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Abstract— Data representation methods related to ICA and
sparse coding have successfully been used to model neural
representation. However, they are highly abstract methods, and
the neural encoding does not correspond to a detailed neuron
model. This limits their power to provide deeper insight into
the sensory systems on a cellular level. We propose here data
representation where the encoding happens with a spiking
neuron. The data representation problem is formulated as
an optimization problem: Encode the input so that it can
be decoded from the spike train, and optionally, so that
energy consumption is minimized. The optimization leads to
a learning rule for the encoder and decoder which features
synergistic interaction: The decoder provides feedback affecting
the plasticity of the encoder while the encoder provides optimal
learning data for the decoder.

I. I NTRODUCTION

Learning a representation of the sensory input can be con-
sidered the fundamental functional task of a sensory neuron.
We model in Figure 1a neural representation by means of
a dynamical neural encoding system and a (hypothetical)
decoder.

Mathematical data representation methods such as princi-
pal or independent component analysis (PCA or ICA) [1],
[2] show the same encoding-decoding structure. This is
illustrated in Figure 1b. The feedforward linear transform
y = WTx models the neural encoding of the inputx into
the neural responsey. A further linear transformHy imple-
ments the (hypothetical) decoder. These mathematical data
representation methods lend themselves to the study of neural
representation of natural stimuli. For the case of vision, the
approach consists of taking samples of natural scenes for
the input, learning the encoder-decoder pair, and comparing
their properties with properties of the visual cortex. While
PCA seems to be insufficient for learning relevant represen-
tations, ICA adds a sparseness constraint which has both
computational (Bayesian as well as information-theoretic)
and metabolic justifications. This approach led to important
insight of how the receptive fields in the primary visual
cortex could have been formed in order to represent natural
stimuli [3], [4], [5]. Related approaches have been made
earlier for the LGN or retina, see [6] for a review.

However, the linear encoding transformation in ICA corre-
sponds to a rather abstract neuron model. This limits further
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investigations into neural representation on the cellularlevel.
Furthermore, it makes it difficult to link theory to experi-
ments on the single-cell level, see for example the study [7].
Also, the neural responsey is usually assumed to correspond
to the firing rate. There is however strong evidence that
individual spike timings bear important information [8].

In this article, we propose data representation by means of
a spiking neuron, for which a relatively detailed dynamical
model is used. The encoding is done by firing single spikes,
see Figure 1c. Data representation is based on the minimiza-
tion of a squared reconstruction error, and optionally withan
added penalty to minimize energy consumption during the
encoding process. We derive an online learning rule based
on minimization of the objective function. Learning of the
encoder and decoder are synergistic: The encoder selects
the learning data for the decoder by triggering spikes at the
right time, while the decoder provides error feedback for the
encoder affecting in that way its plasticity.

This paper is organized as follows. In section II, we
formulate the data representation problem of Figure 1c as an
optimization problem. In section III, we provide the solution
in form of an online rule, and discuss the update rule.
In section IV, we show simulation examples and contrast
different ways to punish energy consumption. Section V
discusses the relation to other work, and section VI concludes
the paper.

II. OPTIMIZATION PROBLEM

A. Encoding and decoding

The assumed neuron model, that is used for the encoding,
is closely related to the SMR0 model [9]. The equation for
the membrane voltageu is

u(t) =η0 exp

[

−
t − t̂

τ

]

+

∫ min{t,Tw}

0

x(t − s)w(s)ds

+ In(t), (1)

where In(t) is a sufficiently smooth, and optional, noise
current, t̂ the last spike time before timet, and w the
unknown encoding filter, to be learned, of lengthTw. The
convolution of inputx with w produces the input currentI.
Spike timings{tf ; f = 1, . . .} are defined byu(tf ) = θ,
whereθ > 0 is a fixed threshold. The remaining constants
are the recovery time constantτ of the recovery currentIr

and the reset amountη0 < 0.
The reconstruction̂x is sought under the form

x̂(t) =
∑

f :t−Tp<tf <t+Td

h(t − tf ), (2)
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Fig. 1. Modelling neural representation by means of data representation. (a) Input datax is transformed by a dynamical neural system. This encoding
process should be such that the input can be decoded from the neural response. The energy consumption during the encodingprocess could also be
required to be minimized. The encoder and decoder together provide data representation. (b) In PCA and ICA, the decoder and encoder are unknown linear
transforms, and the transform is found by minimization of the the expected value of||x− x̂||2

2
. ICA additionally maximizes the statistical independence

between the elements of the vectory, which is equivalent to maximizing the sparseness of the responses [2]. (c) Here, we encode by means of the spike
response neuron model [9], and decoding is done from the spike timingstf . Learning rules for the unknown encoding filterw and decoding filterh are
derived from the minimization of the mean squared reconstruction error, optionally with an added penalty to minimize energy consumption during the
encoding process.

which introduces a delayTd. For the reconstruction at time
t, spikes happening prior tot − Tp are not considered.
The decoding filterh is unknown and to be learned. The
arguments forh are in the range[−Td Tp]. The role of
h(s) is different fors > 0 and s < 0. For s > 0, the input
at t is predicted from a spike event attf < t. On the other
hand, fors < 0, the input is reconstructed from a later spike
event attf > t.

The neuron model in Equation(1) has been related to
detailed biophysical quantities [9]. The encoding filterw can
be considered to model a physical time-invariant system. The
decoding filterh, however, is of more abstract nature. It is
a hypothetical quantity and assigns meaning to each spike.
It implements the “homunculus”, which generates a running
commentary of the spike train, see e.g. [8].

B. Cost functional

Our cost functional consists of two parts: reconstruction
error and optionally, energy consumption.

The first part of the cost functional which is due to the
reconstruction error is

Je(h, w) =
1

2T

∫ T

0

(x̂(t) − x(t))2dt, (3)

whereT is a fixed time horizon.
We introduce two ways to measure the energy consump-

tion. First, we use the average powerPa,

Pa =
1

T

∫ T

0

I(t)2dt. (4)

It is the electrical power that is consumed in a unit resistance
through which the currentI(t) flows. A second measure
for energy consumption stems from the idea thatI(t)dt is
proportional to the ion load that must be pumped out, or
in, to restore the ion gradients in a neuron. This, together

with the propagation of the action potential, is a dominant
energy cost which accrues during signaling [10]. The total
postsynaptic ion load per timeT is

Pp =
1

T

∫ T

0

|I(t)|dt. (5)

The output I(t) of the convolution betweenx and w
satisfiesI(t)2 ≤ ||w||22||x||

2
2. Hence,Pa ≤ ||w||22||x||

2
2, and in

order to minimize the average power consumptionPa during
the encoding, we seek to minimize additionally toJe

J2(w) =

∫ Tw

0

w(t)2dt. (6)

Alternatively, we can use the relationPa ≤ ||w||21||x||
2
2/T ,

where the squaredL1 norm of w indicates the amplification
gain, i.e. the ratio between output and input power. Hence,
in order to punish amplification, we could minimize addi-
tionally to Je

J1s(w) =

(

∫ Tw

0

|w(t)|dt

)2

. (7)

For the second measure of energy consumptionPp,
we have due to properties of the convolutionPp ≤
||w||1||x||1/T . Hence, in order to punish postsynaptic ion
load, we minimize additionally toJe

J1(w) =

∫ Tw

0

|w(t)|dt. (8)

Alternatively, we could also takePp directly as additional
quantity to be minimized, i.e.

Jp(w) =
1

T

∫ T

0

|I(t)|dt. (9)

In the following, we refer to the energy cost byJE , which
can beJ2, J1s, J1, or Jp.



The total cost to be minimized, due to the reconstruction
error and the energy consumption, is given by

J = Je + αJE , (10)

whereα weights the influence of the energy constraint.

III. O NLINE LEARNING RULE

A. Encoding filterw

Key to the update rule forw is the calculation of the
functional derivativeδJ/δw(s). In [11], we dealt in detail
with the mathematical derivation ofδJe/δw(s)1. Here, we
summarize the approach. It goes via variational calculus:
The encoderw(s) is perturbated tow(s) + δw(s), and the
resulting changeδJe is calculated: The perturbationδw(s)
leads to the perturbation of the spike timingsδtf which
in turn changes the reconstruction̂x(t) to x̂(t) + δx̂(t).
This allows for the calculation of the functional derivative
δJe/δw(s). It amounts to [11]

δJe

δw(s)
= −

1

T

∑

f

ē(tf )yf (s), (11)

where

ē(tf ) =

∫ tf
+Tp

tf−Td

(x̂(t) − x(t))ḣ(t − tf )dt (12)

yf (s) =
−x(tf − s)

u̇(tf )
+ Γ(tf , tf−1)yf−1(s)(13)

Γ(tf , tf−1) =
−η0

τu̇(tf )
exp

[

−
tf − tf−1

τ

]

. (14)

The functional derivatives ofJE are, depending on the
measurement of the energy consumption,

δJE

δw(s)
= 2w(s) for JE = J2, (15)

δJE

δw(s)
= 2||w||1sign(w(s)) for JE = J1s, (16)

δJE

δw(s)
= sign(w(s)) for JE = J1, (17)

and

δJE

δw(s)
=

1

T

∫ T

0

sign(I(t))x(t − s)dt (18)

for JE = Jp. We propose the following online rule: After
spikek at tk, update the encoder by

wk(s) = wk−1(s) + µ

(

ē(tk)yk(s) − α
δJE

δw(s)

)

, (19)

whereµ > 0 is the step size andα weights the influence
of the energy constraint. The algorithm is initialized with
y0 = 0 and e.g.w0 = 0. If JE = Jp, we integrate in the
update rule not from zero tillT but from tk−1 till tk.

1In contrast to the present article, the focus in [11] is on thefunctional
derivative: it includes neither simulations not the complete online rule with
its discussion.

B. Decoding filterh

For the learning ofh, we form from the spike timings
a binary vectorρ(n) by binning the spike timings into
containers of size△t. If there is a spike in the bin centered
at t = n△t, then ρ(n) equals one, otherwise zero. We
discretizeh(s) with the same bin size. The reconstruction
in Equation(2) at t = n△t becomes then

x̂(n) = hρ(n), (20)

where h = [h(−Nd) . . . h(Np)] and ρ(n) = [ρ(n +
Nd) . . . ρ(n − Np)]

T . We may further search forh(n) in
the form of h(n) =

∑

k ckΨk(n), for some givenΨk and
unknownck. The Ψk can for example be the Daubechies’s
D6 wavelet basis on Z (see e.g. [12]). Omitting wavelets
located in the highest frequency bands in that representation
allows for a reduction in the parameters to be learned for
the decoderh. With reference to [12], we are looking in that
case forh(n) in V−j , with e.g.j = 2.

Denoting by Ψ the matrix with rows
[Ψk(−Nd) . . . Ψk(Np)], we obtain for the reconstruction
x̂(n) = cy(n), where

y = Ψρ. (21)

The row vectorc is to be determined such thatJe is
minimized. Calculation of the derivative ofJe with respect
to the row vectorc, i.e. after discretization, gives

δJe

δc
=

1

N

N
∑

n=1

(x̂(n) − x(n))yT(n). (22)

Using the stochastic gradient, the following least mean
square (LMS) like learning rule is obtained

△c(n) = −µh [x̂(n) − x(n)] yT(n), (23)

where µh is the step size. The step size can be chosen
optimally in each update step by using a recursive least
squares algorithm, see e.g. [13], for the learning ofc.

C. Interpretation

We discuss here the mutual influence between the encod-
ing and decoding filtersw andh during learning.

The decoding filterh enters into the update rule forw
in Equation (19) via ē, defined in Equation(12). Let us
assume that the inputx is positive valued. The parameterΓ
in Equation(14) is also positive so thatyf in Equation(13)
is < 0. The quantityē can be positive or negative. In the
regime where the energy cost does not matter (because for
exampleα = 0), it is the sign ofē which decides whetherw
increases (̄e < 0) or decreases (ē > 0). Figure 2 illustrates
that ē is an indicator for the reliability of the spike, which
is calculated with the aid of the decoding filterh.

The encoding filter exerts influence on the learning of the
decoding filterh in Equation (23). It produces the spike
timings which define the vectory of Equation(21). Noise
triggered spikes provide thus unstructured learning data for h
while while spikes which were triggered over input currentI
by a characteristic feature in the input provide good learning
data.



IV. SIMULATIONS

The online rule was initialized withw = 0 and h = 0.
Figure 3 shows an overview of the setup of the simulation
and the result forJE = J2.

Figure 4 shows characteristic stages in the learning process
of w andh, the associated currents and the reconstructions.
In stage 1and stage 2, the encoding filterw is so small
that the spikes are noise triggered. Compared to stage 1,
the decoding filterh shows in stage 2 some structure which
supports the learning ofw. Stage 3shows the situation
wherew has strongly developed. The input currentI drives
now the neuron, and structured training data is provided for
the learning ofh. Therefore, instage 4, h has reached a
good decoding performance. From stage 3 on, the energy
constraint onw takes effect and the encoder converges to the
attractor shown asfinal stage. The final form ofw reflects
the trade-offs in the learning. The main peak needs be large
enough to provide spikes in case of an input feature, but it
cannot be too large due to the energy constraint mediated by
α.

We have performed simulations to assess the influence of
α, which weights the influence of the energy costJE on the
total costJ in Equation(10). The amplitude ofw, and also
h, becomes smaller for values ofα larger than in the present
case, whereα = 10−4. For α = 10−3, for example, we have
w < 10 andh < 0.5 (results not shown). The general shape
of both kernels is however related.

Figure 5, upper left, shows the special case whereα = 0,
i.e. the case where energy consumption is not punished. The
main difference to the results withJE = J2 lies in the larger
main peak and sidelobes. The shape is however the same:
There is also a negative primary as well as a secondary
sidelobe. The remaining subfigures show the encoding filters
which are obtained after learning with different measures of
energy consumptionJE . The additional punishment of the
energy consumption leads to encoding filters with different
characteristics. The case without energy constraint shows
however that this additional punishment is not needed to have
stability in the development ofw. The value ofē decreases
with increasing accuracy of the reconstruction, and makes
the update rule stable.

V. RELATION TO OTHER WORK

We have related our work to ICA and PCA in the in-
troduction and Figure 1. Here, we discuss the relation with
a method which, as our method but unlike ICA, includes
time structure in the representation. The method works for
a population of neurons while the presented results in this
article deal only with a single neuron. In [14], a decomposi-
tion that resembles our decoding formula in Equation(2) is
done for natural sounds. The researchers iteratively optimized
the function dictionary which is used to decompose inputx
by means of the matching pursuit algorithm [15]. Important
differences to our work are that in our approach, we are
working with spike timings only, while in [14], a further
scalar weighting of each shiftedh(t − tf ) is needed in the

reconstruction. The weighting was called “analogue spike”
and measured the strength of the spike happening attf . In
our case, we are working with all-or-none spikes: either a
spike is happening or not. Furthermore, the decomposition
via matching pursuit is acausal and does not correspond to a
typical neuron model while here, we have presented a data
representation method that uses a standard, causal neuron
model for the encoding.

VI. CONCLUSION

In this article, we presented and discussed an online
rule for data representation with a formal spiking neuron.
First, we formulated the data representation problem as an
optimization problem in which reconstruction error and an
optional energy cost are minimized. This enables learning of
the encoder and decoder. Then, we used variational calculus
to derive an online rule for the learning of encoder and
decoder. Simulations showed that the online rule can learn
the general shape of the input distribution.
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to a decrease inw. The decrease causes the next spike to happen later and the reconstruction matches the input better. (b) The opposite case where the
reconstruction lags behind the input. (c) The spike is noisetriggered:ē is small so thatw is not affected byx to a large extent.
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