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Abstract

Infomax means maximization of information flow in a neural system.
A nonlinear version of infomax has been shown to be connected to in-
dependent component analysis and the receptive fields of neurons in the
visual cortex. Here we show a problem of nonrobustness of nonlinear in-
fomax: it is very sensitive to the choice the nonlinear neuronal transfer
function. We consider an alternative approach in which the system is lin-
ear, but the noise level depends on the mean of the signal, as in a Poisson
neuron model. This gives similar predictions as the nonlinear infomax,
but seem to be more robust.

1 Introduction

Information-theoretic or statistical criteria can be used to model aspects of sen-
sory information processing in the brain. This is based on investigating the
optimal way of processing the natural data that is input to the sensory sys-
tems, assuming that some aspects of neural information processing are close to
optimal. An important group of principles is based on redundancy reduction,
sparseness and statistical independence [2, 8, 17, 9]. A related criterion that is
more closely connected to the limited capacity of neural systems is the infomax
principle [14, 15, 16, 3]. According to the infomax principle, sensory systems
(or parts thereof) are adapted so that they transmit the maximum amount of
information. This is typically measured as the mutual information between the
input and the output (which is usually not the final output but some interme-
diate result).

Recently, a lot of attention has been paid to a particular kind of system,
consisting of nonlinear, sigmoidal neurons. This system can be analyzed in the
case of vanishing, isotropic noise [16, 3]. Maximization of information flow in



such a system has been shown, for example, to produce simple cell receptive
fields when the input is similar to the natural input of the visual system [4].
Maximization of information flow is here closely related to a form of redundancy
reduction [2, 8] in which the components of output of the system are made
maximally independent, a method also called independent component analysis
(ICA) [13, 12, 10], and closely related to sparse coding [17].

In this paper we argue, however, that this nonlinear infomax model has a
serious problem. It is very sensitive to small changes in the nonlinear transfer
function; even small, almost imperceptible changes can completely change the
predictions of the model. Since the nonlinearity is only a crude approximation
of what happens in real neurons, this kind of nonrobustness may mean that this
model may not be very relevant in modelling biological systems.

We present an alternative formulation of infomax that leads to very simi-
lar predictions, but with quite different assumptions. Instead of concentrating
on the nonlinearity, we concentrate on the noise model. Widely-used models
of neuronal noise are based on a Poisson process, in which the noise level is
dependent on the output level. Thus, we introduce an anisotropic noise whose
variance is not constant. This leads to similar objective functions as the nonlin-
ear infomax, but may be more robust from the modelling viewpoint. One can
also consider these two aspects (nonlinear transfer function or Poisson noise) as
two non-exclusive assumptions, both of which can be incorporated in a single
model.

2 Nonlinear infomax

2.1 Definition

Let us assume that we have N neurons. Each receives the same set of inputs
Z1,...,ZN, denoted together as a random vector x. The weight vectors of the
neurons are denoted by w;, and the transfer functions by f;. A noise term n; is
included in each output y; as well. This can be expressed as

yi = fi(w] %) +n; (1)
The goal is thus to maximize the mutual information
I(x,y) = H(x) + H(y) — H(x,y) (2)

In the conventional framework [16, 3], the noise variances are assumed to be all
equal. In the limit of zero noise, we then obtain

I(x,y) =log|det W| + Z E{log fl(w]x)} + const. 3)

where the last term depends only on the noise level and not on the weights.
The weights are here all collected in a single matrix W = (wy,...,wx)T. It can
be shown that in this case, the maximization of information flow is equivalent



ot estimating the ICA model [5, 10], if the nonlinear functions f; are suitable
approximations of the cumulative distribution functions of the independent com-
ponents.

2.2 Problem of nonrobustness

The problem with this formulation is that if the transfer function is just a
little bit different, the predictions may change completely. Usually, the logistic

function [3] .
fi(u) = HTp(—u) 4)

is used. This can be shown to estimate the ICA model in the case of supergaus-
sian (sparse) independent components. This is a correct way of estimating the
ICA model for natural image data in which the components really are super-
gaussian. However, if the transfer function is changed to

filw) = / L (=S yae (5)

oo V210 202

that is, the gaussian cumulative distribution function, the method does not
estimate the ICA model anymore, since this would amount to assuming gaussian
independent components, which makes the estimation impossible [6, 10]. An
even worse situation arises if we change the function to, for example,

s = [ S ew(-Epe ©)
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where ¢; and ¢y are appropriate scaling constant to make this the cumulative
distribution function of given variance. This amounts to estimating the ICA
model assuming subgaussian independent components. If the components are
actually supergaussian, as is the case with natural image data [17, 4], the esti-
mation fails completely [11].

The three nonlinear functions in Egs (4,5,6) look all very similar, however.
This is illustrated in Fig. 1. (Note that we can freely scale the functions along
the x-axis since this has no influence on the behaviour in ICA estimation. Here
we have chosen the scaling parameters o and ¢, in these three functions to em-
phasize the similarity.) All the three functions have the same kind of qualitative
behavior. In fact, all cumulative distribution functions look very similar after
appropriate scaling along the x-axis.

It is not very likely that the neural transfer functions (which are only crude
approximations anyway) would consistently be of the type in Eq. (4), and not
closer to the two other transfer functions. Thus, the model can be considered to
be nonrobust, that is, too sensitive to small fluctuations in its parameters.!

1t could be argued that the nonlinear transfer function can be estimated from the data
and it need not be carefully chose beforehand, but this only modifies this robustness problem
because then the nonlinearity must be estimated very precisely.
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Figure 1: The three sigmoidal nonlinearities corresponding to logistic, gaussian,
and subgaussian prior cumulative distributions in Egs. (4,5,6) for the indepen-
dent components. The nonlinearities are practically indistinguishable.

3 Linear infomax with noise of changing vari-
ance

3.1 Definition of noise model

One remedy for the nonrobustness of the nonlinear infomax model is to shift
attention to the noise term in Eq. (1). Let us thus take the linear function as
fi, which is to be considered as a transfer function of minimum commitment,
and change the definition of the noise term instead.

What would be a sensible model for the noise? If we consider a basic Poisson
model of spike trains, the rate coding would have the corresponding Poisson
noise. By Poisson noise we mean the error in the conventional estimation of the
firing rate parameter when observing a Poisson spike train, that is, the difference
between the observed firing rate and the true firing rate parameter in a given
time interval. Such Poisson noise has a variance that is equal to its mean. Thus,
we would have

var(n;|x) o< r + |w7 x| (7

where r is a constant that embodies the spontaneous firing rate that is not
zero (and hence does not have zero noise). We take the absolute value of w!x
because we consider the output of a signed neuron to be actually coded by two
different neurons, one for the negative part and one for the positive part, as is
conventional in models of the primary visual cortex. The neuron that is active
always has a Poisson noise whose variance is proportional to r + |w? x|.

The distribution of Poisson noise is, of course, nongaussian in the single
neuron case. However, in the following we approximate it as gaussian noise.
The fundamental property of this new type of noise is considered to be the
variance behavior given in Eq. (7), and not its nongaussianity. This is, in fact,
not necessarily an approximation, since one could consider a neuronal ensemble



whose mean firing rate is given by r + |w’x|. The Poisson noises of different
neurons are them averaged, which gives a gaussian noise distribution with the
same kind of variance behavior. Therefore, we call noise with this kind of
variance behavior “noise with Poisson-like variance” instead of Poisson noise.

Of course, a more general form of the model can be obtained by defining the
variance to be a nonlinear function of the quantity in Eq. (7). To investigate
the robustness of our model, we do in the following all the computations in the
more general case where

var(n;|x) = h(w? x) (8)
where h is some arbitrary function with nonnegative values, for example
h(u) =+ |ul, (9)

which gives Eq. (7).
A similar noise model for infomax was introduced by Vreeswijk [18], using a
rather different motivation.

3.2 Calculation of information transfer

Let us now compute the mutual information between inputs and outputs in the
case of noise of Poisson-like variance. This section can be skipped if you’re not
interested in the exact derivation.

To do this, let us express the noise with Poisson-like variance as a product
of a hypothetical constant-variance noise variable n¢ and w7 x:

n; = nfy/h(wlx) (10)

where var(n¢) equals some constant o2. We can express x and y as a transfor-

mation T of x and n°:
x x
5)-r(x) 2

According to the entropy transformation formula [7], the entropy H(x,y) is
equal to the entropy of H(x,n°) plus E{log|detJ|}, where J is the matrix
of partial derivatives (Jacobian) of this function T. Considering that we have
defined

yi = wi x +nfy/h(wlx), (12)
the partial derivatives of x and y with respect to x and n, can be computed as
ox
< I (13)
ox
- 14
e~ ° (14)
66370 = diag(1/h(wl'x)) (15)
oy
-~ =M 1
ox (16)
(17)



where M is a matrix that does not need to be computed. The determinant of
the Jacobian can then be obtained as

dethdet(I 0

M diag( h(w;f"x))) =1x 1:[ h(wlx) —0xdetM (18)

Thus, we have
H(x,y) = H(x,n°) + E{)_log/h(w}x)} (19)

where, further, we have H(x,n°) = H(x) + H(n°) by independence.

To obtain the mutual information, we still need to compute H(y) (there is
no point in computing H(x) which does not depend on W). In the limit of
infinitesimal noise, we have by continuity (assuming all the relevant functions
to be sufficiently smooth):

H(y) = H(Wx) = log|det W| + H(x) (20)
We now obtain the mutual information in the limit of zero noise as
I(x,y) = H(x) + H(y) - H(x,y)
= H(x) + log|det W| + H(x) — [H(x) + H(n°) + E{)_logy/h(wIx)}]

(21)
3.3 Information transfer and ICA
Thus, we finally have the following result:
I(x,y) = log |det W| — Z E{log\/h(wTx)} + const. (22)
i

where terms that do not depend on W are grouped in the constant. A compar-
ison of Eq. (22) with Eq. (3) reveals that in fact, mutual information is of the
same algebraic form in the two cases. By taking h(u) = 1/f'(u)?, we obtain
an expression of the same form. Thus, we see that considering noise with non-
constant noise, we are able to reproduce the same results as with a nonlinear
transfer function.

If we consider the basic case of Poisson-like variance, which means defining
the function h as in Eq. (7), this is equivalent to the nonlinear infomax with

feoN 1

In the nonlinear infomax, f' corresponds to the probability density function
assumed for the independent components. The function in (23) is an improper



probability density function, since it is not integrable. However, its qualitative
behaviour is typically supergaussian: very heavy tails and a peak at zero.

Thus, in the basic case of Poisson-like variance, the infomax principle is
equivalent to estimation of the ICA model with this improper prior density for
the components. Since the choice of nonlinearity is usually critical only along the
subgaussian vs. supergaussian axis [11], this improper prior distribution should
still properly estimate the ICA model for most supergaussian components. We
have performed simulations in which the corresponding learning rule (obtained
as the natural gradient rule [1]) did properly estimate supergaussian independent
components.?

To investigate the robustness of our model, we can consider what the noise
variance structure should be like to make the estimation of supergaussian com-
ponents fail. As with the nonlinear infomax, we can find a noise structure that
corresponds to the estimation of gaussian independent components. From the
relation h(u) = 1/f'(u)?, we see that the gaussian case corresponds to

h(u) o exp(u?) (24)

This is an exploding function clearly very different from the Poisson-like variance
structure given by the essentially linear function in Eq. (9). In the space of
possible functions h that define the noise structure in our model, the function in
Eq. (24) can be considered as a borderline between those variance structures that
enable the estimation of supergaussian independent components, and those that
do not. These two different choices for h, together with the one corresponding
to subgaussian independent components as in Eq. (6) are plotted in Fig. 2. The
Poisson-like variance is clearly very different from the other two cases.

Thus, we may conclude that our model with Poisson-like variance is quite
robust against changes of parameters in the model, since the main parameter is
the function h, and this can change qualitatively quite a lot before the behaviour
of the model with respect to ICA estimation changes. This is in contrast to
the nonlinear infomax principle where the nonlinearity has to be very carefully
chosen according to the distribution of the data.

4 Conclusion

We claimed that the nonlinear infomax framework suffers from a problem of non-
robustness and offered an alternative approach. In our approach, the transfer
functions are linear but the variance of the noise depends on the signal ampli-
tude, as in Poisson processes. Our approach is mathematically equivalent to the
nonlinear infomax but it may be more plausible as a model of the physical phe-
nomena involved. In must be noted, however, that the two versions of infomax

2There is, however, the problem of scaling the components. Since the improper density
has infinite variance, the estimates of the components (and the weight vectors) grow infinitely
large. Such behavior can be prevented by adding a penalty term of the form o}, ||w;||? in
the objective function. An alternative approach would be to use a saturating nonlinearity,
thus combining our model with the nonlinear infomax model.
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Figure 2: The three functions A that give the dependence of noise variance,
for the same three distributions of the independent components as in Fig. 2.
Solid line: Poisson like variance as in Eq. (9). Dashed line: the case of gaussian
distribution. Dotted line: the subgaussian distribution corresponding to the cu-
mulative distribution function in Eq. (6). Here, the functions are very different,
which indicates better robustness for the model.

are not incompatible: one could use a model in which both nonlinearities and
Poisson-like noise work together. In fact, our model needs an additional penalty
mechanism for preventing explosive behavior, and this could be provided by a
saturating nonlinearity.
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