
Unsupervised learning of an embodied representation

for action selection

Aapo Hyvärinen
Dept of Computer Science and HIIT

University of Helsinki, Finland

Abstract

We propose a principle on how a computational agent
can learn the structure of a classic discrete state space.
The idea is to do a kind of principal component anal-
ysis on a matrix describing transitions from one state
to another. This transforms the space of discrete, com-
pletely separate, states into a dimensional representa-
tion in a Euclidean space. The representation supports
action selection, ideally turning action selection into a
trivial problem: the route to a goal state can be directly
obtained from the representation. Thus, the computa-
tions typically performed by dynamic programming and
reinforcement learning are largely replaced by learning
the representation. This has the benefit that the rep-
resentation is not dependent on which state happens to
be the goal state; thus, change of goal does not neces-
sitate re-learning, which is in stark contrast to classic
reinforcement learning theory.

Introduction

How to find the best course of action? This is the
fundamental computational question in embodied cogni-
tive science. Typically, the problem is considered in the
framework of reinforcement learning (Sutton and Barto,
1998; Dayan and Abbott, 2001). In the basic setting, the
agent finds itself in a state, in which it has a number of
actions available. The agent selects an action, and de-
pending on which one it selected, it receives a reward, a
punishment, or none. The action taken also determines
the new state in which the agent finds itself in the next
time step. In the simplest case, a reward is obtained
only in a single state, the goal state. For example, a rat
might be running around in a maze, and a small portion
of cheese is found in a particular location.

Planning and dynamic programming are the two basic
approaches to selecting the optimal action. These are
closely related to the distinction between model-based
and model-free reinforcement learning. If a model of the
world is available, one can simply simulate the effects of
different actions according to that model, and choose the
one that leads to the reward or goal. The problem here,
as already realized in classic artificial intelligence, is that
the simulation may have to be many steps long before
any reward is obtained (it takes some running to get to
the cheese), and the number of action sequences to be
simulated grows exponentially as a function of the num-
ber of steps. Thus, various kinds of partial search strate-
gies have to be developed. The model-free alternative is

to compute only the “values” of states1 or state-action
pairs, based on the principle of dynamic programming.
The drawback is that such learning tends to be very
slow, presumably because it attempts to operate with
minimum knowledge of the structure of the world.

We propose here to approach action selection from
the viewpoint of finding a suitable representation of the
world, i.e. the set of states. This is is stark contrast
to the classic theory of reinforcement learning, in which
the question of representation is rather much reglected
(though see (Dayan, 1993)). In the classic theory, the
world is represented as a finite set of different states
which are separate and unconnected from each other; or,
a representation is given a priori, such that the values
are computed as linear functions.

We propose a computational theory in which the agent
learns a continuous-valued representation of the discrete-
state world, and this representation enables a very simple
model-based action selection mechanism. More specifi-
cally, the learned representation tells the agent which
states are “close” to each other in the sense that the
states can be reached from each other in a small number
of steps. This solves most of the problem of “How to get
to state j from state i”. Planning is reduced to simply
always choosing that action, among the alternatives im-
mediately available, which leads to the new state with
minimum distance from the goal. Thus, the exponential
explosion in planning is completely avoided.

Learning in our system is unsupervised in the sense
that it does not use any kind of reinforcement signal:
only observations of state-action sequences. Thus, the
learned representation is not bound to any single goal;
in general it does not depend on which action in which
state gives reward or punishment. This is again in stark
contrast to classic (model-free) reinforcement learning,
in which the goal is fixed once and for all (but see (Daw
et al., 2005)). Thus, if the goal is changed (e.g. the
cheese is given in another part of the maze), the learned
value functions become useless, and learning has to be
started all over again. In our learning system, as long as
the state-action structure does not change (e.g. the maze
does not change), no re-learning is needed, which gives
it great flexibility. Our framework is also applicable to
any problem domain, in contrast to some related work
which consider navigation only.

1i.e. expected reinforcements when starting from that
state and following an optimal policy



Learning the Representation

Basic principle

Consider a simple graphical representation of the world
as a graph (see Fig. 1 a), where each state corresponds
to a node, and each possible transition from one state
to another, by a single action, is represented as an arc
connecting those two nodes. The agent finds itself in
one of the nodes, and selects an action by a method to
be specified. The agent then moves along one of the
arcs, and finds itself in that new node at the next time
point. The agent knows a priori the immediate results of
its actions, i.e. to which node it will move after a given
action at a given state. What the agent observes is the
number (or some other label) of the state in which it
is: the states are numbered according to some arbitrary
way. There is a single goal state: when the agent moves
to that state, it receives a reward.

The agent knows which state is the goal. However,
as is typical in reinforcement learning, the agent does
not know how to get to that state. From an intuitive
viewpoint, the computational problem is that the agent
does not have any way of knowing how to get “closer”
to the goal because it has no notion of distance.

The first part of our proposal is that it is possible
to learn a notion of distance in this setting. The basic
principle is that the agent observes that it is now in
state j and that it was, in the previous time step, in
state i. Thus, it can observe which states are “close”
to each other in the sense that it is possible to move
from state i to state j in a single step. Observing many
state-to-state transitions, the agent could in principle
just use the minimum number of steps required to move
from state i to state j as a measure of distance between
states i and j. The second part of our proposal is a
computational scheme which learns something like this
but with computational advantages.

Once the agent knows how to compute such a dis-
tance, action selection becomes rather trivial. First, the
agent computes the distance to the goal state from all
states to which the agent can go in one step. Second, the
agent chooses the action which leads to the state mini-
mizing that distance. (In practice, it may be necessary
to introduce some randomness in this choice because the
distance is learned only approximately.) Thus, the ac-
tion of the agent typically reduces the distance at each
step and eventually the agent will reach the goal.

Such computation of distance could, in principle, be
achieved by classic shortest-path algorithms. However, it
would demand a lot of computation, and possibly mem-
ory as well, to actually compute such distances for all
the candidate states to which the agent might want to
move. Thus, we propose to learn a dimensional repre-
sentation for the points, i.e. to associate each state with
a point in an n-dimensional real space. The distance be-
tween two points can then be simply computed as the
Euclidean distance (sum of the differences of squares)
of those representational points. Such a distance can
be very quickly computed when needed, and the system
only needs to store the n coordinates for each state; n is
typically rather small, perhaps even one or two.

a)

1

10

6
11

8

2

3

4

5
9

12

7

b)
8 1

3 4

11 2

6

9

7

12

5 10

GOAL

STATE 1.41

2.83

2.00

3.16
PRESENT

Figure 1: Representing states properly can make action
selection trivial. a) A graph which represents the world
so that each state is a node and each arc between two
nodes means that there is an action which takes the
agent from one state to the other. For simplicity of il-
lustration, it is assumed in this figure that actions are
reversible, so the arc can be travelled in both direction.
(This representation does not show which action corre-
sponds to which arc.) b) If the states can be arranged
on a two-dimensional plane (or any other simple part of
an n-dimensional real space), one can compute the dis-
tance of two nodes in that representation and use that
as a guide to action selection. In particular, if the goal
node is number 9 (bottom right-hand corner), and the
present state is number 4, the Euclidean distances com-
puted for the nodes to which one can move from the
present node (shown next to those nodes) indicate that
the agent should move down or right (the Euclidean dis-
tance favours “right” here but this is not the case for all
distances).



Intuitively, it is clear how much the problem is sim-
plified if instead of a general graph, the states can be
arranged as grid of points on a two-dimensional plane
(Fig. 1 b) so that the actions correspond to moving up,
down, left or right. In fact, the graph in Fig. 1 a) can
be arranged so. The agent can now use some notion
of distance which is closely related to the conventional
distance of the nodes on the graph on this graph.

Learning algorithm

Now we describe our learning algorithm. It can be con-
sidered a variant of classic principal component analysis
(PCA) which has been used in many different situations
for learning a low-dimensional representation. It is also
very closely related to spectral methods as used in clus-
tering and seriation (Shi and Malik, 2000; Ng et al., 2002;
Atkins et al., 1998).

We assume that the agent chooses completely random
actions during an initial learning period. During this
period, the agent collects information on the transition
probabilities, i.e. what is the probability of going from
each state to any other state, when the actions are com-
pletely random. These probabilities essentially contain
the information on which arcs are present in the graph2

in Fig. 1.
Let us denote by pij the probability of going from

state i to j, and by k the total number of states. The
probabilities can be collected in a matrix with k rows
and columns, denoted by P:

P =









p11 p12 . . . p1k

p21 p22 . . . p2k

. . .
pk1 pk2 . . . pkk









(1)

Now, we want to find n vectors which represent most of
the “variation” in this matrix. A precise formulation of
such variation can be obtained using the theory of singu-
lar value decomposition. Different variants are possible
here; we proceed as follows.

First, we add an identity matrix I to P, i.e. we add
one to all the diagonal elements of the matrix; this does
not change the eigenvectors but makes sure that their
real parts are all non-negative, which avoids cumbersome
absolute value computations. Denote the new matrix by
P̃ = P + I. We compute the eigenvectors corresponding
to the n + 1 eigenvalues with the largest real parts, ig-
noring their imaginary parts. Note that all eigenvalues
in this paper are right eigenvectors instead of left. The
eigenvalues are related to the amount of variation each
eigenvector explains. Now, with any transition proba-
bility matrix, the largest eigenvalue is equal to 1, and
corresponds to an eigenvector which has all constant en-
tries.3 We discard this degenerate eigenvector. We then
take the n eigenvectors which correspond to the n next

2Actually, the probabilities contain more information be-
cause probabilities is not simply binary, 0/1. Moreover, the
probability from going from state i to state j might not be
equal to the probability of going from j to i, so the arcs would
actually be directed in the general case.

3This holds for the largest right eigenvector; the corre-

eigenvalues with largest real parts. These vectors form
our representation.

A complication with this kind of eigenvectors compu-
tations is that since the transition matrix need not be
symmetric, the eigenvalues and vectors can be complex-
valued. Some mathematical analysis which is outside
of the scope of this paper shows that the interesting
eigenvectors and eigenvalues are, under some theoreti-
cal assumptions, all real-valued. This justifies consider-
ing only the real parts of the eigenvalues. In practice,
the eigenvalues might be complex-valued due to viola-
tions of those theoretical assumptions, but we avoid this
problem by using an eigenvector calculation method, the
power method, which does not give complex values if it
is initialized with real values.

Each of those obtained n eigenvectors of P̃, denote
them by vq, q = 1, . . . , n, associates a real number with
each state: the i-th entry in an eigenvector, vq(i), gives
one of the coordinates of that state in our representa-
tion. Altogether, we obtain n such coordinates, one for
each eigenvector, so we associate to each state n real
coordinates. This is our representation.

The actual computation of the eigenvectors can be
done by classic methods. The situation is quite simple
if the agent actually computes and stores all the transi-
tion probabilities. The computation of the probabilities
is very simple: the agent just has to count how many
times it went from state i to state j, and divide this fre-
quency by the total number of times it found itself in
state i. It could be argued that the storage of the proba-
bilities is a major problem because the number of states
k can be very large, and the number of probabilities to
be stored (i.e. the number of entries in the matrix P)
is equal to the square of k. However, this need not be
a problem because the matrix is typically very sparse:
most states are accessible from only a few other states,
so most of the entries pij are zero, and one needs to store
only those which are non-zero. This can radically reduce
the amount of memory needed by the agent. If the ma-
trix P is stored in the memory of the agent, a number
of classic methods for computing the eigenvectors can
be used. We used the power method (Golub and van
Loan, 1996) in our simulations, since it has the addi-
tional benefit of constraining the search to real values
if it is initialized with real values. The off-line learning
algorithm which results from this choice is described in
Table 1.

If one wants to investigate the neurobiological plausi-
bility of such learning, a simple on-line algorithm may
be more interesting. Using the classic theory of on-line
learning, based on stochastic approximation, we have de-
veloped a simple online algorithm for learning this rep-
resentation. This algorithm does not store the transition
probabilities in memory but uses each observed transi-
tion immediately for learning. The algorithm is adapted
from previously proposed online methods for PCA (Oja,

sponding left eigenvector gives the stationary probabilities
of the Markov chain, i.e. the probabilities of being in each
state when the chain is run an infinite number of times. The
eigenvectors we use are not related to this left eigenvector.



1982; Hyvärinen et al., 2001). Our algorithm does, how-
ever, need to store the total probabilities of being in each
of the states in the memory. This algorithm is described
in Table 1 as well.

Simulations

Simple grid-world

As an archetype of a reinforcement learning problem,
consider a grid of states on a two-dimensional plane. At
each time step the agent finds itself in one of these states,
and can decide to move up, down, left or right. The agent
then moves in the chosen direction, and finds itself in
that new state at the next time point (unless it tried to
move into the walls marking the boundaries of the grid,
in which case the agent does not move at all). The size
of the grid was 25× 25.

There was first a learning period in which the agent
randomly took actions in order to learn the structure of
the world. There were a total of 2,500 trials; the goal
state was randomly chosen, independently in each trial.
The agent took 250 steps in each trial. Since the ac-
tions were random, the agent rarely found the goal, but
the performance in this initial period provides a baseline
against which we can measure the performance of the
learning.

At the end of the learning phase, a two-dimensional
representation was learned using the off-line version of
our algorithm. The learned representation is shown in
Fig. 2 a), b). The vectors v1 and v2 are shown in grey-
scale: black is negative, and the lighter the grey, the
larger the value of vq(i), white being positive. Fig. 2 c)
shows, for one randomly selected goal state, the value of
the distance function as grey-scale One can see that the
learned distance is computed in a meaningful way. The
individual coordinates correspond quite well to the two
coordinate axes of the world. They are slightly rotated
version of the horizontal and vertical axis, but this has
no significance, because such a rotation does not change
the Euclidean distances.

In the test phase, we ran another 2500 trials, again
with a maximum of 250 steps for each trial. Now, the
action selection was done according to the learned repre-
sentation. We computed the distances to the goal from
each of the (typically four) states which are accessible
from the present state. We then chose the next action
so that the probability of going to the state was larger for
those states with smaller distance from the goal. Specif-
ically, we normalized the distances of the immediately
accessible states to be between 0 and 1 by subtracting
the smallest distance and dividing by the largest dis-
tance. Then, we computed the probabilities of going
to those states according to the Boltzmann distribution
p(j|i) ∝ exp(−aij/T ) where aij are the normalized dis-
tances, and T is a temperature parameter, chosen to
equal 0.2 in our simulations.

To show that our method was effective in action selec-
tion, we computed the proportion of trials in which the
agent was able to find the goal, see Fig. 5. As a baseline,
we show how often the agent found the goal by moving
randomly as in the learning phase. The success rate for

Off-line algorithm for learning representation

1. Initialize representational vectors vq(i), q =
1, . . . , n and i = 1, . . . , k to random values, where
n is the dimension of the representational space,
and k is the number of states.

2. Initialize state transition counters of fij , i, j =
1, . . . , k to zero.

3. Repeat at each time step of learning phase

(a) Take random action. Denote by i the state at
previous time step, and by j the current state.

(b) Update frequency counters: fij ← fij + 1

4. Compute transition probabilities:
pij ← fij/

∑

j′ fij′ for all i, j = 1, . . . , k.

5. Repeat until convergence

(a) Repeat for each q = 1, . . . , n

i. Power iteration in matrix multiplication for-
mulation: vq ← Pvq

ii. Subtract mean: vq(h)← vq(h)− 1

k

∑

h′ vq(h
′)

for all h = 1, . . . , k.

(b) Orthogonalize vectors vq. (A number of meth-
ods is available for this operation (Golub and
van Loan, 1996; Hyvärinen et al., 2001).)

On-line algorithm for learning representation

1. Initialize representational vectors vq(i) as above.

2. Initialize state frequency counters of fi, i =
1, . . . , k to zero.

3. Repeat at each time step

(a) Take random action. Denote by i the state at
previous time step, and by j the current state.

(b) Update frequency counters: fi ← fi + 1

(c) Compute state probabilities:
pi ← fi/

∑

i′ fi′

(d) Repeat for each q = 1, . . . , n:

• Main update step:
vq(i)← vq(i) + µvq(j)/pi,
where µ is a small step size constant.

(e) Subtract means: vq(h)← vq(h)− 1

k

∑

h′ vq(h
′)

for all q and h.

(f) Orthogonalize vectors vq. (See (Hyvärinen
et al., 2001) for on-line methods for orthogo-
nalization.)

Table 1: The off-line and on-line versions of our learning
algorithm. The subtraction of the mean of each vector is
equivalent to discarding the degenerate eigenvector with
eigenvalue 1.



a) b)

c)

Figure 2: Simulation of a world where the states form
a simple two-dimensional grid surrounded by a wall.
Our algorithm is able to learn that underlying struc-
ture. a) First coordinate in the representation, shown
as grey-scale. b) Second coordinate in the representa-
tion. c) The distance function from a random goal state,
shown as grey-scale.

the case 100% (“no obstacles”). In the baseline trial,
the success rates were around 15%. Thus, learning the
representation was very efficient in action selection.

Grid world with obstacles

In the next set of simulations, obstacles are added: These
are pieces of wall which again prevent movement into
or through them. Figure 3 shows the results with such
obstacles, which are shown in medium grey in Fig. 3 a)-
d). Now, we learned three coordinate axes instead of
two to account for the increase in the complexity of the
world, shown in Fig. 3 a), b), c). Again, the learned dis-
tance, shown for a randomly chosen goal state, is shown
in Fig. 3 d). The learned coordinates show that the fun-
damental thing the system learned is that the dead ends
in the “maze” are far way from the rest. This is logical
because it takes many steps to get anywhere from those
dead ends.

The improvement in action selection is again shown in
Fig. 5: success rate was 93% after learning whereas it
was around 15% without learning (random case).

Tower of Hanoi

Finally, we used our method in a rather different kind of
world: the Tower of Hanoi with 3 disks and 3 pegs. Due
to the simplicity of the problem, the number of steps
in each trial was reduced to 12. The learned represen-
tation is shown in Fig. 4. Action selection was tested
by assigning completely random initial and goal states:
success rate was 99.8% after learning this representation,
and 25% without learning (Figure 5).

a) b)

c) d)

Figure 3: Simulation of a world in which there are ob-
stacle (inaccessible) states among the states forming the
grid. Our algorithm is able to learn that underlying
structure. a-c) The three coordinates in the represen-
tation, shown as grey-scale. Obstacles are shown in grey
as well. d) The distance function from a random goal
state, shown as grey-scale.

−0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

aaa
baacaa

aba
bba

cba

acabca

cca

aabbab
cababb

bbbcbb

acbbcb

ccb

aac
bac

cac

abc

bbc

cbc
acc
bccccc

Figure 4: The two-dimensional representation learned in
the Tower of Hanoi world. The pegs are denoted by the
letters a, b, c and the states are represented as triplets
of such letters, so that the first letter tells the location
of the first disk and so on. The states form a triangle
whose corners (aaa,bbb, and ccc) correspond to states
where all the disks are in the same peg.



random action using learning
0

0.2

0.4

0.6

0.8

1

Figure 5: Success rates of finding the goal using the
learned representation and the baseline of random ac-
tions, in the case of the basic grid world with no ob-
stacles (black bar on the left), the grid with obstacles
(red or grey bar on the middle), and the Tower of Hanoi
domain (white bar on the right)

Discussion

Our method was originally inspired by the successor rep-
resentation (Dayan, 1993). However, here we emphasize
the low dimensionality of the representation, whereas the
successor representation does not reduce the dimension
at all, which may be computationally very demanding.
Another closely related method was proposed by (Engel
and Mannor, 2001). Instead of PCA, they used a more
complicated learning method. However, the their goal
and philosophy were very similar to ours.

Our learning principle could be interpreted as trying
to find a representation which changes as slowly as pos-
sible. In a random representation (where each state is
a random point is the n-dimensional space), the point
that represents the agent’s present state jumps randomly
from one place to another when the agent takes actions.
In contrast, in the representation learned by our method,
the point moves slowly, since two points which are ac-
cessible from each other tend to be close to each other in
the representation. Thus, our method is closely related
to models which try to maximize temporal coherence or
stability of a representation (Földiák, 1991; Hurri and
Hyvärinen, 2003).

Here, we considered the theoretical setting widely used
in machine learning where the world is given as a set of
discrete states and transitions between them. In other
words, we assumed that the perceptual system classifies
the state into a discrete set efficiently and unambigu-
osly. Future work will address how this method could
be adapted to the case where the information about the
state comes in the form of high-dimensional sensory in-
put. Related work can be found in robotics (Thrun,
2002) and in computational neuroscience (Trullier and
Meyer, 2000), but these are usually very different from
our approach in that they are constrained to navigation,
or 2D environments, whereas we consider completely
general problem domains.

To conclude, we proposed a computational model for
learning a dimensional representation of a discrete-state
world, with the goal of facilitating action selection. The
basic principle is to do a kind of principal component
analysis on the matrix of transition probabilities between
the states. Then, action selection and planning can be-
come quite simple. Similar to model-based reinforcement
learning, or planning, adaptation to changing goals is
straightforward and re-learning is not needed. However,
the exponential explosion of computation, which is in-
herent in planning, is avoided. Thus, our method seems
to combine some of the advantages of model-based and
model-free reinforcement learning.

References
Atkins, J. E., Boman, E. G., and Hendrickson, B. (1998).

A spectral algorithm for seriation and the consecutive
ones problem. SIAM J. on Computing, 28(1):297–310.

Daw, N. D., Niv, Y., and Dayan, P. (2005). Uncertainty-
based competition between prefrontal and dorsolateral
striatal systems for behavioral control. Nature Neuro-
science, 8:1704–1711.

Dayan, P. (1993). Improving generalisation for tempo-
ral difference learning: The successor representation.
Neural Computation, 5:613–624.

Dayan, P. and Abbott, L. F. (2001). Theoretical Neuro-
science. MIT Press.

Engel, Y. and Mannor, S. (2001). Learning embedded
maps of markov processes. In Proc. Int. Conf. on Ma-
chine Learning (ICML), pages 138–145.

Földiák, P. (1991). Learning invariance from transfor-
mation sequences. Neural Computation, 3:194–200.

Golub, G. and van Loan, C. (1996). Matrix Computa-
tions. The Johns Hopkins University Press, 3rd edi-
tion.

Hurri, J. and Hyvärinen, A. (2003). Simple-cell-like re-
ceptive fields maximize temporal coherence in natural
video. Neural Computation, 15(3):663–691.

Hyvärinen, A., Karhunen, J., and Oja, E. (2001). Inde-
pendent Component Analysis. Wiley Interscience.

Ng, A. Y., Jordan, M. I., and Weiss, Y. (2002). On
spectral clustering: Analysis and an algorithm. In
Advances in Neural Information Processing Systems
14. MIT Press.

Oja, E. (1982). A simplified neuron model as a princi-
pal component analyzer. J. of Mathematical Biology,
15:267–273.

Shi, J. and Malik, J. (2000). Normalized cuts and image
segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(8):888–905.

Sutton, R. and Barto, A. (1998). Reinforcement Learn-
ing: An Introduction. MIT Press.

Thrun, S. (2002). Robotic mapping: A survey. In Lake-
meyer, G. and Nebel, B., editors, Exploring Artifi-
cial Intelligence in the New Millenium. Morgan Kauf-
mann.

Trullier, O. and Meyer, J.-A. (2000). Animat naviga-
tion using a cognitive graph. Biological Cybernetics,
83:271–285.


