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Independent component analysis (ICA) is a valuable technique for

the multivariate data-driven analysis of functional magnetic reso-

nance imaging (fMRI) data sets. Applications of ICA have been

developed mainly for single subject studies, although different

solutions for group studies have been proposed. These approaches

combine data sets from multiple subjects into a single aggregate data

set before ICA estimation and, thus, require some additional

assumptions about the separability across subjects of group inde-

pendent components. Here, we exploit the application of similarity

measures and a related visual tool to study the natural self-

organizing clustering of many independent components from multi-

ple individual data sets in the subject space. Our proposed frame-

work flexibly enables multiple criteria for the generation of group

independent components and their random-effects evaluation. We

present real visual activation fMRI data from two experiments, with

different spatiotemporal structures, and demonstrate the validity of

this framework for a blind extraction and selection of meaningful

activity and functional connectivity group patterns. Our approach is

either alternative or complementary to the group ICA of aggregated

data sets in that it exploits commonalities across multiple subject-

specific patterns, while addressing as much as possible of the

intersubject variability of the measured responses. This property is
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particularly of interest for a blind group and subgroup pattern

extraction and selection.
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Introduction

Independent component analysis (ICA) is a valuable tool for the

multivariate data-driven analysis of functional magnetic resonance

imaging (fMRI) data (McKeown et al., 1998a,b, 2003). As a purely

data-driven methodology, ICA does not require the specification of

temporal signal profiles or anatomical regions of interest to

generate meaningful spatiotemporal patterns of brain activity. The

multivariate statistical nature of ICA allows one to transform three-

dimensional fMRI data sets into brain activity patterns starting from

the spatial or temporal covariance of the measured signals and

reveals multiple spatiotemporal bmodesQ of signal variability

(Friston et al., 1993). This transformation is achieved by imposing

the general, yet neurophysiologically plausible, constraint of

removing the statistical dependence of the output modes (Brown

et al., 2001; McKeown et al., 1998a). In order to meet this

constraint, the value distribution of the fMRI signals in space or

time is to be considered: the variant called spatial ICA (sICA) refers

to the statistical distribution of signals across the sampled

hemodynamic locations, while the variant called temporal ICA
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(tICA) refers to the statistical distribution of source signals across

the sampled time-points (Calhoun et al., 2001a).

Both sICA and tICA have been used in different contexts. The

tICA is applied to fMRI measurements in the same way, and with

the same assumptions that ICA is commonly applied to EEG or

MEG recordings; on the other hand, the structure of whole-brain

three-dimensional fMRI data sets has suggested the sICA as the

default ICA variant for fMRI.

The neurological significance of applying sICA for the

decomposition of single-subject fMRI time-series can be seen in

the two equivalent formulations of ICA. First, the modes of signal

change separated by ICA are such that the mutual information is

minimized, that is, each generated pattern carries a minimum

amount of information about the other patterns. Second, the

statistical distribution of the sources are maximally far from the

Gaussian distribution (Hyvarinen et al., 2001). In fact, the first

definition extends the concept of functional connectivity patterns

of brain imaging data (Friston et al., 1993), where multiple brain

regions are unified by their time-courses, with the constraint that

none of these regions systematically occurs in two different

patterns. The second definition fits with the concept of bactivation
mapQ, for which the amount of functional information is related to

how the values of a few (active) voxels are significantly different

from the remaining (Gaussian-distributed, as default) bmassQ of

voxels: the more Gaussian the distribution of a three-dimensional

map is, the less selective and, thus, functionally uninformative, the

resulting pattern will be.

Based on this theoretical background, ICA has been success-

fully used for the decomposition of individual fMRI time-series.

However, since fMRI studies increasingly involve the statistical

comparison of more than one group of subjects, for example,

healthy people vs. people with a disease, it has become necessary

to develop strategies to extending the ICA analysis framework

from single-subject to group studies and multi-group studies.

The most natural and intuitive way that avoids additional

assumptions for the individual ICA data model is to perform fixed-

or random-effects analyses on the results of the decompositions of

each individual data sets (Calhoun et al., 2001b; Seifritz et al.,

2002). The main challenge of this approach is to integrate the ICA

analysis chain with a suitable post-estimation analysis step in

which an automatic tool would allow a systematic matching of the

estimated components across all the subjects of the study.

However, in previous studies applying ICA to fMRI, the matching

of the component maps was based on subjective and context-

specific criteria: in the absence of general and effective tools for the

subject- or group-level selection of bmatchingQ components, this

approach remains difficult to implement, and the loss of sensitivity

caused by a possible mismatch of components cannot be easily

corrected.

Conventional model-driven univariate methods (e.g., regres-

sion analysis) have been naturally generalized from single- to

multi-subject methods by simple schemes of across-subject data

aggregation based on matrix averaging or concatenation. Previous

work has proposed similar schemes to combine the individual

data sets into a single group data set prior to performing one

single ICA run on a group data-matrix. Two alternative

approaches have been proposed. Following the typical matrix

notation, they can be referred as column-wise (or subject-wise)

(Calhoun et al., 2001c), and row-wise (across time-courses)

concatenation (Svensen et al., 2002). These methods have been

reviewed and compared using artificial data stets to the simplest
across-subject averaging by Schmithorst and Holland (2004). In

order to be correctly applied, both approaches require the

substantial assumption that a given source of signal change exists

as an bobservable processQ in all of the subjects entering the

analysis. Specifically, column-wise aggregation imposes a com-

mon space of observations for all the sources (the normalized

anatomical space), although it allows different activation time-

courses for the different subjects. Row-wise aggregation imposes

a common time-course for a generic source to all of the subjects,

although it allows bno activityQ to occur in some of subjects.

Despite the additional, sometimes restrictive hypotheses required

by the aggregate approaches, the use of a common space of

observation may serve as useful bregularizationQ for the estimation

of group components.

After ICA parameter estimation, the separation of subject-

specific components is achieved by a subject-level unmixing of

group components in the column-wise approach and by a vector

disaggregation of group components in the row-wise approach. In

a more recent work (Calhoun et al., 2004), a new variant of the

column-wise group ICA approach was presented, where single-

subject component time-courses were obtained using a spatial

multiple regression of the group component images onto the

individual fMRI data for each time point.

A further approach is the simple across-subject averaging

(Schmithorst et al., 2004): although the computational load is the

least extensive and is independent from the number of subjects, it

allows group inferences only indirectly through a subsequent

conventional general linear model analysis with the estimated ICA

mixing matrix acting as a pseudo design matrix in a way similar to

that described by McKeown (2000). In all of the three approaches,

at least one form of bnon-selectiveQ pooling of different subjects’

data is necessary before estimating group components: spatial for

column-wise, temporal for row-wise and spatiotemporal in across-

subject averaging.

Although the validity of these approaches in producing bsingle-
groupQ ICA patterns compatible with individual ICA patterns has

been demonstrated, it is noteworthy that they cannot easily predict

how much bias or loss of sensitivity may occur in the ICA

estimation (and, thus, subsequent random effects analysis of the

patterns) in the presence of factors affecting the homogeneity

across subjects of the components. Thus, the homogeneity of the

sample of subjects, which crucially affects the performances of the

random effects analysis for model-driven parametric estimates

(Friston et al., 1999), appears to be an even more crucial problem

in the context of ICA.

The problem of the homogenous presence of sources in

different subjects may occur for many different reasons: for

instance, Burbaud et al. (2000) show different activation patterns

for mental calculation relating to different strategies (verbal or

visual), while in the study of Castelo-Branco et al. (2002), an

individual could or could not produce a measurable response

related to his/her subjective perception of an ambiguous stimulus.

So far, preliminary attempts to examine the homogeneity (or

stationarity) of subject (or timepoint-to-timepoint) homogeneity

have been presented by Liao et al. (2004) and Calhoun et al.

(2001d).

In general, both predictable (e.g., gender, age, etc.) as well as

not easily predictable factors may occur, which can bias the group

ICA model estimation, but a comprehensive evaluation of this bias

and the possible loss of accuracy of the proposed ICA method is

not straightforward.
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Recent work has suggested a method to assess the homogeneity

of the sample of subjects before general linear model random

effects analysis, using similarity measures and multidimensional

projection of single subject data sets (Kherif et al., 2003); other

recent work has shown how single-subject ICA estimates and

intersubject correlation can help to dissect the cerebral cortex into

stimulus-driven functional connectivity patterns even in highly

complex naturalistic settings (Bartels and Zeki, 2004).

Here, we propose the application of similarity measures on ICA

patterns to produce group inferences in multi-subject studies:

starting from single-subject ICA runs, we explore the natural self-

organizing clustering of components in the subject space, assuming

the inter-subject similarity, contrasted to the intra-subject similarity,

of the component estimates as a cluster generator. We call this

approach bself-organizing group ICAQ (sogICA), since it extends

ICA from individual to multi-subject fMRI data sets without

forcing a specific homology of the sources across subjects. In

contrast, sogICA searches for structures of the sources in the

subject space.

We present all the steps of this framework and show results

obtained from real activation fMRI experiments conducted on a

group of six subjects. For these experiments, two illustrative

experimental paradigms involving visual stimulation have been

adopted in a way that either one single or two spatially non-

systematically overlapping (i.e., spatially independent) sources

were to be expected from each single-subject decomposition under

normal conditions.
Materials and methods

Experimental design

Six healthy volunteers, two males and four females (mean age

26 years) with normal vision and audition, were recruited for the

study. The Ethical Committee approved the protocol and the

participants signed their informed consent. Two experimental

paradigms depicted in Fig. 1 were used for two successive 3 min

lasting scanning sessions. According to an ON–OFF blocked

design scheme, periods of passive visual stimulation were

administered to the volunteers while they were laying supine in

the scanner with their eyes fixating a white cross in the centre of

their visual field: an LCD projector was used to project the visual

scenario onto a screen which covered about 258 of the visual field
of participants through a mirror. The visual stimulation consisted of

four 20-s lasting periods of a 10-Hz flickering checkerboard,

covering the entire stimulated visual field in first session and

alternatively left and right part of the stimulated visual field in the

second session, were alternated to simple fixation 20-s lasting
Fig. 1. Experimen
periods. The stimuli were timed using the computer program

Presentation (www.neurobs.com).

Imaging parameters and pre-processing

MR images were acquired on a 3-T super-conducting SIGNA

LX scanner (General Electric Medical Systems, Milwaukee, WI,

USA) using a standard circularly polarized head coil. A sagittal

localizer was performed first that served to position 14 oblique

slices parallel to the AC–PC plane, covering the entire brain

including the superior part of the cerebellum. Echo-planar imaging

(TR = 1 s, TE = 30 ms, FOV = 240 � 240 mm2, matrix 64 � 64,

slice thickness 5 mm and gap 1.5 mm) was performed for dynamic

scans: time-series were acquired for 200 s, the first 20 scans being

bdummyQ scans that allowed the longitudinal equilibrium of the

magnetization vector; after the dummy scans, the program started

the stimulation paradigm, automatically triggered by the scanner.

After functional scans, co-registered anatomical slices and whole-

head T1-weighted isometric (1 mm3) scans were acquired for all

subjects for a correct 3-D registration and isotropic time-series

generation.

Functional image time-series were first corrected for the

differences in slice acquisition times using a bsincQ interpolation
technique, realigned with T1-volumes, warped into the standard

anatomical space of Talairach and Tournoux (1988) and finally

resampled to 3 � 3 � 3 mm3 isotropic voxels.

The Talairach transformation was performed in two steps. The

first step consisted in rotating the 3-D data set of each subject to be

aligned with stereotaxic axes (for this step the location of the

anterior commissure [AC], the posterior commissure [PC] and two

rotation parameters for midsagittal alignment were specified

manually). In the second step, the extreme points of the cerebrum

were specified. These points together with the AC and PC

coordinates were then used to scale the 3-D data sets into the

dimensions of the standard brain of the Talairach and Tournoux

(1988) atlas using a piecewise affine and continuous trans-

formation for each of the 12 defined subvolumes.

The resulting voxel-time-series (180 scans) were filtered in time

and space: low-frequency (drift) fluctuation were reduced using a

high-pass temporal filter (5 cycles) and high-frequency fluctuations

were reduced using a 4-s full-width at half-maximum Gaussian

kernel; spatial smoothing was performed using a 6-mm full-width

at half-maximum Gaussian kernel.

Time and space filtering of image time-series are utilized here,

as it is common use in fMRI data analysis, to strengthen signal

detection and improve the matching of the regions of activity in

multi-subject studies. It is straightforward to demonstrate that any

spatial (linear) filtering of the data applied before ICA does not

change the spatial (linear) ICA model (Hyvarinen et al., 2001).
tal design.

 http:\\www.neurobs.com 


F. Esposito et al. / NeuroImage 25 (2005) 193–205196
Nonetheless, the impact of spatial and temporal filtering on ICA

source separation and estimation has not been studied analytically

in fMRI and may deserve further methodological investigation.

No correction for head motion was performed for reasons

similar to those discussed previously (Esposito et al., 2003).

Namely, since individual ICA detects gradual and sudden motion

without a preliminary correction of the data for the subjects’

confined head motion (McKeown et al., 1998b), with the

components of interest proving adequately robust to motion

effects, we avoided to alter the structure of the data sets (by the

typical image resampling step required in the common motion

correction procedures) in a way that could be highly different

across subjects because of the presumably different motion.

For display on the volumetric anatomy, individual maps were

either projected on the respective individual volumetric images or

on a standard anatomical Montreal Neurological Institute (MNI)

template. Surface projections on the inflated cortical surface

obtained from the segmentation and unfolding of the MNI template

were used for a 3-D comparison of both individual and group

maps.

All the image data preparation and preprocessing steps as

well as the map volumetric and surface projection were

performed in Brain Voyager QX (Brain Innovation, Maastricht,

The Netherlands).

ICA data model and framework in fMRI

ICA decomposes data into signals that are maximally statisti-

cally independent (Hyvarinen et al., 2001). In fMRI, given P

voxels in the brain and T time-points, the basic formulation of the

generative data model of the noise-free spatial ICA assumes that

the single-subject data matrix X of order (TxP), whose columns are

the voxel-time courses, can be represented through a linear

combination of M statistically independent components (the

bsourcesQ) in the P-dimensional space domain, whose observations

are organized as rows of a MxP matrix C:

X ¼ A C ð1Þ

A is the bmixingQ matrix (T�M). The ith column of A consists of

the time-course associated with the ith row of C, Ci. Most of ICA

algorithms compute the bunmixingQ matrix W so that the formulas:

C ¼ W X;A ¼ WTW
� ��1

WT ð2Þ

can be used for an estimate of the original component sources and

their time-courses of activation. The resulting IC map values of all

Ci are conventionally scaled to spatial z scores (i.e., the number of

standard deviations from the map mean) as in (McKeown et al.,

1998a) before projection onto the anatomical space.

The most popular algorithms for the estimation of matrix W

are the Infomax algorithm, which uses a stochastic gradient-

descent adaptive algorithm to minimize the mutual information

(Bell and Sejnowski, 1995) of the components and the FastICA

algorithm, a fixed-point iterative algorithm that maximizes the

negative normalized entropy (negentropy) of the components

(Hyvärinen, 1999). These algorithms have been reviewed and

compared on artificial and real activation fMRI data by Esposito

et al. (2002).

In real world applications, it is typical to include in the core

ICA estimation framework a preliminary dimension reduction of

the input data-matrix X: a principal component analysis (PCA)-
based reduction of the matrix X is commonly performed from

order TxP into order MxP. Although a number of model-

selection criteria have been proposed in the signal processing

literature, heuristic choices of the number of principal-independ-

ent components (M) to be estimated were successful in many

previous applications of ICA to fMRI. Heuristic choices handle

the fundamental methodological trade-off between convergence

problems and separation performances: an exaggerated dimen-

sion reduction may generate representations of not completely

unmixed sources as well as a loss of interesting sources (bunder-
decompositionQ); on the other hand, the inclusion of a number

of dimensions higher than strictly necessary may generate an

bover-decompositionQ of conceptually unique sources of signal

change into multiple sources, resulting in a poor representation

of the phenomena. Fortunately, when the spatiotemporal

structure of interesting fMRI sources in the data is compatible

with the constraint of spatial independence, the number of

principal components selected is not critical, and accurate and

robust separation of these sources can be achieved using a

reasonable amount of computational resources of time and

memory.

For the extension of ICA from single to multi-subjects data sets,

the three methods of applying the ICA model to group studies have

been recently reviewed and compared on simulated data sets in

(Schmithorst and Holland, 2004).

Group ICA by self-organizing clustering (sogICA)

After pre-processing of the fMRI time-series, ICA decom-

position of each single-subject data set is performed using the

FastICA algorithm (Hyvärinen, 1999). Alternatively, the Infomax

algorithm can be used for the same purpose (Esposito et al., 2002).

All data analysis steps after pre-processing and before brain map

generation were performed in Matlabk environment. Before

entering the core ICA routines, a 3-D mask common to all

subjects’ data sets was defined in the Talairach space and applied to

the image time-series in order to exclude the voxels outside the

brain. Appropriate variables were defined in a Matlabk workspace

and the FastICA Toolbox 2.1 (http://www.cis.hut.fi/research/

software.shtml) was used to set all the parameters of the

decomposition, including dimensionality reduction, orthogonaliza-

tion approach (symmetric or deflationary) and the nonlinearity.

Using PCA, we reduced data sets from all the subjects and all the

experiments to 40 temporal dimensions, and 40 ICs per subjects

were estimated using the symmetric orthogonalization approach of

the FastICA algorithm.

The ICA estimates from each subject were organized in one

single set of components (maps in C and time-courses in A

following the notations of Eq. (2)), with an additional label

preserving the link from the components to the original subject;

those components were then clustered according to their mutual

similarities as follows.

A natural measure of similarity between the estimated

independent components is the absolute value of their mutual

correlation coefficients, in space for the source estimates or in time

for the associated basis time-courses; a flexible similarity measure

between component i and j SM(i, j) based on the classical Pearson

correlation coefficient can be defined by combining the spatial and

temporal correlations of the components in one formula:

SM i; jð Þ ¼ kd CCs i; jð Þ þ 1� kð Þd CCt i; jð Þ ð3Þ
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CCs( j, j) being the spatial correlation coefficient of independent

components Ci and Cj and CCt(i, j) being the temporal correlation

between the two associated time-courses of activation of Ci and

Cj, that is, the column vectors Ai and Aj of the corresponding

mixing matrix estimate obtained from the ICA decompositions.

The k parameter is bounded between 0 and 1 and allows a user-

defined interactive weighting of temporal or spatial similarity of

the components: for instance k = 0.5 implies an equal weighting of

50% spatial and 50% temporal similarity measure. In this study, we

generated spatial ICA estimates and, thus, k = 1 (pure correlation

in the space domain) was used as default, but different (adaptive)

choices for the similarity maybe justified in specific contexts

(Kherif et al., 2003).

The M�M similarity matrix SM is, then, transformed into a

dissimilarity matrix DM as in (Himberg et al., 2004):

DM i; jð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� SM i; jð Þ

p
8i; j ¼ 1; N ;M ð4Þ

This matrix is used as a bdistanceQ matrix in the original space

of the components and represents the input for the clustering step.

In this work, we used an approach to clustering that exploits the

natural organization of components in the subject space (self-

organizing group ICA, sogICA) by using the inter-subject

variability in space of the components as the main dimension of

investigation of the similarity matrix.

A supervised hierarchical clustering algorithm, linking the

components to each other only when differently labeled (i.e.,

belonging to different subjects), was implemented as follows:

A threshold for the maximum bwithin-clusterQ distance among

components is initially set to zero; this threshold is then increased

following a step-wise change from 0 to 1 (the step being as fine as

the minimum distance between two different components in the

whole space of components); at each step, a new cluster is detected

when: (i) the mutual within-cluster distances are below the current

value of the threshold and (ii) the cluster is brepresentativeQ of a
group or subgroup of subjects according to the user’s specification

about the minimum size of the group (with no repetitions). After

cluster formation, the clustered components are excluded from

successive steps. If the cluster includes a number of subjects lower

than the total sample, similar components from subjects not yet

included in the cluster may be integrated into it at later steps of

clustering. Differently from typical clustering methods, there is not

a check on the inter-cluster distance that is left unconstrained.

Following this approach, the user does not specify the number of

clusters for the partition, but only the minimum number of subjects

to be considered for a bgroup-representativeQ cluster: different

searches can be, thus, performed by the user ranging from a default

choice of including all the subjects of the study in a cluster, to a

choice that aims to discover subgroups in the whole subject sample,

either simply related or not to a given external factor.

As for ICA in general, an additional task that requires some

form of interaction by the user is represented by the rank-ordering

of the extracted clusters. The sogICA approach combines three

natural ways of ranking the extracted clusters, through the

minimum, mean and maximum within-cluster distances.

In order to help the user towards the interactive exploration of

the bcurrent levelQ of clustering, as well as to address interesting

intra- and inter-cluster relations, a visual tool has been imple-

mented and evaluated. Each IC estimate from each subject is

plotted as a point on a graph, labeled according to the need of the

group analysis (i.e., simply S1, S2,. . . or M1, F1, M2, F2,. . . for
males and females, etc.) and colored according to the cluster

membership (i.e., one new color per new cluster).

The similarity matrix can be fruitfully visualized in a two-

dimensional space using methods related to multidimensional

scaling (MDS) (Torgerson, 1952). A typical MDS plot is obtained

from the distance matrix in Eq. (4) and follows the fundamental

criterion that the Euclidean distances of the points in the plot are to

be as similar as possible to the original distances in the matrix DM.

In other words, MDS methods look for an optimal configuration of

points in a (for example) 2-D space by minimizing the mismatch

between the distances between the points in the plot and the

original distances in the matrix. MDS was previously used in brain

imaging by (Friston et al., 1996) for the study of intra-individual

functional connectivity and very recently proposed for the study of

entire subjects’ data sets or model-driven activity patterns’

homogeneity in Kherif et al. (2003).

As in a previous application of MDS to neuroimaging time-

series (Himberg et al., 2004), we used Curvilinear Component

Analysis (CCA) (Demartines and Herault, 1997) for cluster

visualization because we have found this variant to be computa-

tionally efficient as well as suitable for this present application.

Traditional MDS methods (Mead, 1992) aim at faithfully

preserving distances in the output by minimizing a cost function

(bstressQ) between the original and scaled distances. The cost

function for CCA can be presented as:

E ¼
X
i

X
j p1

d̂d i; jð Þ � d i; jð Þ
� �2

d g d̂d i; jð Þ
� �ih

ð5Þ

where g(d ) is a function of projected distances d̂ (i,j) and d(i,j) are

the distances in the original space. The cost function E in Eq. (5)

with g = 1 defines a classical MDS method with the braw stressQ
that aims at global preservation of distances. In the CCA, g is a

bounded, monotonically decreasing function, for example, an

inverse exponential function. Thus, the distances that are short in

the projection have more weight in the stress of the CCA. This

feature is expected to favor the local topology of points in the

projection and makes CCA strictly related to self-organizing map

(SOM) theory (Kohonen, 1989). Nonetheless, the CCA differs

from SOM as it does not quantize the data and it is not confined to

a regular grid in the output space.

Modified routines from the SOM toolbox 2.0 (Vesanto et al.,

2000) for MatlabTM were used for the implementation of the MDS

visualization (http://www.cis.hut.fi/research/software.shtml).

Since the original distances in DM are obtained from a huge

number of dimensions, only a certain amount of the total variance

contained in the high-dimensional similarity matrix will be

correctly represented in the two-dimensional configuration, and

geometrical distortions will be likely to occur in the plot.

Nonetheless, when the points are plotted in a Euclidean subspace,

the resulting distribution will tend to capture, although in a

parsimonious way, the main structure of the comparative similar-

ities (Friston et al., 1996). As a consequence, it is to be expected

that the generated plot will be a trustworthy representation of the

components’ similarities at least at the highest level of the

clustering exploration when the corresponding entries of the

similarity matrix explain most of the variance of the similarity

measure. As far as the resulting distribution of points will capture

this structure, the MDS plot display will function as an interactive

visual tool for the evaluation and selection of group-representative

clusters: relevant clusters in the original high-dimensional and
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more informative space of the components are, thus, expected to be

projected as geometrically consistent clusters of points in the low

(2)-dimensional space, while less dense cluster geometries may

suggest further investigation of the actual homogeneity of the

components’ structure across the subjects included in the cluster.

The clustering procedure as well as the MDS projection can

eventually be iterated many times by changing the minimum

number of subjects required to define the cluster, in order to

discover possible subgroups.

Once the user has retrieved the estimates belonging to a cluster,

the average component of this cluster is computed and, henceforth,

assumed as the group component representative of the cluster. A

random-effects group component can be easily generated by

dividing voxel-wise the mean and the variance across subjects of

the clusters’ component values (Calhoun et al., 2001b).

Definitely, the proposed approach, as an ICA method that

produces a proper sum of the separated independent components

for the imaging result of fMRI data processing, can be put in the

context of hybrid or alternative ICA approaches (Chen and Yao,

2004; McKeown, 2000).
Results

Fig. 2 shows the plots of the minimum, mean and maximum

(spatial) similarity distances for the six subjects clusters obtained

from the 240 components extracted in each of the two experiments.

All six subjects contributed to all the clusters. For these plots, the

distances have been ordered according the minimal distance, but

the mean and the maximum distances are shown as well to provide

a general description of the quality of all the clusters. In the

following, we show the graphs, the maps and the time-courses

corresponding to the first six clusters according to the minimum

intra-cluster distance, in order to highlight the tightest structures in

the performed clustering.

Fig. 3 shows the cluster plot for experiment 1 as it appears for

the first six clusters selected. For all six clusters, except cluster 1,

the random-effects group components have been projected onto the

inflated cortical surfaces of the MNI template, thresholded at z =

1.65 (P b 0.05) with a color code for the activated vertices

corresponding to the color of the cluster in the plot. Fig. 4 shows

the same five clusters (from 2 to 6) in terms of individual inflated
Fig. 2. Plots of the intra-cluster similarity measure (minimum, average and maxim

minimum intra-cluster measure. All six subjects contribute to all the clusters. Lef
maps. A relatively low threshold was used to produce a more

comprehensive view of the spatial distribution of the components.

In order to facilitate the 3-D inspection of the areas of activation,

bottom (occipital) views are presented for the bvisualQ components

(cluster 2 and 4), parietal views for clusters 2, 3, and 5 and a frontal

view for cluster 6. The average time-course of each cluster is

plotted and reported near to the maps in Fig. 3 and (in bold)

superimposed on the individual component time-courses in Fig. 5.

Cluster 2 is easily classified as the expected consistently task-

related (CTR) component: as expected a large bilateral region is

active in this component, including the primary retinotopic areas in

all six subjects (Sereno et al., 1995); the time-course of activity is

highly correlated to the task. The other four clusters exhibit a high

(3 and 5) to intermediate (4) or negligible (6) correlation with the

task, and can be associated, respectively, to different spatially

independent processes that are transiently or non-task related.

The random effects map of cluster 4 shows a bilateral region of

activation in the medial part of the occipital lobes. The time-course

is transiently task-related (TTR), with most of the signal change

time-locked to the onset and the off-set (transitions) of the visual

stimulation. The spatial layout of the activation map resembles a

foveal representation of the visual stimulus as presented in (Tootell

et al., 1997). The presence of this source may be related to the

stable presence of the fixation cross that causes the perception of

abrupt eccentricity change in the retinal stimulation. Similar effects

were also reported in previous ICA studies with similar fMRI

visual paradigms (Calhoun et al., 2001b, 2003).

Clusters 3 and 5 exhibit minimally overlapping posterior

cingulate cortical (PCC) activity of different extensions: in cluster

3, a smaller PCC activity is accompanied by an inferior parietal

bilateral activity, possibly related to parietal eye field (PEF) activity

(even if located inferior than usually reported (Pierrot-Deseilligny

et al., 2004)), while in cluster 5, the layout of the component is

more posterior and wider. Overall, the layout of cluster 3 is highly

reminiscent of a spatial pattern previously found in passive

(resting) state experiments (Raichle et al., 2001). The different

contribution of this inferior parietal activity to clusters 3 and 5 is

also consistent and evident in the individual maps of Fig. 4. Lateral

spots are also present in cluster 5 (see the individual maps in Fig.

4), but location and laterality are less spatially stable and consistent

across subjects (this is also somehow suggested by the more

extended geometry of cluster 5 in the MDS plot). Since the eye
um) as a function of the cluster index after re-ordering on the basis of the

t: Experiment 1. Right: Experiment 2.



Fig. 3. Cluster plot as obtained by MDS projection using CCA for the ICA decomposition in Experiment 1 with the first 6 clusters displayed. The random-

effects activation maps (z = 1.65) and the average (normalized) time-courses are reported with colors according the cluster plot. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)
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movement activity was not externally controlled, the interpretation

of these clusters can only be hypothetical. The detected functional

connectivity patterns may nonetheless be ascribed to task-induced

eye movements or attention and impulse control distributed

processes related to the visual task and known to be served by

multiple cingulate regions (Peterson et al., 1999). In cluster 5, the

limited spatial consistency of the parietal components hides them

in the group representation.

The average time-course of cluster 6 is poorly task-related and

dominated by low temporal frequency components, and suggests

the interpretation of the source process as a much slower

modulation effect of the baseline activity: the main focus of the

activity of cluster 6 is located again in a midline cingulate region,

specifically in the ventral anterior cingulate cortex (vACC), and its

signal is slightly negatively related to the task. Despite the low

correlation with task and the high intersubject variability (Duann et

al., 2002) of the component time-courses (see Fig. 5), the

individual spatial patterns exhibited a surprisingly high regularity

across all the subjects of the study (Fig. 4). Due to its spatial

distribution, this vACC activity is likely to be ascribed to attention

shifts, rather than to the so-called default mode of attention-related

brain function (Raichle et al., 2001). Nevertheless, the vACC

activity exhibits a nice degree of spatial similarity with the vACC

activity reported by Greicius et al. (2003) in a resting state study.

For cluster 6, the MDS plot in Fig. 3 shows a dislocation of the ICs

from subjects S3 and S4, and, thus, a possible deviating structure

of the patterns: a detailed inspection of the individual maps

confirms a slight dislocation of the ACC activity foci for S3 and S4

in terms of the z coordinate in the Talairach space (more superior

foci in S3 and S4 and more inferior in S1, S2, S5, and S6).
Despite the highest spatial intra-cluster similarity, all the

components belonging to cluster 1 exhibited the least bfocalQ
spatial structure in their respective individual decomposition. A tri-

planar slice projection of positive and negative values of this

cluster is presented in Fig. 3: the color-scaled representation

between z = 0 and z = 8 highlights the special structure of its

spatial distribution over the whole brain mask, with voxels of the

same tissue type (for instance white matter) preferentially grouped

together at the highest values of the component. A similar cluster

of components was consistently obtained in experiment 2 (see

Figs. 6 and 7) as well: for each individual, the estimated kurtosis of

these component always corresponded to the lowest value among

all the component kurtosis values although they always contributed

for the maximum percentage of the total variance explained by all

the estimated components. In order to rule out the possibility that

cluster 1 was generated by a failure of the FastICA algorithm to

converge sufficiently, we repeated the ICA estimation step on the

same data sets by using the infomax algorithm, but found again the

bcluster 1Q with the same general character. These observations

suggest that these components are not due to a problem of

estimation but rather may represent a sort of bresidualQ component

implied by the same ICA model. In fact, since the basic ICA model

attempts to explain and decompose all the variance, the sources

that, because of their distribution, are less fitted to the statistical

model will tend to stay confined in one single (residual)

component, with a low-kurtosis map. Interestingly, components

with a structure similar to that of cluster 1, roughly discriminating

voxels on the basis of an average tissue-specific signal change,

were extracted from perfusion MRI time-series by Kao et al.

(2003). The high degree of similarity across subjects of these



Fig. 4. Individual maps for the five of the six clusters (2–6) selected from Experiment 1.
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components that make them robustly extracted in sogICA may be

ascribed to the smoothing, normalization, and masking procedures

that are common to all of the subject data sets that undergo the

FastICA decomposition, and that bshapeQ both signal and noise of

the data set in the same anatomical space.

In Fig. 6, we report the impact on the subject-level bgroupingQ
of the components of the injection of additive Gaussian noise

(AGN) in one subject’s data set (S1) from experiment 1.

Specifically, we report the mean intra-cluster similarity distance,

for the CTR and (after averaging) for a different number of

clusters, at different levels (standard deviation) of injected AGN

(25%, 50%, and 100%). In this simulation, as in McKeown et al.

(1998a,b), we assumed the CTR component as signal (btruthQ) and
estimated a bbaselineQ noise from the time-courses of the voxels

that fall within the lowest quartile of the distribution. As also

McKeown et al. (1998a,b) did, we observed that the individual

decompositions of the modified data sets were highly robust with

respect to AGN and show in Fig. 6 how the slight loss of accuracy

observed in the CTR component of subject S1 did not significantly

affect the subject-level clustering of all the CTR components.

Fig. 7 shows the MDS plot and 6 clusters from experiment 2.

The cortical surface projections of the maps, thresholded at z =

1.65 are shown with the color code of the activity corresponding to

the colors of the clusters in the MDS plot.

Clusters 5 and 6 correspond to the expected CTR components

for this paradigm (left and right hemifield stimulation, respec-

tively). The inspection of the midline brain activity allows to
recognize that clusters 3 and 4 in experiment 2 correspond,

respectively, to clusters 5 and 3 in experiment 1 in Fig. 3, even if

lateral spots in cluster 4 are less symmetric in their bilateral

locations. Cluster 2 in experiment 2 corresponds to cluster 4 in

experiment 1.

In order to test the sensitivity of the method to an increased

intersubject variability, we considered the interesting case when

one subject does not have one component that the other subjects of

the groups have (i.e., this subject did not perform one of the two

tasks for some reason). To this purpose, we repeated the

decomposition of subject S1 after having artificially modified the

input data set in order to alter as much as possible one single

component (namely the CTR components belonging to cluster 6 in

Fig. 7). This was done by injecting Gaussian noise in the data of

standard deviation equal to the that of the original signals in those

voxels that were maximally active in the chosen component (z N 5):

this way, we substantially affected the spatial layout of the chosen

component without altering the layout of the other extracted

components whose patterns remained practically the same com-

pared with the previous decomposition on original data. Fig. 8

reports the result of the new clustering and the plot for a new CCA-

based MDS projection of the estimates. All the clusters are

practically identical to Fig. 7, with a slight difference in the layout

of cluster 6 where the spatial power of the component from subject

S1 was artificially reduced. The result of the projection clearly

warns against the possible inhomogeneity of the group caused by

the deviating component of subject S1. A further deviation of



Fig. 5. Individual component time-courses for the six clusters selected from Experiment 1. The mean time-courses, as representative time-courses of the cluster

components, are shown in bold superimposed on the individual time-courses.
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subject S3 in cluster 2 is noted as well that was also present in the

projection of Fig. 7.
Discussion

We have presented a new method for the extraction and

evaluation of fMRI group activation maps through the application

of ICA to single-subject fMRI data. We have applied it to an

illustrative visual paradigm in order to verify the capability of the

method to extract blindly meaningful patterns of brain activation in

an fMRI group study. For this purpose, the natural, self-organizing

tendency of individual components to form clusters in the subject

space according to simple measures of mutual similarity of their

spatiotemporal structures was utilized. In this work, the spatial

correlation was used for the analysis, although a general combined

measure is also suggested for those experimental settings where

more temporal synchrony across subjects is to be expected (Bartels

and Zeki, 2004).

In all the experiments, we were always able to blindly identify

one (full field stimulation) or two (hemifield stimulations)

consistently task-related components activating the primary visual

areas in the occipital lobe in all six subjects, resulting in

sufficiently accurate random-effects group maps.

A bilateral transiently task-related visual component was

identified in both experiments and in all the subjects based solely

on the high level of inter-subject similarity of the corresponding
pattern. A similar component was already reported in previous ICA

studies with a similar paradigm (Calhoun et al., 2001c, 2003) and

was related to the transitions of the visual paradigm by inspection

of the time-course of activation.

The cluster plots obtained by MDS projections of the individual

component estimates proved to be a useful tool to address

differences in the individual components that the algorithm blindly

classifies as homologue components according to the similarity

measures. Although affected by the inevitable distortion of using a

very low number of dimensions for the geometrical representation,

the MDS projection provided by CCA exhibited a fairly stable

performance and its display with the labeling according to the

cluster membership proved to capture a reasonable amount of the

variance (2.3% for experiment 1 and 2.7% for experiment 2) in a

way that intercluster similarity as well as within cluster outliers or

deviating components could be detected. The check for the

homogeneity of the cluster is a useful step to improve the cluster

representative maps by using subgroups and can represent a

preliminary step for the ICA decomposition of aggregated data sets

restricted to a more homogenous sample of data sets. The choice of

presenting only six clusters was exclusively due to display

purposes. Limiting the visualization to the bfirstQ six clusters,

corresponding to the six best ranked clusters in terms of bgroup
representativenessQ, allowed a quick inspection of the graph in

conjunction with the associated component patterns. More clusters

may be displayed and presented by the user, with the sole

limitation that each newly appearing cluster, whose members are



Fig. 6. Robustness of sogICA to additive Gaussian noise (AGN). Upper panel: (left) effect of AGN injection on a task-related signal is illustrated; (right)

comparison in terms of mean intra-cluster similarity distances of the results at the investigated levels of AGN. Lower panel: cluster plots for three case of

injected AGN in subject S1.

Fig. 7. Cluster plot as obtained by MDS projection using CCA for the ICA decomposition in Experiment 2 with the first 6 clusters displayed. The random-

effects activation maps (z = 1.65) and the average (normalized) time-courses are reported with colors according the cluster plot. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Cluster plot as obtained by MDS projection using CCA for the ICA decomposition in Experiment 2 after the data set from S1 was modified by reducing

the spatial power of one of the two CTR components (the blue one). The first 6 clusters are displayed. The random-effects activation maps (z = 1.65) and the

average (normalized) time-courses are reported with colors according the cluster plot. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)
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expected to be more and more widespread on the plane of

projection, will make the visualization more difficult to interpret.

The visual inspection of both temporal waveforms and spatial

maps suggests the success of the method in grouping the correct IC

estimates from multiple subjects for the expected sources of

bilateral visual activation. Thus, not only the method represents a

valid stand-alone alternative to the ICA approaches based on

aggregate group data sets, but it is also capable of selecting blindly

those interesting patterns that form relevant clusters in the subject

space. In this sense, the proposed approach also acts as a tool for

the rank-ordering and the parsimonious selection of those

components that are relevant for the group: using the intersubject

similarity for the selection does not require any assumption about

the expectability of temporal responses or the anatomical layouts of

the components. Those aspects render the sogICA framework

specifically interesting for complex naturalistic fMRI settings like

those presented by Hasson et al. (2004) and Bartels and Zeki

(2004). In these studies, outstanding evidence has been produced

of the striking level of voxel-by-voxel activity synchronization

existing between different human brains and of how the resulting

subject-to-subject similarity can be the crucial factor for the

generation of meaningful fMRI group patterns.

Other applications may be of interest, when there is partial

knowledge or even a simple suspicion about possible clustering of

the sampled subjects with respect to some external analogue

measure (e.g., performance or other phenotypic measures) for

which the classification in discrete groups is not trivial. For what

concerns the use of genotypic information with brain imaging data

(Hariri et al., 2002), reverse statistical analysis from subgroup
patterns to specific polymorphisms may be potentially addressed

by the investigation of the self-organizing clustering of the

components. In fact, the user may search for specific cluster

geometries that suggest a pattern-based (blind) grouping and, thus,

a subject classification, a nice property for an improved character-

ization of the differences between a population of patients and

healthy subjects.

In principle, both the similarity measure and the clustering

method can be flexibly and freely improved in future development

of the sogICA framework, possibly according to the type of data or

the experimental design: different types of group inference may be

addressed by different measures of mutual similarity that exploit

single or multiple combined features of components. In this

introductory paper, we used the most natural and general measure

of similarity between the estimated independent components, the

absolute value of their mutual spatial correlation coefficients, and

suggested the use an MDS-based plot to supervise the clustering of

the components: the cluster analysis through the self-organizing

mapping of the components in a simple bidimensional plot enables

the use of the spatial proximity of the components as a rapid,

although approximate, visual estimate of similarity. The clustering

of the estimated components is expected to yield two kinds of

crucial information: first, the presence of homologous sources of

brain activity in different subjects that possibly code for a robust

experimental factor; second, the degree of relative variability of

this effect across the selected subjects and the possible confound-

ing effects that interacts with the identified and selected ones. A

compact, tight cluster emerges when a given source is robustly

extracted in different decompositions from different subjects,
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suggesting the presence of a similar phenomenon in all the subjects

of the sample. More sparse clusters will suggest effects that are

more variably measured in the sample; moreover, multiple adjacent

disjointed clusters may suggest bsubgroupQ association or defi-

nition for a further between-group analysis step.

In conclusion, this study demonstrates the feasibility and

addresses the potential of using single-subject ICA estimates for

an fMRI group analysis by exploration of the self-organizing

clustering of individual components in the subject space. Since we

used the conventional ICA generative model for single-subject data

sets and already validated algorithms for ICA estimation, we did

not use simulated activation data but tested the approach using real

activation experiments with an experimental design ensuring one

or two concurrent sources of brain activity. More complex

experimental settings as well as a tailored simulation framework

will improve the method in future application and method studies.
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