si are mutually independent stochastic pro-
cesses (over different i). We further assume the sources
are stationary, in contrast to time-contrastive learning
(Hyvärinen and Morioka, 2017).

Importantly, we assume that the si(t) are temporally
dependent, for example autocorrelated (Tong et al.,
1991; Molgedey and Schuster, 1994; Belouchrani et al.,
1997; Harmeling et al., 2003; Sprekeler et al., 2014).
Next, we formalize rigorously what kind of temporal
dependencies are required, defining a class of stochas-
tic processes for which our theory holds.
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Definition 1 A two-dimensional random vector (x, y)
is called uniformly dependent if the cross-derivative
of its log-pdf exists, is continuous, and does not vanish
anywhere:

qx,y(x, y) :=
∂2 log px,y(x, y)

∂x∂y
6= 0 for all (x, y). (3)

A stationary stochastic process s(t) is called (second-
order) uniformly dependent if the distribution of
(s(t), s(t− 1)) is uniformly dependent.

This definition is stronger than simply assuming that
s(t) and s(t − 1) are not independent, since depen-
dence in general only implies that q is non-zero in some
set of non-zero measure, while we assume here that it
is non-zero everywhere. Below, we shall always as-
sume the sources si are uniformly dependent, which
sets our framework apart from ordinary ICA in which
the sources are sampled i.i.d.

Conventionally, the analysis of source separation is
divided to the Gaussian and the non-Gaussian case.
Here, however, the analysis is naturally divided to a
class of distributions whose dependencies are similar
enough to Gaussian, and the rest. We define:

Definition 2 A two-dimensional random vector (x, y)
is called quasi-Gaussian if qx,y in Eq. (3) exists, is
continuous, and it can be factorized as

qx,y(x, y) = c α(x)α(y) (4)

for some real (possibly zero or negative) constant1 c,
and some real-valued function α. A stationary stochas-
tic process s(t) is called (second-order) quasi-Gaussian
if the distribution of (s(t), s(t− 1)) is quasi-Gaussian.

Quasi-Gaussianity is a very interesting further re-
striction on the temporal dependencies. Below, the
strongest results on separability will be obtained for
sources which are not quasi-Gaussian; the quasi-
Gaussian case has to be considered separately.

Factorizability according to Eq. (4) is equivalent to the
joint log-pdf being of the form

log p(x, y) = β1(x) + β2(y) + cᾱ(x)ᾱ(y) (5)

where ᾱ is the integral function of α, and the βi
are some smooth functions. If (x, y) is jointly Gaus-
sian, the log-pdf does have such a form, with ᾱ(x)
being linear and βi(x) quadratic. Furthermore, then
(g(x), g(y)) has such a factorization for any invertible
function g; in general, we have the following result:

1Note that there is some indeterminacy in Eq. (4), since
c could be partly absorbed in the functions α. However,
it cannot be completely removed from the definition, since
a negative c cannot be absorbed into α, and the negative
sign has to be taken care of. We shall thus assume c = ±1.

Lemma 1 If a stochastic process s(t) is quasi-
Gaussian, then its instantaneous nonlinear transfor-
mation s̃(t) = g(s(t)) is also quasi-Gaussian for any
invertible bijective mapping g : R→ R.

Proof : For (x̃, ỹ) = (g(x), g(y)), we have

log p(x̃, ỹ) = β1(g−1(x̃))+log |(g−1)′(x̃)|+β2(g−1(ỹ))

+ log |(g−1)′(ỹ)|+ cᾱ(g−1(x̃))ᾱ(g−1(ỹ)) (6)

which is of the same form as Eq. (5), when we regroup
the terms and redefine the nonlinearities.

However, there are random vectors (and processes)
which are quasi-Gaussian but which cannot be ob-
tained as point-wise transformations of Gaussian ran-
dom vectors. For example, the above logic assumes
g is invertible, which restricts the set of nonlinearities
considered. An even more important point is that such
factorizability holds for distributions of the type

log p(x, y) = β1(x) + β2(y)− ρxy (7)

for any non-quadratic functions β1, β2, and a constant
ρ. For such distributions, loosely speaking, the de-
pendency structure is similar to the Gaussian one,
but the marginal distributions can be arbitrarily non-
Gaussian.

In fact, it is important to note that assuming non-
quasi-Gaussianity only constrains the (temporal) de-
pendencies, while the marginal distribution of si (over
time) is not restricted in any way; it could be Gaussian.
However, taken as a stochastic process, si(t) must be
non-Gaussian due to “non-Gaussian dependencies”.2

Examples of Non-Gaussian Sources Next we
consider some fundamental models of non-Gaussian
processes and their relation to the definitions above. A
classic example of a non-Gaussian process is given by
a linear autoregressive (AR) model with non-Gaussian
innovations:

log p(s(t)|s(t− 1)) = G(s(t)− ρs(t− 1)) (8)

for some non-quadratic function G corresponding to
the log-pdf of innovations, and a regression coefficient
|ρ| < 1. Another typical model would be a nonlinear
AR model with Gaussian innovations:

log p(s(t)|s(t−1)) = −λ[s(t)−r(s(t−1))]2+const. (9)

with some nonlinear, strictly monotonic regression
function r, and a positive precision parameter λ. We

2For clarity, we recall the standard definition of a Gaus-
sian stochastic process which says that the joint proba-
bility of any time window, such as (s(t), s(t − 1)), must
be jointly Gaussian, which is much stronger than mere
marginal Gaussianity of s(t).
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could obviously have a nonlinear AR model with non-
Gaussian innovations as well.

Importantly, the examples of non-Gaussian stochas-
tic processes in Eqs (8) and (9) can be proven to be
both uniformly dependent and non-quasi-Gaussian un-
der reasonable assumptions. In the case of the non-
Gaussian AR model, we assume G′′ < 0, which is
slightly stronger than concavity, and a non-zero value
of ρ. For the nonlinear AR model, we assume a strictly
monotonic regression function r, and λ > 0. (These
conditions are sufficient but most likely not necessary.)
The proofs are in Supplementary Material.

3 SEPARATING SOURCES BY
LOGISTIC REGRESSION

In this section, we propose a practical, intuitive learn-
ing algorithm for estimating the nonlinear ICA model
defined above, based on logistic regression with suit-
ably defined input data and labels. Although ini-
tially only heuristically motivated, we show that in fact
the algorithm separates sources which are not quasi-
Gaussian. For quasi-Gaussian sources, we show that
it estimates the model up to a linear mixing.

3.1 Discriminating Real vs. Permuted Data

Collect data points in two subsequent time points to
construct a sample of a new random vector y:

y(t) =

(
x(t)

x(t− 1)

)
(10)

which gives a “minimal description” of the temporal
dependencies in the data. Here, t is used as the sample
index for y(t). For comparison, create a permuted data
sample by randomly permuting (shuffling) the time in-
dices:

y∗(t) =

(
x(t)
x(t∗)

)
(11)

where t∗ is a randomly selected time point. In other
words, we create data with the same marginal distri-
bution (on the level of the vectors x instead of sin-
gle variables), but which does not reflect the temporal
structure of the data at all.

Now, we propose to learn to discriminate between the
sample of y(t) and the sample of y∗(t). We use logistic
regression with a regression function of the form

r(y) =

n∑
i=1

Bi(hi(y
1), hi(y

2)) (12)

where y1 and y2 denote the first and second halves
of the vector y, i.e. y = (y1,y2). (That is, y1 corre-
sponds to x(t) and y2 corresponds to either x(t − 1)

or x(t∗) depending on the data set.) Here, the hi are
scalar-valued functions giving a representation of the
data, possibly as hidden units in a neural network.
The Bi : R2 → R are additional nonlinear functions to
be learned.

Intuitively speaking, it is plausible that hi somehow
recover the temporal structure of the data since recov-
ering such structure is necessary to discriminate real
data from permuted data. In particular, since the most
parsimonious description of the temporal structure can
be found by separating the sources and then modelling
the temporal structure of each source separately, it is
plausible that the discrimination works best when the
hi separate the sources, and the Bi somehow approxi-
mate the distribution of (si(t), si(t − 1)). We call the
new learning method “permutation-contrastive learn-
ing (PCL)”.

3.2 Convergence Theory:
Non-Quasi-Gaussian Case

While our new method, PCL, was motivated purely
heuristically above, it turns out, perhaps surprisingly,
that it allows separation of the sources. Rigorously, the
correctness of PCL for non-quasi-Gaussian sources is
formalized in the following Theorem (proven in Sup-
plementary Material):

Theorem 1 Assume that

1. The sources si(t), i = 1, . . . , n are mutually inde-
pendent, stationary ergodic stochastic processes.

2. The sources are uniformly dependent (Def. 1).

3. None of the sources is quasi-Gaussian (Def. 2).

4. We observe a nonlinear mixing x(t) according to
Eq. (2), where the mixing nonlinearity f is bijec-
tive from Rn onto Rn, twice differentiable, and its
inverse is twice differentiable (i.e. f is a second-
order diffeomorphism).

5. We learn a logistic regression to discriminate be-
tween y in Eq. (10) and y∗ in Eq. (11) with the
regression function in Eq. (12), using function ap-
proximators for hi and Bi both of which are able
to approximate any nonlinearities (e.g. a neural
network). The functions hi and Bi have continu-
ous second derivates.

Then, the hidden representation hi(x(t)) will asymp-
totically (i.e. when the length of the observed stochastic
process goes infinite) give the original sources si(t), up
to element-wise transformations, and in arbitrary or-
der with respect to i.
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This Theorem is the first to provide a clear identifiabil-
ity condition, and an estimation method, for nonlinear
ICA of temporally dependent stationary sources. It
should be noted that the assumptions in Theorem 1 are
very weak in the context of ICA literature: The non-
linearity is simply assumed to be smooth and invert-
ible, while the obviously necessary assumptions of tem-
poral dependencies and non-Gaussianity are slightly
strengthened. The indeterminacy of ordering is ubiq-
uituous in ICA, and the well-known indeterminacy of
scaling and signs is naturally generalized to strictly
monotonic transformations of the individual sources.
Next we discuss the assumptions in detail:

Assumption 1 is standard in ICA, saying that the
sources (independent components) are independent.
Here, the assumption is simply extended to stochastic
processes using standard theory, and the assumptions
of stationarity and ergodicity are added by default.

Assumptions 2 and 3 were already discussed above:
they contain and extend the assumption of non-
Gaussianity (of the stochastic process), and require the
temporal dependencies to be strong enough. Gaussian
processes in the linear case can be separated only when
they have different autocorrelation functions (Tong
et al., 1991; Molgedey and Schuster, 1994; Belouchrani
et al., 1997); see Section 3.3 for more on Gaussian
sources. As a remedy to this situation, non-Gaussian
dependencies in the linear case have been considered,
e.g. in (Hyvärinen, 2005; Pham, 2002), but here we
may be the first to consider them in the nonlinear case.

Assumption 4 is a rather weak assumption of the in-
vertibility and smoothness of the mixing system. As-
sumption 5 says that we apply PCL on data which
comes from the nonlinear ICA model. A smoothness
constraint on the nonlinear function approximator is
also added, and it is of course necessary to assume that
the nonlinear function approximator has some kind of
universal approximation capability in order to be able
to invert any nonlinear mixing functions; the univer-
sal approximation capability of neural networks is well
known (Hornik et al., 1989).

What is very interesting, and relevant for practical al-
gorithms, is that Theorem 1 shows that it is enough to
consider just one time lag. This is to be contrasted to
kTDSEP (Harmeling et al., 2003) and xSFA (Sprekeler
et al., 2014) which usually use many time lags in the
hope of finding enough differences in the autocorrela-
tions, as may be necessary in the Gaussian case. On
the other hand, the theorem here requires indepen-
dence of the sources, in contrast to kTDSEP and xSFA
which use only decorrelation.

Finally, we point out important advantages of our ap-
proach with respect to maximum likelihood estima-

tion. The likelihood contains the Jacobian of the
transformation f or its inverse. This Jacobian, and
especially its derivatives with respect to any parame-
ters defining the demixing function, are extremely dif-
ficult to compute (Deco and Brauer, 1995; Dinh et al.,
2015). Our algorithm removes the Jacobian by “con-
trasting” the likelihoods of two different models which
have the same Jacobians, which then cancel out. This
leads to a simple method which needs hardly any new
algorithmic developments, since it is based on formu-
lating the unsupervised learning problem in terms of
logistic regression, in the spirit of noise-contrastive
estimation (Gutmann and Hyvärinen, 2012), time-
contrastive learning (Hyvärinen and Morioka, 2017),
and generative adversarial nets (Goodfellow et al.,
2014; Gutmann et al., 2014).

3.3 Convergence Theory:
Quasi-Gaussian Case

Next we consider the special case of quasi-Gaussian
sources, which includes the case of Gaussian sources.
We simplify the situation by using functions Bi which
are adapted to the quasi-Gaussian case, i.e. a func-
tional form similar to the log-pdf of quasi-Gaussian
sources in Eq. (5). We further simplify by using linear
ᾱ which seems to be sufficient in this special case. Re-
garding the convergence of PCL we have the following
Theorem (proven in Supplementary Material):

Theorem 2 Assume the same as in Theorem 1, but
instead of assuming that none of the sources is quasi-
Gaussian (Assumption 3), assume they are all quasi-
Gaussian. Furthermore, assume Bi in the regression
function has the following form:

Bi(z1, z2) = βi1(z1) + βi2(z2) + aiz1z2 + λi (13)

for some functions βi1, β
i
2 (again, universally approxi-

mated) and scalar parameters ai, λi. Then, after learn-
ing PCL we asymptotically have

hi(x(t)) =

n∑
j=1

bijᾱj(sj(t)) + di (14)

for some invertible constant matrix B with entries
bij, some constants di, and the integral functions
ᾱi(y) =

∫
αi(y)dy of the αi in the definition of quasi-

Gaussianity of each si.

This Theorem tells that PCL will solve the nonlinear
part of the mixing, and only leave a linear mixing to-
gether with point-wise nonlinearities to be resolved.
What is left is essentially a linear ICA model, since
the nonlinearities ᾱ work on the original sources and
do not change their independence. Interestingly, the
nonlinear transformations ᾱi try to make the sources
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Gaussian in the sense that if the sources are pointwise
transformations of Gaussian sources as in Lemma 1,
they will be transformed to Gaussian, since we will
eventually have terms of the form ᾱ(ᾱ−1(x̄)) = x̄ on
the RHS of (6).

If some well-known identifiability conditions for linear
ICA are met, we can thus perform a further linear ICA
on the hi(x(t)) and identify the nonlinear ICA model
completely—but such conditions are rather compli-
cated in the case of general temporal dependencies,
so we do not treat them in detail here.

If the sources are Gaussian, the nonlinearities ᾱ are
in fact equal to linear transformations since the αi are
constant. If the autocorrelations are all distinct, The-
orem 2 implies that even for Gaussian sources, after
applying PCL, we can solve the linear part by linear
methods such as SOBI or TDSEP (Belouchrani et al.,
1997; Ziehe and Müller, 1998).

In previous literature, there has been no clear proof
of whether separation of Gaussian sources is possible
from a nonlinear mixture, even in the case of differ-
ent autocorrelations. Encouraging simulations were
presented in the seminal paper by Harmeling et al.
(2003), but no identifiability result was provided. An
important contribution to the mathematical analysis
was made by Sprekeler et al. (2014), who found that
some functions of single sources (or products of mul-
tiple sources) may be found by SFA. However the rig-
orous identifiability proof was essentially restricted to
the most slowly changing source, and deflating it away
(Delfosse and Loubaton, 1995) turned out to be diffi-
cult. Thus, it was not clear from that analysis if all
the sources can be found and how, although simula-
tions were again promising. Our present result on the
Gaussian case extends their results by showing that,
indeed, all the sources can be estimated by combin-
ing PCL and a linear source separation method, if the
autocorrelations are distinct.

3.4 Case of Many Time Lags

While the theory above used a single time lag for sim-
plicity, at least Theorem 1 can be extended to multiple,
say m, time lags. We define

Definition 3 An m-dimensional random vector x =
(x1, x2, . . . , xm) is called quasi-Gaussian if for any
indices j, k, the cross-derivatives of the log-pdf

qj,k(x) :=
∂2 log px(x)

∂xj∂xk
(15)

exist and are continuous, and can be factorized as

qj,k(x, y) = c αjk(xj ,x−j−k)αjk(xk,x−j−k) (16)

for some real (possibly zero or negative) constant c and
some real-valued function αjk, where x−j−k is the vec-
tor x without the j-th and k-th entries. A station-
ary stochastic process s(t) is called m-th-order quasi-
Gaussian if the distribution of (s(t), s(t− 1), . . . , s(t−
m+ 1)) is quasi-Gaussian.

Here, the condition on factorization is more involved
than in the case of a single lag. Again, it includes any
point-wise nonlinear transformations of jointly Gaus-
sian variables and Gaussian processes, since if z is
Gaussian and g is an invertible nonlinear transforma-
tion R→ R, for x = (g(z1), . . . , g(zm)) we have

qj,k(x) = −ρj,k(g−1)′(xj)(g
−1)′(xk) (17)

where ρj,k is the j, k-th entry in the precision ma-
trix. As another example, the distribution log p(x) =∏m
i=1G(xi) is factorizable for any smooth function G.

However, it may be that in the multi-dimensional case
the general form of the quasi-Gaussian distributions
cannot be given in any simple form, unlike in Eq. (5).

The definition of uniform dependence is generalized in
the same way. The estimation method can be extended
by defining the two classes as

y(t) =


x(t)

x(t− 1)
...

x(t−m+ 1)

 , y∗(t) =


x(t)
x(t1)

...
x(tm−1)

 (18)

where ti, i = 1, . . . ,m − 1 are randomly chosen time
points (with uniform probability over 1, . . . , T ). The-
orem 1 can be generalized to show the convergence of
the method using these generalized definitions, and an
obvious generalization of Eq. (12); see Supplementary
Material for details.

4 SIMULATIONS

Next we conduct simulations to verify and illustrate
the theory above, as well as to compare its perfor-
mance to other methods.

4.1 Simulation 1: Non-Gaussian AR Model

We first conducted a simulation where the sources in
the nonlinear ICA model come from a non-Gaussian
AR process, discussed in Section 2. Such sources are
not quasi-Gaussian, so Theorem 1 should apply.

Methods First, temporally dependent source sig-
nals (n = 20) were randomly generated according to
Eq. (8) by using G(u) = −|u|, and equal autoregressive
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coefficients ρ = 0.7 for all components.3 To generate
the observed signals from the source signals, we used
a multi-layer perceptron (called “mixing-MLP”) as a
nonlinear mixing function f(s), following the settings
used by Hyvärinen and Morioka (2017); in particular
we used leaky ReLU units to make the MLP invertible.

As a feature extractor to be trained by PCL, we
adopted an MLP (“feature-MLP”) which has the same
number of hidden layers as the mixing-MLP, and
thus has enough degrees of freedom to represent the
inverse-network of the mixing-MLP. The settings for
the feature-MLP were basically the same as those used
by Hyvärinen and Morioka (2017), except for the ac-
tivation function of the last hidden layer, which took
here the form given in (12), in particular with r(y)
defined as the negative of

n∑
i=1

∣∣ai,1hi(y1) + ai,2hi(y
2) + bi

∣∣−(āihi(y1) + b̄i
)2

+ c

where {ai,1, ai,2, bi, āi, b̄i, c} are parameters to be
trained simultaneously with the feature-MLP. The
squared term is a rough approximation of the marginal
log-pdf of the AR process. (The marginal log-pdf of
hi(y

2) cancels out because the absolute value is a con-
ditional pdf due to the AR model, i.e. log p(y1|y2).)

The MLP was trained by back-propagation with a mo-
mentum term. To avoid overfitting, we used `2 regu-
larization for the parameters. The initial weights of
each layer were randomly drawn from a uniform dis-
tribution for each layer, scaled as in Glorot and Bengio
(2010). The performances were evaluated by averaging
over 10 runs for each setting of the number of layers L
and the number of data points T .

For comparison, we also applied a linear ICA method
based on a temporal decorrelation source separation
(TDSEP, Ziehe and Müller (1998)), which is equivalent
to SOBI, and a kernel-based nonlinear ICA method
(kTDSEP, Harmeling et al. (2003)) to the observed
data. In TDSEP, we used 20 time-shifted covariance
matrices. The results of kTDSEP were obtained us-
ing 20 time-shifted covariance matrices, a polynomial
kernel of degree 7, and k-means clustering with a max-
imum of 10,000 points considered.

Results Figure 1 shows that after training the
feature-MLP by PCL, the logistic regression could dis-
criminate real data samples from permuted ones with
high classification accuracies. This implies that the

3This G slightly violates the condition of uniform de-
pendence, so we can investigate the robustness of our the-
ory at the same time. A typical smooth approximation of
the Laplace density, such as G(u) = −

√
ε+ u2, does give

a uniformly dependent source.

210 212 214 216 218 220 222

50

60

70

80

90

100

Number of data

A
cc

ur
ac

y 
(%

)

2^{22}

L=1(test)
L=1(train)
L=2(test)
L=2(train)
L=3(test)
L=3(train)
L=4(test)
L=4(train)
L=5(test)
L=5(train)

Figure 1: Simulation 1: Mean classification accuracies
of the logistic regression trained with the feature-MLP
in PCL, as a function of sample size (data length).
Solid lines: test data; dash-dotted line: training data.
The number of layers L was the same in generation
and estimation. The chance level is 50%.

feature-MLP could learn to represent the temporal de-
pendencies of the data at least to some degree. We
can see that the larger the number of layers is (which
means that the nonlinearity in the mixing-MLP is
stronger), the more difficult it is to train the feature-
MLP and the logistic regression. The figure also shows
that the networks suffered from overfitting (decep-
tively high classification accuracy on training data)
when the number of data points was not sufficient.

Figure 2 shows that PCL could reconstruct the source
signals reasonably well even for the nonlinear mixture
case (L > 1). Again, we can see that 1) a larger
amount of data make it possible to achieve higher per-
formance, and 2) more layers makes learning more dif-
ficult. TDSEP performed badly even for the linear-
mixture case (L = 1). This is because we used the
same autoregressive coefficient ρ for all components,
so the eigenvalues of time-lagged covariances became
equal for all components, which made it impossible for
TDSEP to separate the source signals.

4.2 Simulation 2: Gaussian Sources

We further conducted a simulation with Gaussian
sources, which is a special case of the quasi-Gaussian
sources, treated in Theorem 2.

Methods We generated temporally dependent
source signals (n = 10) from an Gaussian first-order
autoregressive process. We selected the autoregressive
coefficients ρ with uniform linear spacing between 0.4
to 0.8, to make sure they are distinct. The standard
deviations of the generated signals were normalized to
1 for each component. The other settings are exactly
the same as in the previous section, except that we
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Figure 2: Simulation 1: Mean absolute correlation co-
efficients between source signals and their estimates
given by hi(x(t)) learned by the proposed PCL method
(solid lines), and for comparison, TDSEP (dashed line)
and kTDSEP (dotted line), with different settings of
the number of layers L and data points T .
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Figure 3: Simulation 2 (Gaussian sources): Mean ab-
solute correlation coefficients between the source sig-
nals and their estimates, given by PCL and baseline
methods. (See caption of Fig. 2.)

used the regression function of the form given in Eq
(13), with all the nonlinearities set as β(u) = −u2.
Due to the indeterminacy shown in Theorem 2, we
further applied (linear) TDSEP (with 20 time shifts)
to the feature values hi(x(t)) obtained by PCL.

Results Figure 3 shows that, in the nonlinear case
(L > 1), PCL could recover the source signals with
much higher accuracies than the other methods. Un-
like in Simulation 1, TDSEP (or SOBI) was able to re-
construct the source signals in the linear case (L = 1)
because we selected all the ρ’s of the generative model
to be distinct, so the assumptions of TDSEP were ful-
filled. In the linear case (L = 1), the performance of
PCL was, in fact, exactly the same as that of TDSEP,
because any “preliminary” processing by PCL did not
change the result of the final TDSEP. In contrast to
Simulation 1, PCL seems to have had particular prob-
lems with highly nonlinear mixing models (L > 3).

5 DISCUSSION

We considered the popular principle for unsupervised
feature learning based on “temporal coherence”, “tem-
poral stability”, or “slowness” of the features. We pro-
posed the first rigorous treatment of the identifability
of such models in a nonlinear generative model set-
ting. Lack of rigorous theory has been a major im-
pediment for development of nonlinear unsupervised
learning methods.

Our proof was constructive in the sense that we ac-
tually proposed a practical algorithm, PCL, for esti-
mating the generative model, and showed its conver-
gence (i.e. statistical consistency). Essentially, we in-
troduced “uniform dependence” as a sufficient condi-
tion for identifiability and convergence. We further in-
troduced the concept of quasi-Gaussianity and treated
separately the cases of quasi-Gaussian and non-quasi-
Gaussian sources. We showed convergence of our al-
gorithm either to the final solution or a linear ICA
model, respectively.

It should be noted that the conditions we proposed
for identifiability were sufficient but not necessary. In
particular, the condition of uniform dependence can
presumably be relaxed to some extent. Furthermore,
the case where some sources are quasi-Gaussian and
others not, remains to be investigated.

The work most related to ours is the framework of
time-contrastive learning (TCL) by Hyvärinen and
Morioka (2017), which is based on non-stationarity.
The two methods share the idea of using logistic re-
gression, but they are used on datasets defined in
very different ways. In fact, our contribution here
is strictly complementary to TCL, since we assume
stationary sources with autocorrelations, while TCL
assumes non-stationarity and sources which are i.i.d.
given the time point or segment. In the theory of linear
ICA, it is widely accepted that autocorrelations and
non-stationarity are two very different kinds of tempo-
ral structure: Together with non-Gaussianity of i.i.d.
signals, these constitute what Cardoso (2001) called
the “three easy routes to [linear] ICA”.

For each practical application, it is thus worthwhile to
consider which of the two models (TCL or PCL) gives
a better match to the statistical properties of the data.
This is a strictly empirical question: One can apply
both methods and analyse the statistical properties of
the obtained sources to see which assumptions made
in the models are a better fit. An important question
for future work is to combine the two principles in a
single theory and a single algorithm.4

4This research was supported by JSPS KAKENHI
16J08502 (H.M.) and the Academy of Finland (A.H.,H.M.)
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Analysis of Processes in Eq. (8) and Eq. (9)

For the nonlinear AR model in Eq. (9), quasi-
Gaussianity and uniform dependence are easy to see
(under the assumptions given in the main text) since

we have
∂2 log px,y(x,y)

∂x∂y = 2λr′(y). This implies uni-
form dependence by the strict monotonicity of r, and
non-quasi-Gaussianity by its functional form.

For the non-Gaussian AR model in Eq. (8) we proceed
as follows: First, we have

∂2 log px,y(x, y)

∂x∂y
= −ρG′′(x− ρy). (19)

This is always non-zero by the assumption on G′′, and
non-zero ρ, so uniform dependence holds. Assume a
factorization as in (4) holds:

−G′′(x− ρy) = cα(x)α(y). (20)

By assumption, −G′′ is always positive, so we can
take logarithms on both sides of (20), and again cross-

derivatives. We necessarily have ∂ log−G′′(x−ρy)
∂x∂y = 0,

since the RHS is separable. This can be evaluated as
(log−G′′)′′(x − ρy) = 0 which implies log−G′′(u) =
du+ b and

G′′(u) = − exp(du+ b) (21)

for some real parameters d, b. Now, if we have d = 0
and thus G′′(u) constant, we have a Gaussian process.
On the other hand, if we have d 6= 0, we can plug this
back in (20) and see that it cannot hold because the ex-
ponents for x and y would be different unless ρ = −1,
which was excluded by assumption (as is conventional
to ensure stability of the process). Thus, only a Gaus-
sian linear AR process can be quasi-Gaussian under
the given assumptions.

Proof of Theorem 1

Denote by g the (true) inverse function of f which
transforms x into s, i.e. s(t) = g(x(t)). We can easily
derive the log-pdf of an observed (x(t),x(t− 1)) as

log p(x(t),x(t−1)) =

n∑
i=1

log ps̃i (gi(x(t)), gi(x(t−1)))

+ log |Jg(x(t))|+ log |Jg(x(t− 1))| (22)

where ps̃i is the pdf of (si(t), si(t−1)), and Jg denotes
the Jacobian of g; its log-determinant appears twice

because the transformation is done twice, separately
for x(t) and x(t− 1).

On the other hand, according to well-known theory,
when training logistic regression we will asymptoti-
cally have

r(y) = log py(y)− log py∗(y) (23)

i.e. the regression function will asymptotically give the
difference of the log-probabilities in the two classes.
This holds in our case in the limit of an infinitely long
stochastic process due to the assumption of a station-
ary ergodic process (Assumption 1).

Now, based on (22), the probability in the real data
class is of the form

log py(y) =

n∑
i=1

Qi(gi(y
1), gi(y

2))

+ log |Jg(y1)|+ log |Jg(y2)| (24)

where we denote Qi(a, b) = log ps̃i (a, b), while in the
permuted (time-shuffled) data class the time points
are i.i.d., which means that the log-pdf is of the form

log py∗(y) =

n∑
i=1

Q̄i(gi(y
1)) + Q̄i(gi(y

2))

+ log |Jg(y1)|+ log |Jg(y2)| (25)

for some functions Q̄i which are simply the marginal
log-pdf’s.

The equality in (23) means the regression function (12)
is asymptotically equal to the difference of (24) and
(25), i.e.

n∑
i=1

Bi(hi(y
1), hi(y

2)) =

n∑
i=1

Qi(gi(y
1), gi(y

2))

− Q̄i(gi(y1))− Q̄i(gi(y2)) (26)

where we see that the Jacobian terms vanish because
we “contrast” two data sets with the same Jacobian
terms.

We easily notice that one solution to this is given by
hi(x) = gi(x), Bi(x, y) = Qi(x, y)− Q̄i(x)− Q̄i(y). In
fact, due to the assumption of the universal approxi-
mation capability of B and h, such a solution can be
reached by the learning process. Next we prove that
this is the only solution, up to permutation of the hi
and element-wise transformations.

Make the change of variables

z1 = g(y1), z2 = g(y2) (27)

and denote the compound function

k = h ◦ f = h ◦ g−1 (28)



Nonlinear ICA of Temporally Dependent Stationary Sources

This is the compound transformation of the attempted
demixing by h and the original mixing by f . Such a
compound function is of main interest in the theory of
ICA, since it tells how well the original sources were
separated. Our goal here is really to show that this
function is a permutation with component-wise non-
linearities. So, we consider the transformed version of
(26) given by

n∑
i=1

Bi(ki(z
1), ki(z

2))

=

n∑
i=1

Qi(z
1
i , z

2
i )− Q̄i(z1i )− Q̄i(z2i ) (29)

Take cross-derivatives of both sides of (29) with respect
to z1j and z2k. This gives

n∑
i=1

∂2Bi(ki(z
1), ki(z

2))

∂z1j ∂z
2
k

=

n∑
i=1

∂2Qi(z
1
i , z

2
i )

∂z1j ∂z
2
k

. (30)

Denoting cross-derivatives as

bi(a, b) :=
∂2Bi(a, b)

∂a∂b
, qi(a, b) :=

∂2Qi(a, b)

∂a∂b
(31)

this gives further

n∑
i=1

bi(ki(z
1), ki(z

2))
∂ki
∂z1j

(z1)
∂ki
∂z2k

(z2)

=

n∑
i=1

qi(z
1
i , z

2
i )δijδik

which must hold for all j, k. We can collect these equa-
tions in a matrix form as

Jk(z1)Tdiagi[bi(ki(z
1), ki(z

2))]Jk(z2)

= diagi[qi(z
1
i , z

2
i )] (32)

Now, the qi are non-zero for all z1, z2 by assumption
of uniform dependence. Since the RHS of (32) is in-
vertible at any point, also Jk must be invertible at any
point. We can thus obtain

[Jk(z1)−1]Tdiagi[qi(z
1
i , z

2
i )]Jk(z2)−1

= diagi[bi(ki(z
1), ki(z

2))] (33)

Next, we use the assumption of non-quasi-Gaussianity,
in the form of the following Lemma (proven below):

Lemma 2 Assume the continuous functions qi(a, b)
are non-zero everywhere, and not factorizable as in
Eq. (4) in the definition of quasi-Gaussianity.5 As-
sume M is any continuous matrix-valued function

5In this lemma, the qi need not have anything to do
with pdf’s, so we do not directly use the assumption of
quasi-Gaussianity, but the conditions on q are identical.

Rn → Rn×n, such that the matrix M(u) is non-
singular for any u. Assume we have

M(u1)T diagi[qi(u
1
i , u

2
i )] M(u2) = D(u1,u2) (34)

for any u1,u2 in Rn, and for some unknown matrix-
valued function D which takes only diagonal values.
Then, the function M(u) is such that every row and
column has exactly one non-zero entry, and the loca-
tions and signs of the non-zero entries are the same
for all u.

We apply this Lemma on Eq. (33) with M(z) =
Jk(z)−1. The assumptions of the Lemma are included
in the assumptions of the Theorem, except for the non-
singularity of M which was just proven above, and the
continuity of M. If Jk(z)−1 were not continuous, the
fact that the diagonal matrix on the LHS of (33) is
continuous would imply that the diagonal matrix on
the RHS is discontinuous, and this contradicts the as-
sumptions on smoothness of h, g and Bi.

Thus the Lemma shows that Jk(z)−1 must be a
rescaled permutation matrix for all z, with the same
locations of the non-zero elements; the same applies
to Jk(z). Thus, by (28), g and h must be equal up
to a permutation and element-wise functions, plus a
constant offset which can be absorbed in the element-
wise functions. The fact that the signs of the elements
in M stay the same implies the transformations are
strictly monotonic, which proves the Theorem.

Proof of Lemma 2

Consider (34) for two different points ū1 and ū2 in Rn.
Denote for simplicity

Mp = M(ūp), Dpq = diagi[qi(ū
p
i , ū

q
i )] (35)

with p, q ∈ {1, 2}. Evaluating (34) with all the possible
combinations of setting u1 and u2 to ū1 and ū2, that
is the four combinations u1 := ū1,u2 := ū2; u1 :=
ū2,u2 := ū1; u1 := ū1,u2 := ū1; and u1 := ū2,u2 :=
ū2, we have three different equations (the first one
being obtained twice):

MT
1 D12M2 = D (36)

MT
2 D22M2 = D′ (37)

MT
1 D11M1 = D′′ (38)

for some diagonal matrices D,D′,D′′.

We will show that for any given ū1, it is always possible
to find a ū2 such that the conditions (36–38) lead to
an eigenvalue problem which has only a trivial solution
consisting of a scaled permutation matrix.

By the assumption that qi is non-zero, D12 is invert-
ible, which also implies D is invertible. By elementary
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linear algebra, we can thus solve from the first equa-
tion (36)

M2 = D−112 M−T
1 D (39)

and plugging this into the second equation (37) we
have

M−1
1 D22D

−2
12 M−T

1 = D−1D′D−1 (40)

Next we multiply both sides of (38) by the respec-
tive sides of (40) from the left, and denoting D′′′ =
D−1D′D−1D′′ we have

M−1
1 [D11D

−2
12 D22]M1 = D′′′ (41)

Here, we see a kind of eigenvalue decomposition.

The rest of the proof of this lemma is based on the
uniqueness of the eigenvalue decomposition, which re-
quires that the eigenvalues are distinct (i.e. no two of
them are equal). So, next we show that the assump-
tion of non-factorizability of qi implies that for any
given ū1 we can find a ū2 such that the diagonal en-
tries in D11D

−2
12 D22 are distinct. The diagonal entries

are given by the function ψ defined as

ψ(ū1i , ū
2
i ) =

qi(ū
1
i , ū

1
i )qi(ū

2
i , ū

2
i )

q2i (ū1i , ū
2
i )

. (42)

For simplicity of notation, drop the index i and denote
a := ū1i , b = ū2i . The diagonal entries in D11D

−2
12 D22

can be chosen distinct if ψ is not a function of a alone
(which was fixed above since ū1 was fixed). Suppose
ψ is a function of a alone: Then we would have

q(a, a)q(b, b)

q2(a, b)
= f(a) (43)

for some function f . Since this holds for any b, we can
set b = a, we see that f must be identically equal to
one. So, we would have

q2(a, b) = q(a, a)q(b, b) (44)

or
q(a, b) = c

√
|q(a, a)|

√
|q(b, b)| (45)

with the constant c = ±1. But a factorizable form
in (45) with α(y) =

√
|q(y, y)| is exactly the same as

in (4) in the definition of quasi-Gaussianity, or, equiv-
alently, in the assumptions of the Lemma, and thus
excluded by assumption.

Thus, we have proven by contradiction that ψ cannot
be a function of a alone. The functions involved are
continuous by assumption, so since ψ takes more than
one value for any given a, it takes an infinity of val-
ues for any given a. Thus, it is possible to choose ū2

(corresponding to n choices of b for given n values of
a) so that the diagonal entries in D11D

−2
12 D22 are all

distinct, for any given ū1.

Since the entries in D11D
−2
12 D22 can be assumed to

be distinct, the eigenvectors of the (product) matrix
on the LHS of (41) are equal to the columns of M−1

1 ,
and uniquely defined up to a multiplication by a scalar
constant which is always indetermined for eigenvec-
tors. The diagonal entries on both sides are equal to
the eigenvalues of the corresponding matrices, because
eigenvalues are invariant to change of basis by M1, so
we have d′′′i = d11i d

22
i /(d

12
i )2, up to permutation. On

the other hand, the eigenvectors on the RHS of (41) are
equal to the canonical basis vectors, and they are also
uniquely defined (up to scalar multiplication) since the
d′′′i are also distinct. The eigenvectors on both sides
must be equal, and thus, M(ū1) must be equal to a
permutation matrix, up to multiplication of each row
by a scalar which depends on ū1.

Since ū1 could be freely chosen, M(u) is equal to such
a rescaled permutation matrix everywhere. By conti-
nuity the non-zero entries in M(u) must be in the same
locations everywhere; if they switched locations, M(u)
would have to be singular at one point at least, which
is excluded by assumption. With the same logic, we
see the signs of the entries cannot change. Thus the
Lemma is proven.

Proof of Theorem 2

First, since we have a restricted form of regression
function, we have to prove that it can actually con-
verge to the optimal theoretical regression function in
(23). This is true because the regression function in
(13) can still approximate all quasi-Gaussian densities
which have uniform dependence, after suitable trans-
formation. Namely, uniform dependence together with
quasi-Gaussianity implies that ᾱ must be monotonic.
Thus, by a pointwise transformation inverting such
monotonic ᾱ, we can transform the data so that ᾱ
is linear, and the regression function in the Theorem
can be learned to be optimal.

The proof of Theorem 1 is then valid all the way until
(33), since we didn’t use non-quasi-Gaussianity up to
that point. We have from (33), (13), and the definition
of quasi-Gaussianity

[Jk(z1)−1]Tdiagi[αi(z
1
i )]diagi[ci]diagi[αi(z

2
i )]Jk(z2)−1

= diagi[ai] (46)

which must hold for any z1, z2. The matrices in this
equation are invertible by the proof of Theorem 1.
Now, define

V(z) = diagi[αi(zi)]Jk(z)−1 (47)

so the condition above takes the form

V(z1)Tdiagi[ci]V(z2) = diagi[ai]. (48)
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Setting z2 = z1, we can solve

V(z1)T = diagi[ai]V(z1)−1diagi[1/ci]. (49)

Plugging this back into (48), we have

diagi[ai]V(z1)−1diagi[1/ci]diagi[ci]V(z2) = diagi[ai]
(50)

which gives equivalently

V(z1) = V(z2). (51)

That is, V(z) does not depend on z. Denote its con-
stant value by V.

Solving for Jk(z) in (47) with such a constant V, we
have

Jk(z) = V−1diagi[αi(zi)]. (52)

Now, substitute, by (28), J(h ◦ f)(z) for the LHS, and
change the dummy variable z to s. Then we can inte-
grate both sides to obtain

(h ◦ f)(s) = h(x) = V−1


ᾱ1(s1)
ᾱ2(s2)

...
ᾱn(sn)

+ d (53)

for some integration constant vector d. Thus we get
the form given in the Theorem, with B = V−1.

Theory and Proof for Multiple Time Lags

In the case of multiple lags, the assumptions in a theo-
rem corresponding to Theorem 1 are apparently iden-
tical to those in Theorem 1, but we use the general
definition of quasi-Gaussianity in Definition 3, and the
general definition of uniform dependence, which is that
the cross-derivative qj,k(x) is non-zero for any j, k and
any x. We further define the discrimination problem
using (18) and use the obvious generalization of the
regression function given by

r(y) =

m∑
i=1

Bi(hi(y
1), hi(y

2), . . . , hi(y
m)). (54)

We can then use the proof of Theorem 1 with mini-
mal changes. Non-quasi-Gaussianity implies that for
some j, k, factorizability is impossible. Fix j, k to those
values. Fix yp for p 6= j, k to any arbitrary values.
The proof proceeds in the same way, largely ignoring
any yp with p not equal to j or k. In particular, the
derivative in (30) is taken with respect to those j, k.
Furthermore, (33) has the form

[Jk(zj)−1]Tdiagi[qi(z
1
i , . . . , z

m
i ))]Jk(zk)−1

= diagi[bi(ki(z
1), . . . , ki(z

m))] (55)

where both qi and bi are functions of zj and zk (or,
equivalently, of yj and yk) only, since all the other zp

(or yp) are fixed.

A version of Theorem 2 for multiple time lags is left
as a question for future research.


