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Abstract

Many probabilistic models are only defined up to a normalization constant. This
makes maximum likelihood estimation of the model parameters very difficult. Typ-
ically, one then has to resort to Markov Chain Monte Carlo methods, or approxi-
mations of the normalization constant. Previously, a method called score matching
was proposed for computationally efficient yet (locally) consistent estimation of such
models. The basic form of score matching is valid, however, only for models which
define a differentiable probability density function over R

n. Therefore, some exten-
sions of the framework are proposed. First, a related method for binary variables
is proposed. Second, it is shown how to estimate non-normalized models defined in
the non-negative real domain, i.e. R

n
+. As a further result, it is shown that the score

matching estimator can be obtained in closed form for some exponential families.

Key words: Statistical estimation, non-normalized models, score matching,
partition function, Markov Chain Monte Carlo

1 Introduction

In machine learning, statistics, or signal processing, one often wants to esti-
mate statistical models which cannot be easily normalized. Let us denote the
observed data vector by x, and a parameter vector by θ. The data vector x
can take either discrete or continuous values in a domain D. The problem
we consider here is that the probability distribution function or the probabil-
ity density function (both abbreviated as pdf) p(x; θ) is only known up to a
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normalization constant:

p(x; θ) =
1

Z(θ)
q(x; θ). (1)

That is, we know how to compute q efficiently (typically, using an analytical
formula), but we do not know how to compute Z. In principle, Z is obtained
by integrating over the domain D:

Z(θ) =
∫

ξ∈D
q(ξ; θ)dξ, (2)

where the integral is replaced by summation if D is discrete.

Maximum likelihood estimation of the parameter vector θ is not possible with-
out computation of the normalization constant, also called the partition func-
tion. However, computing the integral in (2) is computationally hard. Typ-
ically used methods are either computationally very complex, e.g. Markov
Chain Monte Carlo methods, or they are based on approximations that may
be inconsistent in the general case, e.g. pseudo-likelihood [1], contrastive di-
vergence [2].

For the case of continuous-valued data, D = R
n, a new approach was pro-

posed in [3]. The new method, called score matching, completely avoids the
computation of the normalization constant, but provably provides a estimator
that is consistent. The idea is to consider the gradients of the log-derivatives
of the densities given by the model, and by the observed data distribution.
Let us denote the gradient of the log-pdf given by the model by ψ(ξ; θ):

ψ(ξ; θ) =















∂ log p(ξ;θ)
∂ξ1
...

∂ log p(ξ;θ)
∂ξn















=















ψ1(ξ; θ)
...

ψn(ξ; θ)















= ∇ξ log p(ξ; θ). (3)

This function was called, with a slight abuse of conventional terminology, the
“score function” in [3], because it is the Fisher score function with respect to a
hypothetical location parameter: Assuming an additional location parameter
vector µ, we obtain ψ when we take the gradient of the log-pdf log p(ξ−µ; θ)
with respect to µ and evaluate it at µ = 0. Likewise, we denote by ψ

x
(.) =

∇ξ log px(.) the gradient of the logarithm of the pdf px of the observed data
x.

The point in using this function ψ is that it does not depend on Z(θ) at
all: the normalization constant disappears when taking the derivative of the
logarithm with respect to ξ (i.e. the data variable).

Thus, it was proposed in [3] that the model is estimated by minimizing the
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expected squared distance between the model “score function” ψ(.; θ) and the
data “score function” ψ

x
(.). We define this squared distance as

JSM(θ) =
1

2

∫

ξ∈Rn
px(ξ)‖ψ(ξ; θ) −ψ

x
(ξ)‖2dξ. (4)

Then, the score matching estimator of θ is given by

θ̂ = argmin
θ
JSM(θ).

This approach may not seem to provide any computational advantage at first
sight, because the expression in (4) contains ψ

x
(.), the gradient of the loga-

rithm of the data pdf, which is difficult to estimate. However, it was proven
in [3] that using partial integration, J can be brought to an easily computable
form:

JSM(θ) =
∫

ξ∈Rn
px(ξ)

n
∑

i=1

[

∂iψi(ξ; θ) +
1

2
ψi(ξ; θ)

2
]

dξ + const. (5)

where the constant does not depend on θ, and

∂iψi(ξ; θ) =
∂ψi(ξ; θ)

∂ξi
=
∂2 log q(ξ; θ)

∂ξ2
i

(6)

is the second partial derivative of the model log-pdf with respect to the i-
th variable. A sample version of this objective function is easily computed
by replacing the integration over px by a sample average and ignoring the
constant, which gives

J̃SM(θ) =
1

T

T
∑

t=1

n
∑

i=1

∂iψi(x(t); θ) +
1

2
ψi(x(t); θ)2. (7)

where we have a sample x(1), . . . ,x(T ) of observations, T denoting sample
size.

The utility of going from (4) to (5) and finally to (7) is that (5) no longer
contains any derivatives of the unknown data pdf px (e.g. no ψ

x
), and the

sample version (7) does not contain the unknown data pdf at all. Thus, the
sample version in (7) can be computed as a simple sample average of functions
which are typically readily calculable in closed form.

In this paper, we introduce some extensions of the basic score matching
method. An important restriction of the original score matching methods is
that the pdf’s must be differentiable over the whole real space D = R

n. In par-
ticular, the variables must be continuous-valued. In this paper, we lift some
of these restrictions. In Section 2 we develop an analoguous method in the
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case where the data takes values in the binary space, D = {−1, 1}n. In Sec-
tion 3, we show how score matching can be used, with some changes in the
objective function, when the data is non-negative, i.e. has a differentiable pdf
in D = R

n
+. Furthermore, in Section 4 we analyze the original score match-

ing method in the case of an exponential density family, and show how the
estimator can then be obtained in closed form in some cases.

2 Estimation of binary models by ratio matching

2.1 Construction and analysis of estimator

In this section, we generalize score matching to binary variables. Actually, this
generalization differs from score matching quite a lot, but it retains the basic
purpose of providing a computationally simple and (locally) consistent estima-
tion method for statistical models of binary variables where the normalization
constant is not known.

To fix the notation, assume we observe an n-dimensional binary random vector
x ∈ {−1,+1}n which has a probability distribution function denoted by Px(.).
We have a parametrized density model P (.; θ), where θ is an m-dimensional
vector of parameters. We want to estimate the parameter θ for x, i.e. we want
to approximate Px(.) by P (.; θ̂) for the estimated parameter value θ̂. The
model specification only gives P up to a multiplicative constant Z(θ):

P (ξ; θ) =
1

Z(θ)
Q(ξ; θ). (8)

In principle, Z is given by the sum:

Z(θ) =
∑

ξ∈{−1,+1}n

Q(ξ; θ) (9)

whose computation is exponential in the dimension n. Thus, for any larger
dimension n, direct numerical computation of Z is out of the question, just
like in the continous case.

The method we propose here is based on minimizing the expected squared
distance of the ratios of certain probabilities given by the model and the
corresponding ratios in the observed data. We show two important properties
for this new objective function. First, the distance can be estimated by a very
simple formula involving only sample averages of a simple function of Q(.; θ)
given by the model. Thus, the computations involved are essentially not more
complicated than in the case where we know an analytical expression for the
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normalization constant. Second, minimization of this objective function gives
a (locally) consistent estimator.

In our method we consider ratios of probabilities. In particular, we consider
the ratio of P (x) and P (x−i) where x−i denotes a vector in which the i-th
element of x has been flipped:

x−i = (x1, x2, . . . ,−xi, . . . , xn). (10)

(If the binary values are given by 0 and 1, the minus operator will be replaced
by a Boolean negation which transforms 0 to 1 and 1 to 0.)

The basic principle in our method is to force the ratios Px(x)/Px(x−i) to
be as close as possible to the corresponding ratios given the model, i.e.,
P (x; θ)/P (x−i; θ). Thus, the method is called (probability) ratio matching.
The obvious benefit of using ratios of probabilities is that they do not depend
on the normalization constant. Obviously, we have

P (x)

P (x−i)
=

Q(x)

Q(x−i)
, (11)

where P (x) stands for either Px(x) or P (x; θ).

What remains to be done is to define a distance for the ratios, including
some kind of weighting. An crucial point to note is that if we just use the
ratios as such, there may often be division by zero: especially the observed
probabilities Px(x) are often zero for some x. Thus, we prefer to consider the
following transformation of the ratios:

g(u) =
1

1 + u
. (12)

Now, any probability that is zero and leads to a ratio that is infinite will simply
give a value of g(∞) = 0 for this transformation, and any numerical problems
will be avoided. As for the weighting, we use the observed probabilities Px(x)
because this choice is natural and leads to algebraically simple expressions.

Thus, we propose that the model is estimated by minimizing the following
objective function:

JRM (θ) =
1

2

∑

ξ∈{−1,+1}n

Px(ξ)
n

∑

i=1

{

[

g(Px(ξ)/Px(ξ−i)) − g(P (ξ; θ)/P (ξ−i; θ))
]2

+
[

g(Px(ξ−i)/Px(ξ)) − g(P (ξ−i; θ)/P (ξ; θ))
]2

}

, (13)

where, for the sake of symmetry that is important for subsequent algebraic
simplifications, we take the sum of two square distances with the roles of ξ
and ξ−i switched.
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It may seem that this function is very difficult to compute, possibly requiring
that the probabilities of all the possible values of x are computed and stored.
Such a method would have exponential complexity and would not be of any
use. Fortunately, this problem does not arise because we can actually compute
JRM quite simple as a sample average of certain functions of the observations.
This is show by the following theorem, proven in Appendix A:

Theorem 1 Assume that all the probabilities are non-zero. The objective
function JRM in (13) can be equivalently expressed as

JRM (θ) =
∑

ξ∈{−1,+1}n

Px(ξ)
n

∑

i=1

g2(Q(ξ−i; θ)/Q(ξ; θ)) + const. (14)

where the constant does not depend on θ, and g is as defined in (12).

Although the proof assumes that all the probabilities are non-zero, the objec-
tive function is well-behaving even in the limit of zero probabilities. Thus, for
any practical purposes, the constraint of non-zero probabilities can be ignored.

Note that the Theorem cannot be obtained for any arbitrary function g. In
fact, the function g has been carefully chosen in order to obtain the simplified
form given by the Theorem.

Given a sample x(1), . . . ,x(T ) of observations, where T denotes sample size,
we thus propose that the model be estimated by

θ̂ = arg min
θ
J̃RM(θ), (15)

where J̃RM is the sample version of the equivalent form of J given by the
theorem:

J̃RM(θ) =
1

T

T
∑

t=1

n
∑

i=1

g2(Q(x−i(t); θ)/Q(x(t); θ)). (16)

Now we see why the formula in Theorem 1 is useful. The sample version J̃RM

can be computed as a sample average of a simple nonlinear function (square
of g) of a ratio of the non-normalized probabilities Q, assumed to be easy to
compute. This is stark contrast to computation of a sample version of (13),
which requires computation and memory storage of the sample probabilities
Px(ξ) for all ξ. Such computation and storage has, in general, exponential
complexity, and therefore impossible for high-dimensional data.

As for the consistency, we have a result which is completely analoguous to the
consistency theorem in [3]. This is given by the following Theorem, proven in
Appendix B:

Theorem 2 Assume that the data follows the model for some parameter value
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θ∗, i.e. Px(ξ) = P (ξ; θ∗) for all ξ. Assume that P (ξ; θ∗) > 0 for all ξ. As-
sume further that the model is identifiable in the sense that there is no other
parameter value that gives the same distribution Px.

Then, JRM (θ) = 0 if and only if θ = θ∗. Furthermore, the estimator obtained
by minimization of J̃RM is consistent, i.e. it converges in probability towards
the true value of θ when sample size approaches infinity. 1

2.2 Example: fully visible Boltzmann machine

2.2.1 Derivation of objective function and gradient

As an example of ratio matching, we shall consider estimation of the following
model

Q(x; [M,b]) = exp(
1

2
xTMx + bTx), (17)

where the parameter matrix M = (m1, . . . ,mn) is symmetric with zero di-
agonal, the additional parameter vector b is n-dimensional, and x is binary.
This is a special case (“fully visible”, i.e. no latent variables) of the Boltzmann
machine framework [4].

We obtain by straightforward calculation

Q(ξ−i; [M,b])/Q(ξ; [M,b])

= exp(
1

2
ξTMξ − 2ξim

T
i ξ + bTξ − 2biξi)/ exp(

1

2
ξTMξ + bTξ)

= exp(−2ξim
T
i ξ − 2biξi). (18)

For notational simplicity, we shall replace the sum over the sample by the
sample average operator Ê and drop the sample index t if there is no possibility
of confusion. Thus, the objective function J̃RM in (16) is equal to

J̃RM (M,b) =
n

∑

i=1

Ê{g2(exp(−2xim
T
i x − 2bixi))}. (19)

The gradient of J̃ with respect to one element of M can be easily calculated.
In Appendix C we show that it can be given in the form

8∇mij
J̃ = Ê(1 − tanh2(mT

i x + bi))[xixj − xj tanh(mT
i x + bi)], (20)

1 From a computational viewpoint, we also have to assume that the numerical
optimization algorithm used is able to find the global minimum of JRM ; there is no
guarantee of the convexity of the objective function. This is why the consistency
was called “local” in [3], and we have used the same qualification in parts of this
article as well. However, if we assume that numerical optimization is perfect, there
is no need to use such qualification.

7



which has the benefit that it shows the close connection to pseudo-likelihood
derived in [5]. In fact, this gradient turns out to be a weighted version of the
gradient of the pseudo-likelihood, the weighting given by 1− tanh2(mT

i x+ bi).

Since M is constrained to be symmetric and have zero diagonal, the gradient
has to be projected on this linear space. Thus, we compute

∇̃mij
J̃ =

1

2
(∇mij

J̃ + ∇mji
J̃), (21)

and update M̂ using this projected gradient in a gradient descent step:

∆m̂ij = −µ∇̃mij
J̃(M̂), (22)

where µ is a step size. Similarly, we can compute the derivative with respect
to b, which equals

∇bi
J̃ = Ê(1 − tanh2(mT

i x + bi))[xi − tanh(mT
i x + bi)]. (23)

Regarding computational complexity, Equation (20) shows that the complex-
ity of computing the gradient of the ratio matching objective function is es-
sentially of the same order as for pseudo-likelihood. Computation of the term
in brackets is common to both methods, whereas ratio matching requires the
additional computation of the weights which multiply the bracketed term. The
weights contain partly the same terms as the bracketed term, so the increase
is computational load is typically less than doubled.

2.2.2 Simulations

We performed simulation to validate the different estimation methods for the
fully visible Boltmann machine. We created random matrices M so that the
elements had normal distributions with zero mean and variance of .25. The
dimension n was set to 6 which is small enough to enable exact sampling
from the distribution. The bias elements bi were set to zero. We generated
data from the distribution and estimated the parameters using ratio match-
ing, maximum pseudo-likelihood [1,5], and maximum likelihood obtained by
exact computation of the normalization constant Z. (Pseudo-likelihood is also
asymptotically equivalent to contrastive divergence as shown in [5].)

We estimated the parameters for various sample sizes: 500, 1000, 2000, 4000,
8000, 16000, and 32000. For each sample size, we created 10 different data
sets and ran the estimation once on each data set using a single random
initial point. For each estimation, the estimation error was computed as the
Euclidean distance of the real matrix M and its estimate. We took the mean
of the logarithm of the 10 estimation errors.
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Fig. 1. The median estimation errors of ratio matching (solid line) compared with er-
rors of maximum pseudo-likelihood/contrastive divergence estimation (dashed line)
and maximum likelihood (dash-dotted line) for the fully visible Boltzmann machine.
Horizontal axis: log10 of sample size. Vertical axis: log10 of estimation error. Indi-
vidual crosses show the maximum and minimum errors for ratio matching among
the 10 runs.

The results are shown in Figure 1. Two things are clearly seen here. First, all
three estimators give extremely similar errors. This is comprehensible because
the ratio matching gradient is basically the same as the pseudo-likelihood or
expected contrastive divergence gradient, up to a re-weighting. We computed
the weights and saw that indeed, the weights are not very different from each
other, the largest being only some 20% larger than the smallest ones. The
second thing we can see in Figure 1 is that ratio matching does seem to provide
a consistent estimator as the error seems to converge to zero. Furthermore,
optimization using a single initial point seems to pose no problems since even
the maximum of errors over different runs seems to go to zero; the consistency
seems to be global for this model.

3 Score matching for non-negative data

Basic score matching assumes that pdf’s are differentiable over all R
n. In this

section, we show how the method can be generalized to the important case
where the data are all non-negative. In other words, the pdf’s are only defined
in R

n
+, or {R+∪{0}}n . The reason why ordinary score matching cannot often

be used in this case is that the pdf of non-negative data may exhibit a strong
discontinuity in points where one of the variables is zero.

Basic score matching can be conceived as using a hypothetical a location
parameter, say µ. The gradient of the log-pdf is then taken with respect to
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this parameter, which is subsequently set to 0:

∇ξ log p(ξ; θ) = ∇µ log p(ξ + µ; θ)|
µ=0

. (24)

Here, we introduce a scale parameter σ ∈ R
n
+ instead of the location pa-

rameter, which is more natural when all the variables are non-negative. Let
us denote by ⊗ the element-wise multiplication of two vectors. We use the
following function, which we call the “scaling score function”

∇σ log p(ξ ⊗ σ; θ)|σ=1
= (∇ξ log p(ξ; θ)) ⊗ ξ = ψ(ξ; θ) ⊗ ξ. (25)

That is, we take the gradient of the log-pdf with respect to the scale parameter
and evaluate it at the “default” value where σi = 1 for all i. Likewise, we can
define the scaling score function of the data distribution px. Now, we consider
the squared distance between the scaling score functions of the data and the
model:

JNN(θ) =
1

2

∫

R
n
+

px(ξ)‖ψ
x
(ξ) ⊗ ξ −ψ(ξ; θ) ⊗ ξ‖2dξ. (26)

Just like in basic score matching, we can use a simple trick of partial integra-
tion to obtain a computationally simple expression to optimize. This is stated
in the following theorem, proven in Appendix D:

Theorem 3 Assume all the pdf’s are differentiable in R
n
+, as well as some

weak regularity conditions. 2 Then the function in (26) can be expressed as

JNN(θ) =
∫

R
n
+

px(ξ)
n

∑

i=1

[

2ξiψi(ξ; θ) + ξ2
i ∂iψi(ξ; θ) +

1

2
ψi(ξ; θ)

2ξ2
i

]

dξ + const.

(27)
where the ψi and ∂iψi are the ordinary “score functions” (Fisher scores with
respect to a hypothetical location parameter) and their derivatives as defined
in (3) and (6).

The sample version of the objective function can be computed as:

J̃NN(θ) =
1

T

T
∑

t=1

n
∑

i=1

2xi(t)ψi(x(t); θ)+xi(t)
2∂iψi(x(t); θ)+

1

2
ψi(x(t); θ)2xi(t)

2.

(28)
This sample version is easy to compute: it only contains some gradients of the
(non-normalized) pdf’s, so it is easy to compute. Thus, we have shown how
the score matching framework can be extended to the case of data constrained
non-negative.

2 The regularity conditions are: the data pdf px(ξ) is differentiable in R
n
+ , the

expectations Ex{‖ψ(x;θ)‖2‖x‖2} and Ex{‖ψx(x)‖2‖x‖2} are finite for any θ, and
px(ξ)ψ(ξ;θ)ξ2

i goes to zero for any i and θ when ‖ξ‖ → ∞ or ‖ξ‖ → 0
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The (local) consistency of the estimator can be proven by a trivial modifica-
tion of the consistency theorem of original score matching. In fact, we have a
practically identical theorem of consistency that we give next.

Theorem 4 Assume the pdf of x follows the model: px(.) = p(.; θ∗) for some
θ∗. Assume further that no other parameter value gives a pdf that is equal 3

to p(.; θ∗), and that q(ξ; θ∗) > 0 for all ξ ∈ R
n
+. Then

JNN(θ) = 0 ⇔ θ = θ∗.

For a proof, see Appendix E. A consistency corollary similar to the one for
original score matching, or in the Theorem 2 above, concludes the consistency
analysis, but we omit it here for brevity.

An alternative approach would be to make a transformation of variables
yi = log xi and use score matching in the transformed space. In fact, sim-
ple calculations show that this lead to exactly the same objective function as
the approach just described.

A simulation example using this objective function will be provided in Sec-
tion 4.2.

4 Closed-form solution in exponential family

4.1 Derivation of solution

Our last result is to show that for some exponential families, the score match-
ing estimator can be obtained in closed form. In an exponential family, the
pdf can be expressed in the form

log p(ξ; θ) =
m

∑

k=1

θkFk(ξ) − logZ(θ), (29)

where Z is the normalization constant needed to make p integrate to unity,
but as mentioned above, it does not need to be computed in our framework.

Here, we assume that the parameter space is R
m, i.e. θ can take all possible

real values. In that case, we can find a direct expression for the estimator.

3 In this theorem and its proof, equalities of pdf’s are to be taken in the sense of
equal almost everywhere in R

n
+ with respect to the Lebesgue measure.
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Let us denote the matrix of partial derivatives of F , i.e. its Jacobian, by K(ξ),
with elements defined as:

Kki(ξ) =
∂Fk

∂ξi
, (30)

and the needed matrix of second derivatives by

Hki(ξ) =
∂2Fk

∂ξ2
i

. (31)

Now, we have

ψi(ξ; θ) =
m

∑

k=1

θkKki(ξ), (32)

and the objective function J̃SM in (7) becomes

J̃SM(θ) =
1

T

T
∑

t=1

∑

i

[

1

2
(

m
∑

k=1

θkKki(x(t)))2 +
m

∑

k=1

θkHki(x(t))

]

=
1

2
θT (

1

T

T
∑

t=1

K(x(t))K(x(t))T )θ + θT (
1

T

T
∑

t=1

∑

i

Hki(x(t))). (33)

This is a simple quadratic form of θ. Thus, the minimizing θ can be easily
solved by computing the gradient and setting it to zero. This gives θ̂ is closed
form as

θ̂ = −
[

Ê{K(x)K(x)T}
]−1

(
∑

i

Ê{hi(x)}), (34)

where Ê denotes the sample average (i.e. expectation over the sample distri-
bution), and the vector hi(x) is the i-th column of the matrix H defined in
(31).

A similar development is possible in the case of non-negative data. We shall
not give the general equations which are obtained in the same way. Rather, we
will show in the following example how the results are valid for non-negative
data as well.

4.2 Example: non-negative gaussian family

As an example that illustrates both the closed-form solution for some expo-
nential families and the version for non-negative data, let use consider the
following distribution:

log p(x; θ) = −
1

2
xTMx − logZ(M), (35)

where x is constrained non-negative. This is a restriction of the multivariate
gaussian distribution (with mean 0) to R

n
+. The matrix M has to be con-

strained symmetric and positive-definite.
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The first and second partial derivatives of the log-pdf’s are equal to

ψi(ξ;M) = −mT
i ξ and ∂iψi(ξ;M) = −mii, (36)

where mi is the i-th row of M. The objective function for non-negative data
in (28) is then equal to

J̃NN(M) = −
1

T

T
∑

t=1

n
∑

i=1

2xi(t)m
T
i x(t) − xi(t)

2mii +
1

2
(mT

i x(t))2x2
i , (37)

from which we obtain by simple algebraic manipulations

J̃NN (M) = −
n

∑

i=1

2Ê{xix
T}mi − Ê{x2

i }mii +
1

2
mT

i Ê{xxTx2
i }mi, (38)

from which we can solve the maximizing mi as

m̂i = [Ê{xxTx2
i }]

−1
[

2Ê{xix
T} + Ê{x2

i }ei

]

, (39)

where ei denotes the i-th canonical basis vector, i.e. a vector in which the
i-th element is one and all others zero. This derivation considered each mi

separately, ignoring the constraints that M must be symmetric and positive
definite. A slightly better estimator is probably obtained by projecting M
on the space of symmetric positive-definite matrices. However, this does not
seem necessary to demonstrate the consistency of our method, so we ignore
this projection here.

We simulated data from this distribution in four dimensions. Such simulation
is simply achieved (in low dimensions) by sampling from an ordinary gaussian
distribution with covariance M−1, and rejecting any sample with negative
values. We took 10 random matrices A that were created by taking uniformly
distributed random variables independently for each element. The matrix M
was then obtained as AAT , which ensured that it is positive-definite. Badly
conditioned M’s were rejected because their estimation was too difficult.

The resulting estimation errors for increasing sample size are depicted in Fig. 2.
The median estimation error seems to go to zero, which confirms the consis-
tency of the estimator.

5 Conclusion

We extended the score matching framework [3] in three ways. First, we showed
how a related method can be developed for binary data, still providing a con-
sistent estimator. Second, we showed how to apply estimate non-normalized
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Fig. 2. The estimation errors of score matching estimation for the non-negative
gaussian family. Median error was taken over ten runs. Horizontal axis: log10 of
sample size. Vertical axis: log10 of estimation error.

models that are constrained to the non-negative domain. Third, we showed
how the estimator can be obtained in closed form for exponential families.
Related extensions were proposed in [6].
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A Proof of Theorem 1

For simplicity, we do not denote the summation limits for i and ξ in the
following. Note that obviously (ξ−i)−i = ξ, and that ξ−i goes though all the
same values of ξ, so in the sums below, we can exchange ξ and ξ−i.

Taking the definition of J in (13) and doing successive algebraic manipulations

14



yields

2JRM(θ) =
∑

i,ξ

Px(ξ)
[

g(Px(ξ)/Px(ξ−i)) − g(P (ξ; θ)/P (ξ−i; θ))
]2

+
∑

i,ξ

Px(ξ)
[

g(Px(ξ−i)/Px(ξ)) − g(P (ξ−i; θ)/P (ξ; θ))
]2

=
∑

i,ξ

Px(ξ)
[

g(Px(ξ−i)/Px(ξ))
2 + g(Px(ξ)/Px(ξ−i))

2
]

+
∑

i,ξ

Px(ξ)
[

g(P (ξ; θ)/P (ξ−i; θ))
2 + g(P (ξ−i; θ)/P (ξ; θ))2

]

− 2
∑

i,ξ

Px(ξ)
[

g(Px(ξ)/Px(ξ−i))g(P (ξ; θ)/P (ξ−i; θ))

+g(Px(ξ−i)/Px(ξ))g(P (ξ−i; θ)/P (ξ; θ))
]

. (A.1)

The first term in brackets on the right-hand-side is a constant that does not
depend on θ, it will be denoted by “const.” below. Let us next consider the
third term. It can be manipulated as follows:

∑

i,ξ

Px(ξ)
[

g(Px(ξ)/Px(ξ−i))g(P (ξ; θ)/P (ξ−i; θ))

+g(Px(ξ−i)/Px(ξ))g(P (ξ−i; θ)/P (ξ; θ))
]

=
∑

i,ξ

Px(ξ)
Px(ξ−i)

Px(ξ) + Px(ξ−i)
g(P (ξ; θ)/P (ξ−i; θ))

+
∑

i,ξ

Px(ξ)
Px(ξ)

Px(ξ) + Px(ξ−i)
g(P (ξ−i; θ)/P (ξ; θ))

=
∑

i,ξ

Px(ξ)
Px(ξ−i)

Px(ξ) + Px(ξ−i)
g(P (ξ; θ)/P (ξ−i; θ))

+
∑

i,ξ

Px(ξ−i)
Px(ξ−i)

Px(ξ) + Px(ξ−i)
g(P (ξ; θ)/P (ξ−i; θ))

=
∑

i,ξ

[Px(ξ) + Px(ξ−i)]
Px(ξ−i)

Px(ξ) + Px(ξ−i)
g(P (ξ; θ)/P (ξ−i; θ))

=
∑

i,ξ

Px(ξ−i)g(P (ξ; θ)/P (ξ−i; θ)) =
∑

i,ξ

Px(ξ)g(P (ξ−i; θ)/P (ξ; θ))

=
∑

i,ξ

Px(ξ)
P (ξ; θ)

P (ξ−i; θ) + P (ξ; θ)
. (A.2)

The second sum term on the right-hand side of (A.1) is equal to:

∑

i,ξ

Px(ξ)

[

P (ξ−i; θ)
2

(P (ξ; θ) + P (ξ−i; θ))
2

+
P (ξ; θ)2

(P (ξ; θ) + P (ξ−i; θ))
2

]

. (A.3)
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So, gathering together (A.2) and (A.3), we have

2JRM(θ) =
∑

i,ξ

Px(ξ)

[

P (ξ−i; θ)
2

(P (ξ; θ) + P (ξ−i; θ))
2

+
P (ξ; θ)2

(P (ξ; θ) + P (ξ−i; θ))
2

]

− 2
∑

i,ξ

Px(ξ)
P (ξ; θ)

P (ξ−i; θ) + P (ξ; θ)
+ const.

=
∑

i,ξ

Px(ξ)

[

P (ξ; θ)2 + P (ξ−i; θ)
2 − 2P (ξ; θ)(P (ξ−i; θ) + P (ξ; θ))

(P (ξ; θ) + P (ξ−i; θ))
2

]

+ const.

=
∑

i,ξ

Px(ξ)

[

−P (ξ; θ)2 − 2P (ξ; θ)P (ξ−i; θ) − P (ξ−i; θ)
2 + 2P (ξ−i; θ)

2

(P (ξ; θ) + P (ξ−i; θ))
2

]

+const.

=
∑

i,ξ

Px(ξ)

[

−1 + 2
P (ξ−i; θ)

2

(P (ξ; θ) + P (ξ−i; θ))
2

]

+ const.

= −1 + 2
∑

i,ξ

Px(ξ)g
2(Q(ξ; θ)/Q(ξ−i; θ)) + const., (A.4)

where the last equality is due to definition of g in (12), and the interchanga-
bility of Q and P ratios as in (11). Thus, we have proven the theorem.

B Proof of Theorem 2

The hypothesis JRM = 0, together with the assumption that P (ξ; θ∗) =
Px(ξ) > 0 for any ξ, implies that all the ratios must be equal for the model
and the observed data. This means that

Px(ξ)/Px(ξ−i) = P (ξ; θ)/P (ξ−i; θ) (B.1)

⇔ (B.2)

Px(ξ)/P (ξ; θ) = Px(ξ−i)/P (ξ−i; θ), (B.3)

for all ξ and i. Applying this identity on ξ−i, we have

Px(ξ−i)/P (ξ−i; θ) = Px(ξ−i,−k)/P (ξ−i,−k; θ) (B.4)

for some other index k. We can apply this recursively n times for any sequence
of indices.

Now, fix any point ξ0. Take the set of indices for which ξ and ξ0 differ, and
use this recursion on that set of indices. We get

Px(ξ)/P (ξ; θ) = Px(ξ−i)/P (ξ−i; θ) = . . . = Px(ξ
0)/P (ξ0; θ) = c, (B.5)

where c is a constant that does not depend on ξ (actually, it does not depend
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on ξ0 either). Thus, we have

Px(ξ) = cP (ξ; θ) for all ξ. (B.6)

On the other hand, both Px and P (.; θ) are properly normalized probability
distributions. Thus, we must have c = 1 because otherwise their sums over ξ
could not both equal 1. This proves that if JRM = 0, then P (ξ; θ) = Px(ξ) for
all ξ. Using the identifiability assumption, this implies θ = θ∗. Thus, we have
proven that JRM (θ) = 0 implies θ = θ∗. The converse is trivial.

To prove consistency, we apply the law of large numbers. As sample size ap-
proaches infinity, J̃RM converges to JRM (in probability, and up to the ir-
relevent additive constant). Thus, the estimator converges to a point where
JRM is globally minimized. By the proof just given, the global minimum is
unique and found at the true parameter value (obviously, JRM cannot be neg-
ative).

C Derivation of (20)

Noting that g′(u) = −g2(u), we can compute the gradient with respect to one
element of M as

∇mij
J̃ = Ê

n
∑

i=1

−2(−2xixj) exp(−2xim
T
i x − 2bixi)

× g2(exp(−2xim
T
i x − 2bixi)) × g(exp(−2xim

T
i x − 2bixi))

= Êxixj

4 exp(−2xim
T
i x − 2bixi)

[1 + exp(−2ximT
i x − 2bixi)]3

= 4Êxixjh(−2xim
T
i x − 2bixi), (C.1)

with

h(u) =
exp(u)

(1 + exp(u))3
. (C.2)

We can further manipulate h:

h(u) =
exp(−u/2)

(exp(u/2) + exp(−u/2))3

=
1

16 cosh2(u/2)

exp(u/2) + exp(−u/2) − (exp(u/2) − exp(−u/2))

cosh(u/2)

=
1

8 cosh2(u/2)
[1 − tanh(u/2)] =

1

8
(1 − tanh2(u/2))(1 − tanh(u/2)). (C.3)

Now, let us note that xi tanh(xiu) = tanh(u) for any x = ±1 because tanh is
an odd function. Thus, the multiplying xi inside the tanh function disappears
together with the pre-multiplying xi. Also, tanh2(xiu) = tanh2(u). Using these
we finally obtain (20).
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D Proof of Theorem 3

The proof is a simple variant of the partial integration trick used in basic score
matching [3] based on earlier work by [7,8]. Simple manipulations of JNN is
(26) give

JNN = −
∫

R
n
+

px(ξ)(ψx
(ξ) ⊗ ξ)T (ψ(ξ; θ) ⊗ ξ)dξ

+
1

2

∫

R
n
+

px(ξ)‖ψ(ξ; θ) ⊗ ξ‖2dξ + const. (D.1)

where the constant only depends on px. The latter term is clearly equal to the
last term in (27), so what really needs to be proven is that the former term in
(D.1) equals the sum of the first two terms in (27). The dot-product in that
term consists of sums of term of the form

∫

R
n
+

p(ξ)ψx,i(ξ)ψi(ξ; θ)ξ
2
i dξ, (D.2)

where ψx,i denotes the i-th element of ψ
x
. Now, we use partial integration as

follows:

∫

R
n
+

px(ξ)ψx,i(ξ)ψi(ξ; θ)ξ
2
i dξ =

∫

R
n
+

px(ξ)
∂ipx(ξ)

px(ξ)
ψi(ξ; θ)ξ

2
i dξ

=
∫

R
n
+

∂ipx(ξ)ψi(ξ; θ)ξ
2
i dξ

= px(ξ)ψi(ξ; θ)ξ
2
i

∣

∣

∣

ξi=∞
− px(ξ)ψi(ξ; θ)ξ

2
i

∣

∣

∣

ξi=0
−

∫

R
n
+

px(ξ)∂i(ψi(ξ; θ)ξ
2
i )dξ

= −
∫

R
n
+

px(ξ)[2ξiψi(ξ; θ) + ξ2
i ∂iψi(ξ; θ)]dξ, (D.3)

where the disappearance of the two terms in the last equality is due to the
regularity assumptions of the theorem. Thus we have shown the theorem. A
more rigorous justification for this partial integration element by element is
given in Lemma 1 of [3].

Note that if we tried to do the same for the original score matching function,
the term px(ξ)ψi(ξ; θ)ξ

2
i |ξi=0 would not contain the factor ξ2

i , and it would
not be zero in general, so there would be an extra term which is not very easy
to evaluate (it contains the data pdf).
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E Proof of Theorem 4

The assumption q(ξ; θ∗) > 0 implies px(ξ) > 0 almost everywhere in R
n
+.

Assume JNN(θ) = 0. This implies that ψ
x
(.) and ψ(.; θ) are equal a.e. because

their squared distance is zero with a weight that is > 0 a.e. Thus, log px(.) =
log p(.; θ) + c for some constant c. But c is necessarily 0 because both px and
p(.; θ) are pdf’s. Thus, px = p(.; θ). By assumption, only θ = θ∗ fulfills this
equality, so necessarily θ = θ∗, and we have proven the implication from left
to right. The converse is trivial.
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