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Abstract

We present a new estimation principle for
parameterized statistical models. The idea
is to perform nonlinear logistic regression to
discriminate between the observed data and
some artificially generated noise, using the
model log-density function in the regression
nonlinearity. We show that this leads to a
consistent (convergent) estimator of the pa-
rameters, and analyze the asymptotic vari-
ance. In particular, the method is shown to
directly work for unnormalized models, i.e.
models where the density function does not
integrate to one. The normalization constant
can be estimated just like any other parame-
ter. For a tractable ICA model, we compare
the method with other estimation methods
that can be used to learn unnormalized mod-
els, including score matching, contrastive di-
vergence, and maximum-likelihood where the
normalization constant is estimated with im-
portance sampling. Simulations show that
noise-contrastive estimation offers the best
trade-off between computational and statis-
tical efficiency. The method is then applied
to the modeling of natural images: We show
that the method can successfully estimate
a large-scale two-layer model and a Markov
random field.

1 Introduction

Estimation of unnormalized parameterized statistical
models is a computationally difficult problem. Here,
we propose a new principle for estimating such models.
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Our method provides, at the same time, an interesting
theoretical connection between unsupervised learning
and supervised learning.

The basic estimation problem is formulated as follows.
Assume a sample of a random vector x ∈ R

n is ob-
served which follows an unknown probability density
function (pdf) pd(.). The data pdf pd(.) is modeled by
a parameterized family of functions {pm(.; α)}α where
α is a vector of parameters. We assume that pd(.) be-
longs to this family. In other words, pd(.) = pm(.; α⋆)
for some parameter α⋆. The problem we consider here
is how to estimate α from the observed sample by max-
imizing some objective function.

Any solution α̂ to this estimation problem must yield
a properly normalized density pm(.; α̂) with

∫

pm(u; α̂)du = 1. (1)

This defines essentially a constraint in the optimiza-
tion problem.1 In principle, the constraint can always
be fulfilled by redefining the pdf as

pm(.; α) =
p0

m(.; α)

Z(α)
, Z(α) =

∫

p0
m(u; α)du, (2)

where p0
m(.; α) specifies the functional form of the pdf

and does not need to integrate to one. The calcula-
tion of the normalization constant (partition function)
Z(α) is, however, very problematic: The integral is
rarely analytically tractable, and if the data is high-
dimensional, numerical integration is difficult. Exam-
ples of statistical models where the normalization con-
straint poses a problem can be found in Markov ran-
dom fields (Roth & Black, 2009; Köster et al., 2009),
energy-based models (Hinton, 2002; Teh et al., 2004),
and multilayer networks (Osindero et al., 2006; Köster
& Hyvärinen, 2007).

1Often, this constraint is imposed on pm(.; α) for all α,
but we will see in this paper that it is actually enough to
impose it on the solution obtained.
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A conceptually simple way to deal with the normal-
ization constraint would be to consider the normal-
ization constant Z(α) as an additional parameter of
the model. This approach is, however, not possible
for Maximum Likelihood Estimation (MLE). The rea-
son is that the likelihood can be made arbitrarily large
by making Z(α) go to zero. Therefore, methods have
been proposed which estimate the model directly using
p0

m(.; α) without computation of the integral which de-
fines the normalization constant; the most recent ones
are contrastive divergence (Hinton, 2002) and score
matching (Hyvärinen, 2005).

Here, we present a new estimation principle for un-
normalized models which shows advantages over con-
trastive divergence or score matching. Both the pa-
rameter α in the unnormalized pdf p0

m(.; α) and the
normalization constant can be estimated by maximiza-
tion of the same objective function. The basic idea is
to estimate the parameters by learning to discrimi-
nate between the data x and some artificially gener-
ated noise y. The estimation principle thus relies on
noise with which the data is contrasted, so that we will
refer to the new method as “noise-contrastive estima-
tion”.

In Section 2, we formally define noise-contrastive es-
timation, establish fundamental statistical properties,
and make the connection to supervised learning ex-
plicit. In Section 3, we first illustrate the theory with
the estimation of an ICA model, and compare the per-
formance to other estimation methods. Then, we ap-
ply noise-contrastive estimation to the learning of a
two-layer model and a Markov random field model of
natural images. Section 4 concludes the paper.

2 Noise-contrastive estimation

2.1 Definition of the estimator

For a statistical model which is specified through an
unnormalized pdf p0

m(.; α), we include the normaliza-
tion constant as another parameter c of the model.
That is, we define ln pm(.; θ) = ln p0

m(.; α) + c, where
θ = {α, c}. Parameter c is an estimate of the negative
logarithm of the normalization constant Z(α). Note
that pm(.; θ) will only integrate to one for some spe-
cific choice of the parameter c.

Denote by X = (x1, . . . ,xT ) the observed data set,
consisting of T observations of the data x, and by Y =
(y1, . . . ,yT ) an artificially generated data set of noise

y with distribution pn(.). The estimator θ̂T is defined
to be the θ which maximizes the objective function

JT (θ) =
1

2T

∑

t

ln [h(xt; θ)] + ln [1 − h(yt; θ)] , (3)

where

h(u; θ) =
1

1 + exp [−G(u; θ)]
, (4)

G(u; θ) = ln pm(u; θ) − ln pn(u). (5)

Below, we will denote the logistic function by r(.) so
that h(u; θ) = r(G(u; θ)).

2.2 Connection to supervised learning

The objective function in Eq. (3) occurs also in su-
pervised learning. It is the log-likelihood in a logis-
tic regression model which discriminates the observed
data X from the noise Y . This connection to super-
vised learning, namely logistic regression and classifi-
cation, provides us with intuition of how the proposed
estimator works: By discriminating, or comparing, be-
tween data and noise, we are able to learn properties
of the data in the form of a statistical model. In less
mathematical terms, the idea behind noise-contrastive
estimation is “learning by comparison”.

To make the connection explicit, we show now how the
objective function in Eq. (3) is obtained in the setting
of supervised learning. Denote by U = (u1, . . . ,u2T )
the union of the two sets X and Y , and assign to each
data point ut a binary class label Ct: Ct = 1 if ut ∈ X
and Ct = 0 if ut ∈ Y . In logistic regression, the pos-
terior probabilities of the classes given the data ut are
estimated. As the pdf pd(.) of the data x is unknown,
the class-conditional probability p(.|C = 1) is mod-
eled with pm(.; θ).2 The class-conditional probability
densities are thus

p(u|C = 1; θ) = pm(u; θ) p(u|C = 0) = pn(u). (6)

Since we have equal probabilities for the two class la-
bels, i.e. P (C = 1) = P (C = 0) = 1/2, we obtain the
following posterior probabilities

P (C = 1|u; θ) =
pm(u; θ)

pm(u; θ) + pn(u)
(7)

= h(u; θ) (8)

P (C = 0|u; θ) = 1 − h(u; θ). (9)

The class labels Ct are Bernoulli-distributed so that
the log-likelihood of the parameters θ becomes

ℓ(θ) =
∑

t

Ct lnP (Ct = 1|ut; θ) + (10)

(1 − Ct) ln P (Ct = 0|ut; θ)

=
∑

t

ln [h(xt; θ)] + ln [1 − h(yt; θ)] , (11)

which is, up to the factor 1/2T , the same as our ob-
jective function in Eq. (3).

2Classically, pm(.; θ) would in the context of this section
be a normalized pdf. In our paper, however, the normal-
ization constant may also be part of the parameters.
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2.3 Properties of the estimator

We characterize here the behavior of the estimator θ̂T

when the sample size T becomes arbitrarily large. The
weak law of large numbers shows that in that case, the
objective function JT (θ) converges in probability to J ,

J(θ) =
1

2
E ln [h(x; θ)] + ln [1 − h(y; θ)] . (12)

Let us denote by J̃ the objective J seen as a function
of f(.) = ln pm(.; θ), i.e.

J̃(f) =
1

2
E ln [r(f(x) − ln pn(x))] +

ln [1 − r(f(y) − ln pn(y))] . (13)

We start the characterization of the estimator θ̂T with
a description of the optimization landscape of J̃ . The
following theorem3 shows that the data pdf pd(.) can
be found by maximization of J̃ , i.e. by learning a
classifier under the ideal situation of infinite amount
of data.

Theorem 1 (Nonparametric estimation). J̃ attains
a maximum at f(.) = ln pd(.). There are no other
extrema if the noise density pn(.) is chosen such it is
nonzero whenever pd(.) is nonzero.

A fundamental point in the theorem is that the maxi-
mization is performed without any normalization con-
straint for f(.). This is in stark contrast to MLE,
where exp(f) must integrate to one. With our objec-
tive function, no such constraints are necessary. The
maximizing pdf is found to have unit integral auto-
matically. The positivity condition for pn(.) in the
theorem tells us that the data pdf pd(.) cannot be in-
ferred where there are no contrastive noise samples for
some relevant regions in the data space. This situa-
tion can be easily avoided by taking, for example, a
Gaussian distribution for the contrastive noise.

In practice, the amount of data is limited and a finite
number of parameters θ ∈ R

m specify pm(.; θ). This
has in general two consequences: First, it restricts the
space where the data pdf pd(.) is searched for. Second,
it may introduce local maxima into the optimization
landscape. For the characterization of the estimator in
this situation, it is normally assumed that pd(.) follows
the model, i.e. there is a θ⋆ such that pd(.) = pm(.; θ⋆).

Our second theorem tells us that θ̂T , the value of θ
which (globally) maximizes JT , converges to θ⋆ and
leads thus to the correct estimate of pd(.) as the sam-
ple size T increases. For unnormalized models, the
log-normalization constant is part of the parameters.
This means that the maximization of our objective
function leads to the correct estimates for both the

3Proofs are omitted due to a lack of space.

parameters α in the unnormalized pdf p0
m(.; α) and

the log-normalization constant c, which is impossible
when using likelihood.

Theorem 2 (Consistency). If conditions (a) to (c)

are fulfilled then θ̂T converges in probability to θ⋆, i.e.

θ̂T
P→ θ⋆.

(a) pn(.) is nonzero whenever pd(.) is nonzero

(b) supθ |JT (θ) − J(θ)| P→ 0

(c) I =
∫

g(x)g(x)T P (x)pd(x)dx has full rank,
where

P (x) =
pn(x)

pd(x) + pn(x)
, g(x) = ∇θ ln pm(x; θ)|θ⋆

Condition (a) is inherited from Theorem 1, and is eas-
ily fulfilled by choosing, for example, the noise to be
Gaussian. Conditions (b) and (c) have their counter-
parts in MLE, see e.g.(Wasserman, 2004). We need in
(b) uniform convergence in probability of JT to J ; in
MLE, uniform convergence of the log-likelihood to the
Kullback-Leibler distance is required likewise. Con-
dition (c) assures that for large sample sizes, the ob-
jective function JT becomes peaky enough around the
true value θ⋆. This imposes through the vector g a
condition on the model pm(.; θ). A similar constraint
is required in MLE. For the estimation of normalized
models pm(.; α), where the normalization constant is
not part of the parameters, the vector g(x) is the score
function as in MLE. Furthermore, if P (x) were a con-
stant, I would be proportional to the Fisher informa-
tion matrix.

The following theorem describes the distribution of the
estimation error (θ̂T − θ⋆) for large sample sizes.

Theorem 3 (Asymptotic normality).
√

T (θ̂T − θ⋆) is
asymptotically normal with mean zero and covariance
matrix Σ,

Σ = I−1 − 2I−1

[∫

g(x)P (x)pd(x)dx

]

× (14)

[∫

g(x)T P (x)pd(x)dx

]

I−1.

When we are estimating a normalized model pm(.; α),
we observe here again some similarities to MLE by
considering the hypothetical case that P (x) is a con-
stant: The integral in the brackets is then zero because
it is proportional to the expectation of the score func-
tion, which is zero. The covariance matrix Σ is thus up
to a scaling constant equal to the Fisher information
matrix.

Theorem 3 leads to the following corollary:

Corollary 1. For large sample sizes T , the mean
squared error E ||θ̂T − θ⋆||2 behaves like tr(Σ)/T .
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2.4 Choice of the contrastive noise

distribution

The noise distribution pn(.), which is used for contrast,
is a design parameter. In practice, we would like to
have a noise distribution which fulfills the following:

(1) It is easy to sample from, since the method relies
on a set of samples Y from the noise distribution.
(2) It allows for an analytical expression for the log-
pdf, so that we can evaluate the objective function
in Eq. (3) without any problems.

(3) It leads to a small mean squared error E ||θ̂T −θ⋆||2.
Our result on consistency (Theorem 2) also includes
some technical constraints on pn(.) but they are so
mild that, given an estimation problem at hand, many
distributions will verify them. In principle, one could
minimize the mean squared error (MSE) in Corollary 1
with respect to the noise distribution pn(.). How-
ever, this turns out to be quite difficult, and sampling
from such a distribution might not be straightforward
either. In practice, a well-known noise distribution
which satisfies points (1) and (2) above seems to be
a good choice. Some examples are a Gaussian or uni-
form distribution, a Gaussian mixture distribution, or
an ICA distribution.

Intuitively, the noise distribution should be close to
the data distribution, because otherwise, the classifica-
tion problem might be too easy and would not require
the system to learn much about the structure of the
data. This intuition is partly justified by the following
theoretical result: If the noise is equal to the data dis-
tribution, then Σ in Theorem 3 equals two times the
Cramér-Rao bound. Thus, for a noise distribution that
is close to the data distribution, we have some guaran-
tee that the MSE is reasonably close to the theoretical
optimum.4 As a consequence, one could choose a noise
distribution by first estimating a preliminary model of
the data, and then use this preliminary model as the
noise distribution.

3 Simulations

3.1 Simulations with artificial data

We illustrate noise-contrastive estimation with the es-
timation of an ICA model (Hyvärinen et al., 2001),
and compare its performance with other estimation
methods, namely MLE, MLE where the normaliza-
tion (partition function) is calculated with importance
sampling (see e.g. (Wasserman, 2004) for an intro-
duction to importance sampling), contrastive diver-

4At a first glance, this might be counterintuitive. In the
setting of logistic regression, however, we will then have to
learn that the two distributions are equal and that the
posterior probability for any point belonging to any of the
two classes is 50%, which is a well defined problem.

gence (Hinton, 2002), and score matching (Hyvärinen,
2005). MLE gives the performance baseline. It can,
however, only be used if an analytical expression for
the partition function is available. The other methods
can all be used to learn unnormalized models.

3.1.1 Data and unnormalized model

Data x ∈ R
4 is generated via the ICA model

x = As, (15)

where A = (a1, . . . ,a4) is a 4 × 4 mixing matrix. All
four independent sources in s follow a Laplacian den-
sity of unit variance and zero mean. The data log-pdf
ln pd(.) is thus

ln pd(x) = −
4

∑

i=1

√
2 |b⋆

i x| + (ln |detB⋆| − ln 4) , (16)

where b⋆
i is the i-th row of the matrix B⋆ = A−1. The

unnormalized model is

ln p0
m(x; α) = −

4
∑

i=1

√
2|bix|. (17)

The parameters α ∈ R
16 are the row vectors bi. For

noise-contrastive estimation, we consider also the nor-
malization constant to be a parameter and work with

ln pm(x; θ) = ln p0
m(x; α) + c. (18)

The scalar c is an estimate for the negative log-
partition function. The total set of the parameters for
noise-contrastive estimation is thus θ = {α, c} while
for the other methods, the parameters are given by α.
The true values of the parameters are the vectors b⋆

i

for α and c⋆ = ln |detB⋆| − ln 4 for c.

3.1.2 Estimation methods

For noise-contrastive estimation, we choose the con-
trastive noise y to be Gaussian with the same mean
and covariance matrix as x. The parameters θ are then
estimated by learning to discriminate between the data
x and the noise y, i.e. by maximizing JT in Eq. (3).
The optimization is done with a conjugate gradient
algorithm (Rasmussen, 2006).

We give now a short overview of the estimation meth-
ods that we used for comparison and comment on our
implementation:
In MLE, the parameters α are chosen such that the
probability for the observed data is maximized, i.e.

JMLE(α) =
1

T

∑

t

ln p0
m(x(t); α) − lnZ(α) (19)
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is maximized. Calculation of the gradient gives

∇αJMLE =
1

T

∑

t

∇α ln p0
m(x(t); α) − ∇αZ(α)

Z(α)
, (20)

so that a steepest ascent algorithm can be used for
the optimization. In our implementation for the esti-
mation of the ICA model, we used the faster natural
gradient, see e.g. (Hyvärinen et al., 2001).

In MLE with importance sampling, the assumption
that an analytical expression for Z(α) is available is
dropped. Here, the partition function Z(α) is calcu-
lated from its definition in Eq. (2) via importance sam-
pling, i.e.

Z(α) ≈ 1

T

∑

t

p0
m(nt; α)

pIS(nt)
. (21)

The derivative ∇αZ(α) is calculated in the same way.
The samples nt are i.i.d. and follow the distribution
pIS(.). The ratio ∇αZ(α)/Z(α), and thus the gradi-
ent of JMLE in Eq. (20) becomes available for the op-
timization of JMLE. In our implementation, we made
for pIS(.) and the number of samples T the same choice
as for noise-contrastive estimation.

For contrastive divergence, note that the gradient of
the log partition function in Eq. (20) can be rewritten
as

∇αZ(α)

Z(α)
=

∫

pm(n; α)∇αp0
m(n; α)dn. (22)

If we had data nt at hand which follows the model
density pm(.; α), we could evaluate the last equation by
taking the sample average. In contrastive divergence,
data nt is created which follows approximately pm(.; α)
by means of Markov Chain Monte Carlo sampling. In
our implementation, we used one step of Hamiltonian
Monte Carlo (MacKay, 2002) with three leapfrog steps.

For score matching, the cost function

Jsm(α) =
1

T

∑

t,n

1

2
Ψ2

n(x(t); α) + Ψ′

n(x(t); α) (23)

must be minimized where Ψn(x; α) is the derivative
of the unnormalized model with respect to the n-th
element of x, i.e. Ψn(x; α) = ∂

x(n) ln p0
m(x; α). For

the ICA model with Laplacian sources, we obtain

Ψn(x; α) =
∑

i

g(bix)Bin, (24)

Ψ′

n(x; α) =
∑

i

g′(bix)B2
in, (25)

where g(u) = −
√

2sign(u). We can see here that
the sign-function is not smooth enough to be used in
score matching. We use therefore the approximation
sign(u) ≈ tanh(10u). This corresponds to assuming
a logistic density for the sources. The optimization is
then done by conjugate gradient (Rasmussen, 2006).

3.1.3 Results

Figure 1 (a) shows the MSE E ||θ̂T − θ⋆||2 for the dif-
ferent estimation methods. MLE gives the reference
performance (black crosses). In red, the performance
of noise-contrastive estimation (NCE) is shown. We
can see that the error for the demixing matrix B de-
creases with increasing sample size T (red circles). The
same holds for the error in the log-normalization con-
stant c (red squares). This illustrates the consistency
of the estimator as convergence in quadratic mean
implies convergence in probability. Figure (a) shows
also that noise-contrastive estimation performs better
than MLE where the normalization constant is cal-
culated with importance sampling (Imp sampl, ma-
genta asterisks). In particular, the estimate of the
log-normalization constant c is more accurate. Con-
trastive divergence (CD, green triangles) yields, for
fixed sample sizes, the best results after MLE. It
should be pointed out, however, that the distribu-
tion of the squared error has a much higher variance
for contrastive divergence than for the other methods
(around 50 times higher than noise-contrastive estima-
tion). The figure shows also that score matching (SM,
blue diamonds) is outperformed by the other methods.
The reason is that we had to resort to an approxima-
tion of the Laplacian density for the estimation with
score matching.

Figure 1 (b) investigates the trade-off between sta-
tistical and computational efficiency. MLE needs the
shortest computation time for a given precision in the
estimate. This reflects the fact that MLE, unlike the
other methods, works with properly normalized den-
sities. Among the methods for unnormalized models,
noise-contrastive estimation requires the least compu-
tation time to reach a required level of precision. Com-
pared to contrastive divergence, it is at least three
times faster.

Figure 1 (c) illustrates the idea of using a noise dis-
tribution which is as close to the data distribution as
possible. In a first step, the inverse B of the mixing
matrix A was estimated by contrasting the data with
Gaussian noise as in Figure 1 (a). In a second step,
contrastive noise was generated by mixing Laplacian
sources of unit variance with the matrix Â = B̂−1. The
performance for this kind of noise is shown in blue. We
see that fine-tuning the parameters with the Laplacian
contrastive noise results in estimates of smaller MSE.
Testing for the significance of the difference of the MSE
before and after fine-tuning gives p-values < 10−12.

Figure 1 (d) shows that, for large sample sizes T ,
Corollary 1 predicts correctly the MSE of the parame-
ters: The MSE decays as tr(Σ)/T , where Σ was defined
in Theorem 3. Note that here, the set of parameters
includes the parameter for the normalization constant.
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(d) Asymptotic behavior

Figure 1: Noise-contrastive estimation of an ICA model and comparison to other estimation methods. Figure
(a) shows the mean squared error (MSE) for the estimation methods in function of the sample size. Figure (b)
shows the estimation error in function of the computation time. Among the methods for unnormalized models,
noise-contrastive estimation (NCE) requires the least computation time to reach a required level of precision.
Figure (c) shows that NCE with Laplacian contrastive noise leads to a better estimate than NCE with Gaussian
noise. Figure (d) shows that Corollary 1 describes the behavior of the MSE for large sample sizes correctly.
Simulation and plotting details: Figures (a)-(c) show the median of the simulation results. In (d), we took the
average. For each sample size T , averaging is based on 500 random mixing matrices A with condition numbers less
than 10. In figures (a),(c) and (d), we started for each mixing matrix the optimization at 5 different initializations
in order to avoid local optima. This was not possible for contrastive divergence (CD) as it does not have a proper
objective function. This might be the reason for the higher error variance of CD that we have pointed out in
the main text. For NCE and score matching (SM), we relied on the built-in criteria of (Rasmussen, 2006) to
determine convergence. For the other methods, we did not use a particular convergence criterion: They were all
given a sufficiently long running time to assure that the algorithms had converged. In figure (b), we performed
only one optimization run per mixing matrix to make the comparison fair. Note that, while the other figures
show the MSE at time of convergence of the algorithms, this figure shows the behavior of the error during the
runs. In more detail, the curves in the figure show the, on average, minimal possible estimation error at a given
time. For any given method at hand, the curve was created as follows: We monitored for each mixing matrix
the estimation error and the elapsed time during the runs. This was done for all the sample sizes that we used
in figure (a). For any fixed time t0, we obtained in that way a set of estimation errors, one for each sample size.
We retained then the smallest error. This gives the minimal possible estimation error that can be achieved by
time t0. Taking the median over all 500 mixing matrices yielded, for a given method, the curve shown in the
figure. Note that, by construction, the curves in the figure do not depend on the stopping criterion. Comparing
figure (b) with figure (a) shows furthermore that the curves in (b) flatten out at error levels that correspond to
the MSE in figure (a) for the sample size T = 16000, i.e. log 10(T ) ≈ 4.2. This was the largest sample size used
in the simulations. For larger sample sizes, the curves would flatten out at lower error levels.
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3.2 Simulations with natural images

We use here noise-contrastive estimation to learn the
statistical structure of natural images. Current models
of natural images can be broadly divided into patch-
based models and Markov Random Field (MRF) based
models. Patch-based models are mostly two-layer
models (Osindero et al., 2006; Köster & Hyvärinen,
2007; Karklin & Lewicki, 2005), although in (Osin-
dero & Hinton, 2008) a three-layer model is presented.
Most of these models are unnormalized. Score match-
ing and contrastive divergence have typically been
used to estimate them. For the learning of MRF from
natural images, contrastive divergence has been used
in (Roth & Black, 2009), while (Köster et al., 2009)
employs score matching.

3.2.1 Patch-model

Natural image data was obtained by sampling patches
of size 30 × 30 pixel from images of van Hateren’s
database which depict wild-life scenes only. As prepro-
cessing, we removed the DC component of each patch,
whitened the data, and reduced the dimensions from
900 to 225. The dimension reduction implied that we
retained 92 % of the variance of the data. As a novel
preprocessing step, we then further normalized each
image patch so that it had zero DC value and unit
variance. The whitened data was thus projected onto
a sphere. Projection onto a sphere can be considered
as a form of divisive normalization (Lyu & Simoncelli,
2009). For the contrastive noise, we used a uniform
distribution on the sphere.

Our model for a patch x is

log pm(x; θ) =
∑

n

fth

(

ln
[

vn (Wx)
2
+ 1

]

+ bn

)

+ c,

where the squaring operation is applied to every ele-
ment of the vector Wx, and fth(.) is a smooth thresh-
olding function.5 The parameters θ of the model
are the matrix W ∈ R

225×225, the 225 row vectors
vn ∈ R

225 and the equal number of bias terms bn which
define the thresholds, as well as c for the normaliza-
tion of the pdf. The only constraint we are imposing
is that the vectors vn are limited to be non-negative.

We learned the model in three steps: First, we learned
all the parameters but keeping the second layer (the
matrix V with row vectors vn), fixed to identity. The
second step was learning of V with the other parame-
ters held fixed. Initializing V randomly to small values
proved helpful. When the objective function reached
again the level it had at the end of the first step, we
switched, as the third step, to concurrent learning of
all parameters. For the optimization, we used a con-
jugate gradient algorithm (Rasmussen, 2006).

5fth(u) = 0.25 ln(cosh(2u)) + 0.5u + 0.17

Figure 2 (a) shows the estimation results. The first
layer features wi (rows of W ) are Gabor-like (“simple
cells”). The second layer weights vi pool together fea-
tures of similar orientation and frequency, which are
not necessarily centered at the same location (“com-
plex cells”). The results correspond to those reported
in (Köster & Hyvärinen, 2007) and (Osindero et al.,
2006).

3.2.2 Markov random field

We used basically the same data, preprocessing and
contrastive noise as for the patch based model. In
order to train a MRF with clique size 15 pixels, we
used, however, image patches of size 45 × 45 pixel.6

Furthermore, for whitening, we employed a whitening
filter of size 9× 9 pixel. No redundancy reduction was
performed.

Denote by I(ξ) the pixel value of an image I(.) at
position ξ. Our model for an image I(.) is

log pm(I; θ) =
∑

ξ,i

fth





∑

ξ′

wi(ξ
′)Iw(ξ + ξ′) + bi



 + c,

where Iw(.) is the image I(.) filtered with the whiten-
ing filter. The parameters θ of the model are the filters
wi(.) (size 7×7 pixel), the thresholds bi for i = 1 . . . 25,
and c for the normalization of the pdf.

Figure 2 shows the learned filters wi(.) after convolu-
tion with the whitening filter. The filters are rather
high-frequency and Gabor-like. This is different com-
pared to (Roth & Black, 2009), where the filters had
no clear structure. In (Köster et al., 2009), the filters,
which were shown in the whitened space, were also
Gabor-like. However, unlike in our model, a norm con-
straint on the filters was there necessary to get several
non-vanishing filters.

4 Conclusion

We proposed here a new estimation principle, noise-
contrastive estimation, which consistently estimates
sophisticated statistical models that do not need to be
normalized (e.g. energy-based models or Markov ran-
dom fields). In fact, the normalization constant can
be estimated as any other parameter of the model.
One benefit of having an estimate for the normaliza-
tion constant at hand is that it could be used to com-
pare the likelihood of several distinct models. Further-
more, the principle shows a new connection between
unsupervised and supervised learning.

For a tractable ICA model, we compared noise-
contrastive estimation with other methods that can

6Although the MRF is a model for an entire image,
training can be done with image patches, see (Köster et al.,
2009).



Noise-contrastive estimation

(a) Patch-model (patch size: 30 pixels)

Learned filters convolved with whitening filters

(b) MRF (clique size: 15 pixels)

Figure 2: Noise-contrastive estimation of models for natural images. (a) Random selection of 2 × 10 out of 255
pooling patterns. Every vector vi corresponds to a pooling pattern. The patches in pooling pattern i0 show the
wi and the black bar under each patch indicates the strength vi0 (n) by which a certain wn is pooled by vi0 . (b)
Learned filters wi(.) in the original space, i.e. after convolution with the whitening filter. The black bar under
each patch indicates the norm of the filter.

be used to estimate unnormalized models. Noise-
contrastive estimation is found to compare favorably.
It offers the best trade-off between computational and
statistical efficiency. We then applied noise-contrastive
estimation to the learning of an energy-based two-layer
model and a Markov random field model of natural im-
ages. The results confirmed the validity of the estima-
tion principle: For the two-layer model, we obtained
simple and complex cell properties in the first two lay-
ers. For the Markov random field, highly structured
Gabor-like filters were obtained. Moreover, the two-
layer model could be readily extended to have more
layers. An important potential application of our esti-
mation principle lies thus in deep learning.

We used in previous work classification based on logis-
tic regression to learn features from images (Gutmann
& Hyvärinen, 2009). However, only one layer of Gabor
features was learned in that paper, and, importantly,
such learning was heuristic and not connected to esti-
mation theory. Here, we showed an explicit connection
to statistical estimation and provided a formal analy-
sis of the learning in terms of estimation theory. This
connection leads to further extensions of the principle
which will be treated in future work.
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