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Abstract

We propose that an important part of planning (model-
based reinforcement learning) in a biological agent is
to use information on the statistical structure of near-
optimal action sequences. Such statistical information
can be collected simply by observing the action se-
quences that the agent has actually performed, assuming
that the agent only performs action sequences that are
the most optimal ones in a search set. Learning such
a prior model for behaviour can be used to direct the
search of action sequence to the most relevant parts of
the action sequence space, and thus enables more effi-
cient planning. The resulting “behavioural priors” are
the behavioural counterpart of perceptual priors that
are widely used in Bayesian models of perception.

Introduction
An agent must continuously decide which action to take.
Actions move the agent to new states, and the states
bring rewards (or punishments, which are considered
negative rewards here). The agent is supposed to choose
its actions so as to maximize the sum of obtained re-
wards.

A frequently used framework for learning to act based
on rewards is reinforcement learning (RL). A well-known
problem with the basic formulation of (model-free) RL
is that the reinforcement function is assumed to remain
constant as a function of time. This may be quite un-
realistic for an agent since the locations of food, water,
sexual partners and other reinforcing stimuli do change;
in fact, they are often consumed and thus disappear from
the environment. In particular, it can be argued that the
reinforcements change more quickly than other parts of
the environment, including the set of possible states and
actions and the transition rules from one state to another
(Foster and Dayan, 2002; Engel and Mannor, 2001). Ba-
sic model-free RL methods need to learn the new policy
from scratch if the states where reinforcements are re-
ceived change.

An alternative approach for action selection an agent
is based on planning, or model-based reinforcement
learning. Here, it is assumed that the agent has a model
of the world and its interaction with the world. In a ba-
sic approach, the agent considers a number of different
action sequences that it might take in the present state.
The agent then predicts the consequences of those ac-
tions, and evaluates the reinforcement signals associated
with each action sequence considered, finally choosing
the action sequence with the highest (expected) reward.

Planning is a classical problem in artificial intelligence,
although it is usually formulated by defining a single
goal state instead of a reward function. The fundamen-
tal problem in planning is that the number of possible
action sequences grows exponentially as a function of
the number of future time steps considered, and thus
planning many action steps in advance is computation-
ally impossible. Modern neuroscience models emphasize
dynamic programming, i.e. iterative computation of the
future “value” of all states, as proposed in model-based
reinforcement learning literature.

However, in the case of a biological agent or “animat”,
the planning problem might be actually much easier be-
cause the agent is often faced with similar action se-
lection problems many times over its lifetime, and thus
its action sequences have strong regularities. Thus, the
agent could learn from its experience, as well as from its
evolutionary history. This is in stark contrast to clas-
sical planning problems where the environment may be
unique for each planning problem to be solved. For ex-
ample, some work in RL has proposed methods for im-
proving the performance of an agent by learning chunks
of actions, called macroactions (Iba, 1989; McGovern,
2002), options (Sutton et al., 1999), or skills (Thrun and
Schwartz, 1995).

Here we propose a simple framework for learning to
plan future actions more efficiently. The agent observes
the sequences that it has previously chosen, and learns a
statistical model of the sequences — a behavioural prior
model. Using statistical models for learning of environ-
mental regularities has been a very succesful approach
in perception (Knill and Richards, 1996; Olshausen and
Field, 1996; Hyvärinen and Hoyer, 2000), and enables
the application of the highly sophisticated machinery of
Bayesian inference, which is the main motivation for our
work. The effect of learning is then to bias the search
towards sequences that have the same statistical regu-
larities as the previously chosen ones. This enables the
planning system to concentrate on more meaningful ac-
tion sequences, thus searching the space of possible ac-
tion sequences more efficiently, and eventually increasing
the length of planned sequences to look further ahead.
We suggest that this enables the agent to obtain larger
average rewards. The framework includes learning of
macroactions as a special case, and it can be incorpo-
rated in schemes that use a value function approximated
by methods related to dynamic programming.



Basic Setting

At every time point t = 1, 2, . . ., the agent finds itself
in a state s(t) which belongs to the discrete state space
S = {s1, s2, . . . , sn}, and has the choice of a number of
actions a(i), i = 1, . . . , I chosen from the set of actions
A. Every action changes the state in a deterministic way.
(For simplicity, we don’t consider random state changes,
but they would not change the basic idea.). Every action
gives a reward which depends on the combination of the
present state and the action taken therein. The agent
attempts to obtain maximum reward.

The agent has a perfect model of the environmental
dynamics, i.e. what is the next state and the obtained
reward when taking a given action in a give state. In
principle, it could then compute the values of all states,
or the Q-values 1 of all state-action pairs, but it is as-
sumed that the rewards change too fast for this to be
computationally useful. Thus, the agent uses explicit
planning to choose actions.

The agent has a planning system that searches the
space of action sequences or plans (a(i1), a(i2), . . . , a(in))
of length n. It is assumed that the agent needs to plan its
actions a relatively large number of time steps ahead in
order to find meaningful action sequences. This means
that n is fixed to a relatively large value so that an ex-
haustive search of the plan space An is not possible due
to excessive computational requirements. Long plans are
necessary, for example, if rewards are sparse, that is, the
reward is zero for most states, regardless of action taken.
We assume this in the following.

Since exhaustive search is not possible, the agent uses
a stochastic search strategy that consists of sampling a
number of candidate plans from the space An of plans
of length n. In the basic case, the agent simply sam-
ples plans so that each plan in the space An has equal
probability. For the sampled plans, the agent evaluates
the reward to be obtained by following them. The plan
leading to the largest reward is then executed. The agent
then finds itself in a new state, and starts a new plan-
ning process. See, for example, (Kearns et al., 1999) for
a related approach.

Learning to Find Better Plans

Learning statistics of executed plans

We propose here that the planning system can learn from
experience to constrain the search to a smaller set of
plans that are likely to be better than others. This is
based on the assumption that good plans have statistical
regularities in the sense that any action a(i) is typically
followed by certain actions and not others. That is, we
can use preceding actions in a good plan to predict the
following actions. A “good” plan means, loosely, a plan
that gives an above-average reward.

Thus, we learn to associate a probability to each plan
in the plan space An: It is the probability that the plan
is “good”. How do we learn the probability that a plan is

1That is, expected discounted future reinforcement when
performing a given action in a given state and following the
optimal policy thereafter (Sutton and Barto, 1998)

good? Since the agent considers many plans before exe-
cuting the best among them, we assume that all executed
plans are good. Thus, the probabilities are learned by
building a statistical model of the executed plans. This
learning is possible in an unsupervised way. In Bayesian
terminology, these probabilities can be called behavioural
priors.

Improving planning

The statistical model of executed plans, which is based
on experience, is then used in planning of future actions
in the following way. All candidate plans are sampled
from the space of possible plans according to the prob-
abilities given by the statistical model. Thus, the sys-
tem considers only plans which follow the same statisti-
cal regularities as the plans that were previously found
best. This speeds up planning because it constrains the
search to useful parts of the plan space. This learning is
domain-independent and can be applied on any kinds of
actions.

If the model is such that it can be naturally ex-
tended from n-dimensional to m-dimensional sequences,
the computational saving due to learning can be used to
extend the time horizon of the planning.

Markov models

A simple and useful concrete model that we can use is
Markov models. Markov models are simple to estimate
(at least for low model orders) and sampling of new plans
is very easy, at least if the action space is discrete. Let
us denote by a(t) the action taken at time step t.

The k-order Markov model basically predicts the cur-
rent action a(t) given preceding actions a(t − 1), a(t −
2), . . . , a(t − k). The parameters of the model consists
of the probabilities P (a(t)|a(t − 1), . . . , a(t − k)). Typi-
cally, Markov models are first-order, i.e. a(t) is predicted
simply by its predecessor a(t − 1).

The probabilities can be simply learned by just count-
ing how often an action is followed by another action
(in the first-order case) or a sequence of k preceding ac-
tions (in the general case). The Markov model also needs
the initial probabilities. For a k-order model, we need
a probability distribution of the k initial actions taken.
Again, such probabilities can be learned by just counting
the occurrences of different initial action sequences.

Sampling (generation) of data from the model is
straighforward: first, pick up a sequence of k initial
actions from the distribution of initial sequences, and
set a(1), . . . , a(k) equal to the obtained sequence. Set
t = k + 1. Recursively, pick up a new action from the
conditional distribution P (a(t)|a(t−1), . . . , a(t−k)), in-
crease t by one, and repeat until the action sequence is
as long as desired.2

Macro-actions (Iba, 1989; McGovern, 2002) can be
easily incorporated in the framework. They correspond

2Alternatively, the k first actions could be sampled by
using lower-order Markov models, so that first a(1) is picked
randomly form the distribution of initial sequences, then a(2)
is sampled using a 1st-order Markov model, and so on.



to a statistical model of plans that is based on recod-
ing certain typical sequences as new actions by includ-
ing them in the action space A. After such recoding, we
can build a Markov model for the new, extended set of
actions.

Combination with Dynamic Programming

Although in the preceding section we proposed learning
behavioural priors in a basic framework where planning
is done by sampling from a distribution over action se-
quences, the same idea carries over to the setting where
more sophisticated planning methods are used. In par-
ticular, methods based on dynamic programming and
value iteration can be easily combined with behavioural
priors.

One of the key ideas in dynamic programming, and
many RL methods, is that the agent only needs to con-
sider actions one step ahead, since the value function
contains all relevant information about the effect of later
actions. However, this is only true if the value function
is known exactly, which is not true during learning or
if the reward structure changes — which was one of our
motivations in the first place. As soon as we assume that
the values assigned by the agent to different states are
not necessarily correct, it is useful to combine planning
with RL methods (Daw et al., 2005), and behavioural
priors become useful.

In fact, the situation where the value functions are
only known approximatively is formally closely related
to the present case. The computed value function can be
used as reinforcement in the framework described above
(where only the reinforcement in the final state of the
sequence is obtained). If the agent plans how to get to
states having the maximum value, it will move towards
the goal, approximately. Learning behavioural priors can
be performed in the same way as above, and they will
give meaningful sequences to evaluate.

There are many different reasons why the computed
values could be far from the true values of the state (for
the optimal policy). One case is where some reinforce-
ment learning has been performed, but the value itera-
tion has been carried out incompletely due to computa-
tional restrictions. Another possibility is that the rein-
forcements may have changed without the agent know-
ing it. Also, if the states are not discrete but points in a
multidimensional real space, some function approxima-
tion scheme needs to be used to approximate the value
function, and errors are likely to occur in the approxi-
mation. In all these case, the computed value function
gives unreliable information on which action is the best
to take. Combining the information they contain with
the information given by behavioural priors would be
very useful.

In the case of approximately known value function, us-
ing behavioural priors has a very similar function to per-
ceptual priors in Bayesian theories in perception: since
the sensory input is noisy and incomplete (correspond-
ing to inexact value function), prior information can help
infer the real values.

Deterministic planner 32.1
Random stochastic planner 53.7
Bayesian 1st-order planner 84.1
Bayesian 2nd-order planner 84.4

Table 1: Percentage of cases where each planner was the
best in the first simulation. There were many ties so the
percentages don’t add to 100%.

Simulations

Planning by simple forward search

We made simulations in a very basic gridworld of 20×20
states. The state of the agent consists of x and y co-
ordinates of integer values, and the actions are “left”,
“right”, “up” and “down”. Rewards are dependent on
the states only: the reward values for each state are ob-
tained by taking a random variable uniformly distributed
in [0, 1] and raising it to the 10th power. This gives very
sparse rewards which are practically zero for most states.
Reward was only given at the state where the action se-
quence terminated.

The simulations can be thought in terms of foraging
where the agent moves in a 2D environment, and then
implicitly performs an “eat” action at the end of every
sequence. The agent tries to eat as much as possible.

First, we used deterministic full search in the action
space. The depth of planning was fixed to 4 time steps
(actions). Starting from a random initial point, all pos-
sible 44 = 256 plans were considered and the best was
chosen for execution. This was repeated 10,000 times,
each time from a random initial position (state).

Both a first-order and second-order Markov models
were learned from the sequences chosen by the deter-
ministic planner. These were used as behavioural priors.
Random planning based on sampling from the priors was
then performed. Here, the action sequence length was
fixed to 8, which gave a large space of 65536 action se-
quences to choose from. The sampler only considered
a small number of choices. The number of considered
candidate plans was fixed to 256 which was equal to the
deterministic planning case to allow a fair comparison.
The same 10,000 initial states as with the deterministic
planner were used.

As another baseline comparison we considered the
case where the planner takes 256 completely random
sequences (uniform initial probabilities and transition
probabilities from action to another) of length 8 and
chooses the best one. This means planning parameters
were similar to those one used with behavioural priors,
but the statistical structure of typical action sequences
was not used.

We computed the percentage of cases where each of
the planners performed the best in terms of obtained
reward. The results are shown in Table 1.

We see that the best performance was clearly obtained
by the Bayesian planners. Going to a 2nd order Markov
model did not really improve the performance.

What is the structure learned by the 1st-order Markov



model? The transition matrix P (a(t)|a(t−1)), when the
actions are in the order (“left”, ”right”, ”up”, ”down”)
has the following form:









0.62 0 0.19 0.19
0 0.60 0.20 0.20

0.19 0.22 0.59 0
0.20 0.20 0 0.60









This shows two kinds of structure. First, a very simple
and intuitive structure: after going up, one should not
go down and vice versa, after going right one should
not go left and vice versa. Second, there is a strong
tendency to repeat the same action in a sequence. This
is not intuitively so obvious, but it is due to the fact that
by repeating the movement in the same direction, the
agent can go farther. Otherwise, it could take sequences
such as “left”,”up”, “right”, “up” which does not really
get the agent any further than two “up” actions, but
consumes two more actions.

Planning combined with dynamic

programming

In the second simulation, we combined simple search
with dynamic programming techniques. The motivation
was that the dynamic programming was incomplete and
provided only approximations of the true values as dis-
cussed above, and thus it was useful to plan many steps
ahead (Daw et al., 2005).

The setting was the same kind of gridworld as in the
preceding simulation. Now, there was one goal state (in
the middle, which bounced the agent to a new random
initial position) and the agent performed 10,000 steps of
Q-learning. The Q-values were initialized as small ran-
dom values which provided a limited exploration mech-
anism in the initial stage of the learning, but the agent
always chose the action greedily with no randomness.
The step size was 0.5 and the the discount factor 0.9.

The obtained approximation of the optimal value func-
tion is given in Fig. 1. Clearly, the learning did not find
a very good approximation of the optimal value func-
tion due to a limited number of steps, as well as the very
primitive learning method that included no proper ex-
ploration or such sophisticated mechanims as eligibility
traces.

Now, we consider an agent which is only given this
rough approximation of the optimal value function. (The
value of the goal state is further defined to be infinite).
Initially, the agent is place in a random position on the
grid. The agent plans a few steps ahead (just as in
the previous section) to reach a state of maximum value
function, and then executes that plan. This is repeated a
maximum of ten times, starting from the state where the
agent ended up due to execution of the previous plan, or
until the agent reaches the goal state. After ten plans,
or after reaching the goal state, a new random initial
state is chosen, because often the agent gets stuck and
does not move anywhere. The performance is assessed
by counting how many times the agent reached the goal.

We used the same four planners as in the preceding
section for this planning problem. First, we used the de-

Deterministic planner 2,422
Random stochastic planner 3,952
Bayesian 1st-order planner 4,961
Bayesian 2nd-order planner 4,733

Table 2: Number of times the agent reached the goal for
different planning methods in the second simulation.
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Figure 1: The approximation of the optimal value func-
tion, given in greyscale values, used in the second simu-
lation. The approximation is rather bad, which is why
it is useful to plan several steps ahead.

terministic one and learned the behavioural priors from
the sequences chosen for action by that planner.3

The results are given in Table 2. We see that again,
the best results were obtained using behavioural priors,
modelled as a first-order Markov chain. The learned
priors (not shown) were essentially the same as in the
preceding section. Interestingly, the 2nd-order Markov
model had a performance inferior to the 1st-order model.

Discussion

Related work

Learning motor synergies (Tresch et al., 2006) is closely
related to our framework. Obviously, the planning ac-
tivities can happen on the level of motor control as well.
An important difference to our work is that the syner-
gies in (Tresch et al., 2006) considered postures in each
time point separately, whereas we emphasize the tempo-
ral aspect of planning. However, these two aspects are
both easily combined in the framework of behavioural
priors. If the action space is a n-dimensional real space,
the behavioural priors can be defined on sequences of
n-dimensional vectors.

In addition to macroactions already discussed above,
researchers in RL have proposed another framework
for learning temporally extended actions called options
(Sutton et al., 1999). Options are not merely fixed se-
quences of actions but action selection subsystems that
are activated based on some initial conditions, and in-
clude a stopping criterion. Options can therefore pro-

3In these simulations, there were also many cases where
the planner was not able to find a better plan than to stay in
the same place. Plans which ended in the initial state were
excluded from the plans used in learning priors.



duce arbitrarily long action sequences. A probabilistic
interpretation of options, which integrates them in our
framework, is an important question for future research.

Case-based planning (Hammond, 1990) provides an-
other closely related framework, together with related
work in robotics (Haigh and Veloso, 2000) and AI (Perez
and Carbonel, 1994). Our work is different from that
framework in that the priors are in the behavioural space
only and do not depend on the states; furthermore, we
provide a probabilistic framework.

Related work using probabilistic (Bayesian) methods
for planning include (Dearden et al., 1999; Attias, 2003).
In particular, the methods in (Dearden et al., 1999), as
well as (Daw et al., 2005) give estimates of the uncer-
tainty of the value function approximation, and these
could possibly be used for determining the optimal depth
of planning in a manner similar to (Daw et al., 2005).

Another application of priors on actions or behaviour
is in observation of action sequences of other agents in a
multi-agent environment (Antonini et al., 2006). This is
also an essential subtask in imitation learning. Also, per-
ception of agency (Wegner, 2002) or may also be based
on a statistical model of typical action sequences.

Assumption of world models

Planning requires a model of the environment. This may
be a drawback with respect to some model-free reinforce-
ment learning methods such as Q-learning (Sutton and
Barto, 1998). However, one can argue that it is not un-
reasonable to assume that many animals have such an
internal model, and many relevant computational neuro-
science models are based on a world model (Dayan and
Abbott, 2001). In fact, one of the functions of conscious-
ness might to enable model-based planning in a kind of
virtual reality (Revonsuo, 1995).

Conclusion

We have proposed a framework for action planning based
on importing the concept of priors from Bayesian theo-
ries of perception. The idea is that action sequences
have statistical regularities, and these regularities can be
learned. The regularities can be used to improve plan-
ning in a planner that samples possible action sequences
from the distribution given by the prior. Thus, the sys-
tem learns to bias the search towards useful sequences
and to plan more efficiently.
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