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Abstract

We consider the task of estimating, from observed data, lsgmitstic model that is parameterized
by a finite number of parameters. In particular, we are camsid the situation where the model
probability density function is unnormalized. That is, thedel is only specified up to the partition
function. The partition function normalizes a model so tihattegrates to one for any choice of
the parameters. However, it is often impossible to obtain @losed form. Gibbs distributions,
Markov and multi-layer networks are examples of models wizgralytical normalization is often
impossible. Maximum likelihood estimation can then not Bediwithout resorting to numerical
approximations which are often computationally expensiVe propose here a new objective func-
tion for the estimation of both normalized and unnormaligemtiels. The basic idea is to perform
nonlinear logistic regression to discriminate betweeroteerved data and some artificially gener-
ated noise. With this approach, the normalizing partitiemction can be estimated like any other
parameter. We prove that the new estimation method leadsdosistent (convergent) estimator
of the parameters. For large noise sample sizes, the nemagstiis furthermore shown to be-
have like the maximum likelihood estimator. In the estimatof unnormalized models, there is a
trade-off between statistical and computational perforcea We show that the new method strikes
a competitive trade-off in comparison to other estimati@thods for unnormalized models. As an
application to real data, we estimate novel two-layer modéhatural image statistics with spline
nonlinearities.

Keywords: unnormalized models, partition function, computatiortjneation, natural image
statistics

1. Introduction

This paper is about parametric density estimation, where the general satifpibws. A sample
X = (x1,...,x7,) of a random vectox € R" is observed which follows an unknown probabil-
ity density function (pdf)p;. The data-pdp, is modeled by a parameterized family of functions
{pm(.;0)}¢ Where@ is a vector of parameters. It is commonly assumed ghdtelongs to this
family. In other wordsp,(.) = py(.; 0*) for some parametét*. The parametric density estimation
problem is then about findingj" from the observed samplé. Any estimated must yield a properly
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A

normalized pdp,,(.; @) which satisfies

/ P (w;0)du =1, pm(0) > 0. )

These are two constraints in the estimation.

If the modelp,,(.; @) is such that the constraints hold for lland not only@, we say that the
model is normalized. The maximum likelihood principle can then be used to estimiatee model
is specified such that the positivity constraint but not the normalizatiortreamisis satisfied for alll
parameters, we say that the model is unnormalized. By assumption therevéenpat least one
value of the parameters for which an unnormalized model integrates to amely¥*. In order
to highlight that a model, parameterized by someis unnormalized, we denote it by, (.; ).
Unnormalized models are easy to specify by taking, for example, the extiareansform of a
suitable function.

The partition functiorZ («),

2(c) = [ b (wa)du, ®)

can be used to convert an unnormalized m@él; ) into a normalized one?, (.; ) /Z () inte-
grates to one for every value of. Examples of distributions which are often specified by means of
an unnormalized model and the partition function are Gibbs distributions,dMardtworks or mul-
tilayer networks. The function — Z () is, however, defined via an integral. Unless(.; ) has
some particularly convenient form, the integral cannot be computed améllygo that the function
Z(«) is not available in closed form. For low-dimensional problems, numericalriatieg can be
used to approximate the functidf( «) to a very high accuracy but for high-dimensional problems
this is computationally expensive. Our paper deals with density estimation in Hestbat is, with
density estimation when the computation of the partition function is analytically inbiactand
computationally expensive.

Several solutions for the estimation of unnormalized models which cannobrpealized in
closed form have been suggested so far. Geyer (1994) proposggraximate the calculation of
the partition function by means of importance sampling and then to maximize thexapate log-
likelihood (Monte Carlo maximum likelihood). Approximation of the gradient ofltlikelihood
led to another estimation method (contrastive divergence by Hinton, 2@3#mation of the pa-
rametera directly from an unnormalized modg}, (.; ) has been proposed by Hisinen (2005).
This approach, called score matching, avoids the problematic integratiortdim dbe partition
function altogether. All these methods need to balance the accuracy dtifmae and the time to
compute the estimate.

In this papel we propose a new estimation method for unnormalized models. The idea is to
considerZ, or c =1In1/Z, not any more as a function ef but as an additional parameter of the
model. That is, we extend the unnormalized madg(.; ) to include a normalizing parameter
and estimate

Inp,(;0)=mnp,(;a)+c,

with parameter vectd = (a, ¢). The estimat® = (&, &) is then such that the unnormalized model
PV (.;&) matches the shape pf;, while ¢ provides the proper scaling so that Equatiai holds.

1. Preliminary versions were presented at AISTATS (Gutmann andatifyan, 2010) and ICANN (Gutmann and
Hyvarinen, 2009).
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Unlike in the approach based on the partition function, we aim not at norm@i2ji.; o) for all

«a but only for&. This avoids the problematic integration in the definition of the partition function
a — Z(a). Such a separate estimation of shape and scale is, however, not pmsibsximum
likelihood estimation (MLE). The reason is that the likelihood can be made ailyittarge by
setting the normalizing parameterto larger and larger numbers. The new estimation method
which we propose here is based on the maximization of a well defined olejéatiction. There
are no constraints in the optimization so that powerful optimization techniquebecamployed.
The intuition behind the new objective function is to learn to classify betweeoliberved data
and some artificially generated noise. We approach thus the density estimatidenm, which is

an unsupervised learning problem, via supervised learning. The newdnetiies on noise which
the data is contrasted to, so that we will refer to it as “noise-contrastiveat®n”.

The paper is organized in four main sections. In Section 2, we presisetoontrastive estima-
tion and prove fundamental statistical properties such as consister8gction 3, we validate and
illustrate the derived properties on artificial data. We use artificial datdralSection 4 in order to
compare the new method to the aforementioned estimation methods with respeststatistical
and computational efficiency. In Section 5, we apply noise-contrassinmation to real data. We
estimate two-layer models of natural images and also learn the nonlinearitieshfieodata. This
section is fairly independent from the other ones. The reader who wafdsus on natural image
statistics may not need to go first through the previous sections. On théhattairthe reader whose
interest is in estimation theory only can skip this section without missing piecee tfidlory al-
though the section provides, using real data, a further illustration of thiinvgs of unnormalized
models and the new estimation method. Section 6 concludes the paper.

2. Noise-Contrastive Estimation

This section presents the theory of noise-contrastive estimation. In Sectionemotivate noise-
contrastive estimation and relate it to supervised learning. The definitionigg-gcontrastive es-
timation is given in Section 2.2. In Section 2.3, we prove that the estimator is tmmsisr both
normalized and unnormalized models, and derive its asymptotic distributioncliosa.4, we dis-
cuss practical aspects of the estimator and show that, in some limiting casdjrttet@sperforms
as well as MLE.

2.1 Density Estimation by Comparison

Density estimation is much about characterizing properties of the obseated d A convenient
way to describe properties is to describe them relative to the propertiesnaf keference dafd.
Let us assume that the reference (noise) #aisan i.i.d. sampléy,...yr,) of a random variable
y € R™ with pdf p,,. A relative description of the dat¥ is then given by the ratip;/p,, of the two
density functions. If the reference distributipp is known, one can, of course, obtaip from the
ratiopg/py,. In other words, if one knows the differences betwéeandY’, and also the properties
of Y, one can deduce from the differences the properties.of

Comparison between two data sets can be performed via classificationelnoriscriminate
between two data sets, the classifier needs to compare their properties.fotidtving, we show
that training a classifier based on logistic regression provides a relaegigtion ofX in the form
of an estimate of the ratip;/p;,.
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Denote byU = (uy,...,ur,+7,) the union of the two set& andY’, and assign to each data
point u; a binary class label’;: C; =1if u; € X andC; =0 if u; € Y. In logistic regression,
the posterior probabilities of the classes given the data are estimated. Adfthg @f the data
x is unknown, we model the class-conditional probability C' = 1) with p,,(.;8).2 The class-
conditional probability densities are thus

p(u|C =1;0) = pm(u;0), p(u|C = 0) = py(u).

The prior probabilities ar®(C' =1) =Ty /(T;+1,) andP(C =0) =T, /(T4 +1),). The posterior
probabilities for the classes are therefore

—1h1-0) — Pm(u;6) by vpn(u)
PO = o T G e ©

wherev is the ratioP(C = 0)/P(C = 1) =T,,/T4. In the following, we denoté’(C = 1|u;0) by
h(u;@). Introducing the log-rati@+(.; @) betweerp,,(.;0) andp,,

G(u;0) =Inpp,(u;0) —Inp, (u), 4
h(u; @) can be written as
h(w;0) =1, (G(u;0)), (5)
where .
r(u) = 1+vexp(—u) ©)

is the logistic function parameterized by
The class labelg’; are assumed Bernoulli distributed and independent. The conditional log-
likelihood is given by

Ta+Tn
5(0) = Z CtlnP(C't = 1|ut70)—|—(1—0t)lnP(Ct = 0|ut,0)
=1
o Tn
= > Infh(x46)]+ > In[l—h(y:;6)]. (7)
t=1 t=1

A

Optimizing ¢(6) with respect tad leads to an estimaié/(.; ) of the log-ratioln(p,/p,). That s,

an approximate description &f relative toY” can be obtained by optimization of Equati@h). The
sign-flipped objective function;-¢(0), is also known as the cross-entropy error function (Bishop,
1995).

Thus, density estimation, which is an unsupervised learning problem, caerfmed by
logistic regression, that is, supervised learning. While this connectiobhders discussed earlier
by Hastie et al. (2009, Chapter 14.2.4, pp. 495-497), in the next secti@will prove that even
unnormalized models can be estimated with the same principle.

2. Classicallypm (.; @) would, in the context of this section, be a normalized pdf. In our paperetier, may include
a parameter for the normalization of the model.
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2.2 Definition of the Estimator

Given an unnormalized statistical mog#gl (.; «), we include for normalization an additional pa-
rameterc into the model. That is, we define the model as

Inp,(;0)= lnpgn(.;a) +c,

whered = (a, c). The parameter scales the unnormalized mogél (.; ) so that Equatioffl) can
be fulfilled. After learning¢ provides an estimate fon1/Z(&). If the initial model is normalized
in the first place, no such inclusion of a normalizing parameteneeded.

In line with the notation so far, we denote By = (xi,...,x7,) the observed data set that
consists ofl; independent observations »fe R". We denote by = (y1,...,yr,) an artificially
generated data set that consistdpt= T, independent observations of noige R™ with known
distributionp,,. The estimator is defined to be the argurr@ﬁtvvhich maximizes

Ty Tn
Jr(0) = j{d {Zln[h(xt;g)]—i—Zln[l—h(yt;B)]}, (8)
t=1 t=1

where the nonlinearityi(.; 8) was defined in Equatiofb). The objective functio/r is, up to the
division by T}, the log-likelihood in Equationi7). It can also be written as

Jr(8) = 2> n[A(x0)] + v > Inf1 ~h(yi0)]. ©)
=1 =1

Note thath(.;0) € (0 1), where zero is obtained in the limit 6f(.;0) — —oo and one in the limit
of G(.;0) — co. Zero is an upper bound fokr, which is reached if, for alt, h(x¢;0) andh(y;0)
tend to one and zero, respectively. Therefore, the optimal parafheisrsuch tha’G(ut;éT) is as
large as possible far; € X and as small as possible fay € Y. Intuitively, this means that logistic
regression has learned to discriminate between the two sets as well asgpossib

2.3 Properties of the Estimator

We characterize here the behavior of the estim@tofor large sample size%; and fixed ratiov.
Sincev is kept fixed,T,, = vT,; will also increase a% increases. The weak law of large numbers
shows that a; increases the objective functiofr(8) converges in probability td,

J(0) =E{In[h(x;0)]} +vE{In[1—h(y;0)]}. (10)
Let us denote by the objective/ seen as a function of,,(.) = Inp,,(.;0),

j(fm) = E {ln [TV (fm(x) - lnpn(x))]} +vE {hl [1 —Tv (fm(y) - lnpn(Y))]} : (11)

We start the characterization of the estimalgrby describing the optimization landscape .
The following theorem shows that the data-pdfcan be found by maximization af, that is by
learning a nonparametric classifier under the ideal situation of an infinitergrobdata.

Theorem 1 (Nonparametric estimation) .J attains a maximum af,,, = Inp,. There are no other
extrema if the noise density, is chosen such that it is nonzero whenepgrs nonzero.
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The proof is given in Appendix A.2. A fundamental point in the theorem i tth& maximization
is performed without any normalization constraint fgr. This is in stark contrast to MLE, where
exp(fm) Must integrate to one. With our objective function, no such constraintseaesgsary. The
maximizing pdf is found to have unit integral automatically.

The positivity condition forp,, in the theorem tells us that the data-pgdfcannot be inferred at
regions in the data space where there are no contrastive noise sangplesample, the estimation
of a pdfpy which is nonzero only on the positive real line by means of a noise distribpgidhat
has its support on the negative real line is impossible. The positivity condioie easily fulfilled
by taking, for example, a Gaussian as contrastive noise distribution.

In practice, the amount of data is limited and a finite number of parame@ter®™ specify
pm(.;0). This has two consequences for any estimation method that is based on cjimizast,
it restricts the space where the data-pgis searched for. Second, it may introduce local maxima
into the optimization landscape. For the characterization of the estimator in thidositua is
normally assumed that; follows the model, so that there is@ with py(.) = py,(.;0*). In the
following, we make this assumption.

Our second theorem shows tht, the value of9 which (globally) maximizes/, converges
to 8*. The correct estimate @f; is thus obtained as the sample sizeincreases. For unnormalized
models, the conclusion of the theorem is that maximizatiosi;ofeads to the correct estimates for
both the parametet in the unnormalized pdf", (.; &) and the normalizing parameter

Theorem 2 (Consistency)If conditions (a) to (c) are fulfilled thef;- converges in probability to
6*, 6,5 0.

(&) prn is nonzero whenevex; is nonzero

(b) supy |.Jr(6) —J(8)] 50

(c) The matrixZ, = [g(u)g(u)? P,(u)pg(u)du has full rank, where

vpn(u)

u) = Vylnp,,(u;0)|e+, Pu)=——.
g( ) onp ( )’9 ( ) pd(u) +Vpn(ll)
The proof is given in Appendix A.3. Condition (a) is inherited from Theore. Conditions (b)
and (c) have their counterparts in MLE (see for example Wassermad, Z0@orem 9.13): We
need in (b) uniform convergence in probability &f to J; in MLE, uniform convergence of the
log-likelihood to the Kullback-Leibler divergence is required likewise. @itian (c) assures that
for large sample sizes, the objective functibnbecomes peaked enough around the true \@iue
This imposes a constraint on the moggl(.; @) via the vectoig. A similar constraint is required in
MLE.

The next theorem describes the distribution of the estimation &frer- %) for large sample

sizes. The proof is given in Appendix A.4.

Theorem 3 (Asymptotic normality) \/Td(éT — 6*) is asymptotically normal with mean zero and
covariance matrixx,

2=, (14 )T, EPe) B(Re) T
whereE(P,g) = [ P,(u)g(u)ps(u)du.

312



NOISE-CONTRASTIVE ESTIMATION

From the distribution of/T;(67 — 6*), we can easily evaluate the asymptotic mean squared error
(MSE) of the estimator.

Corollary 4 For large sample siz€g,;, the mean squared errat (| 67 — 6| \2) equalstr(X)/Ty.

Proof Using that for any vectov, ||v||?> = tr(vv’), the corollary follows directly from the defini-
tion of the MSE and Theorem 3. [

2.4 Choosing the Noise

Theorem 3 shows that the noise distributignand the ratior = 7,,/T; have an influence on the
accuracy of the estima-. A natural question to ask is what, from a statistical standpoint, the best
choice ofp,, andv is. Our result on consistency (Theorem 2) also includes a technicaraims

for p,, but this one is so mild that many distributions will satisfy it.

Theorem 2 shows that, for a given samples size P, tends to one as the siZg, of the
contrastive noise sample is made larger and larger. This implies that forJdathe covariance
matrix 3 does not depend on the choice of the noise distribytipnWe have thus the following
corollary.

Corollary 5 For v — o0, X is independent of the choice gf and equals
=T '-I 'E(g)E(g)' T

whereE(g) = [ g(u)pa(u)du andZ = [ g(u)g(u)”pa(u)du.

The asymptotic distribution of the estimation error becomes thus independenp,ft Hence, as
the size of the contrastive-noise sampléncreases, the choice of the contrastive-noise distribution
becomes less and less important. Moreover, for normalized models, wdhgavesult that the
estimation error has the same distribution as the estimation error in MLE.

Corollary 6 For normalized models, noise-contrastive estimation is, in the limit-ef oo, asymp-
totically Fisher-efficient for all choices gf,.

Proof For normalized models, no normalizing parametes needed. In Corollary 5, the function
g is then the score function as in MLE, and the mafiis the Fisher information matrix. Since the
expectatiorf(g) is zero, the covariance matr® is the inverse of the Fisher information matrilk.

The corollaries above give one answer to the question on how to chaoseisie distributiom,, and
the ratiov: If v is made large enough, the actual choice,pfs not of great importance. Note that
this answer considers only estimation accuracy and ignores the computiiamhassociated with
the processing of noise. In Section 4, we will analyze the trade-off legtwstimation accuracy and
computation time.

For any given, one could try to find the noise distribution which minimizes the MSJi; —
9*”2. However, this minimization turns out to be quite difficult. Intuitively, one couidktihat a
good candidate for the noise distributipp is a distribution which is close to the data distribution
pq. If p,, is too different fronpg, the classification problem might be too easy and would not require
the system to learn much about the structure of the data. This intuition is patifiefidy the
following theoretical result:

313



GUTMANN AND HYVARINEN

Corollary 7 If p, = pq thenS = (1 + 5) (I—l —I7'E(g) E(g)T:r—l).

Proof The corollary follows from Theorem 3 and the fact tiftequalsy /(1 + v) for p, = ps. B

For normalized models, we see that for 1, 3 is two times the inverse of the Fisher information
matrix, and that for = 10, the ratio is already down to 1.1. For a noise distribution that is close to
the data distribution, we have thus even for moderate valuessofme guarantee that the MSE is
reasonably close to the theoretical optimum.

To get estimates with a small estimation error, the foregoing discussion sutige&iowing

1. Choose noise for which an analytical expressiorigr, is available.
2. Choose noise that can be sampled easily.

3. Choose noise that is in some aspect, for example with respect to its coeagaucture,
similar to the data.

4. Make the noise sample size as large as computationally possible.

Some examples for suitable noise distributions are Gaussian distributionssi@amixture dis-
tributions, or ICA distributions. Uniform distributions are also suitable as lasdheir support
includes the support of the data distribution so that condition (a) in The2reofds.

3. Simulations to Validate and lllustrate the Theory

In this sectior® we validate and illustrate the theoretical properties of noise-contrastiveagion.
In Section 3.1, we focus on the consistency of the estimator. In Section@\alidate our theoret-
ical results on the distribution of the estimation error, and investigate its depeynodn the ratio/
between noise and data sample size. In Section 3.3, we study how thezeréer of the estimator
scales with the dimension of the data.

3.1 Consistency

For the illustration of consistency, we estimate here the parameters of a zarormudtivariate
Gaussian. Its log-pdf is

1 1
Inpy(x) = —§XTA*X—|—C*, = (—21n |det A*| — ZIH(ZT(‘)) , (12)

wherec* does not depend anand normalizeg, to integrate to one. The precision matAX is the
inverse of the covariance matrix. It is thus a symmetric matrix. The dimensigrisdofieren = 5.

As we are mostly interested in the estimation of unnormalized models, we considethbe
hypothetical situation where we want to estimate the model

Inp? (x;0) = ——xT Ax

without knowing how to normalize it in closed form. This unnormalized model &iavise Markov
network with quadratic node and edge potentials (see for example Koll&raguinan, 2009, Chap-
ter 7). The parameter vectarc R'® contains the coefficients of the lower-triangular parAads the

3. Matlab code for this and the other sections can be downloaded fronothepgage of the first author.
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matrix is symmetric. For noise-contrastive estimation, we add an additional lminggarameter
c to the model. The model that we estimate is thus

Inp,,(x;0) = Inp?, (x;a) +c.

The model has 16 parameters given®y- (a,c). They are estimated by maximization of the
objective functionJr (@) in Equation(8). We used a standard normal distribution fgr. The
optimization was performed with the nonlinear conjugate gradient algorithnasinidssen (2006).

3.1.1 RESULTS

The presented results are an average over 500 estimation problemshehtgtes precision matrix
A* was drawn at random with the condition number being controlled to be smalletgha The
sampling ofA* was performed by randomly sampling its eigenvalues and eigenvectorsrewe d
the eigenvalues from an uniform distribution on the interjgal 0.9]. The orthonormal matrix
E with the eigenvectors was created by orthogonally projecting a mriwith elements drawn
independently from a standard Gaussian onto the set of orthonormal@salie: (MM )~1/2M.

Figure 1(a) and (b) show the mean squared error (MSEqforhich contains the elements of
the precision matrixA, and the normalizing parameterrespectively. The MSE as a function of
the data sample siZE; decays linearly on a log-log scale. This illustrates our result of consistenc
of the estimator, stated as Theorem 2, as convergence in quadratic mears icopkergence in
probability. The plots also show that taking more noise samplethan data samples,; leads
to more and more accurate estimates. The performance for noise-costesimation withy =
T,/T, equal to one is shown in blue with circles as markers. For that value thiere is a clear
difference compared to MLE (black triangles in Figure 1(a)). Howdheraccuracy of the estimate
improves strongly fow = 5 (green squares) ar = 10 (red diamonds) where the performance is
rather close to the performance of MLE.

Another way to visualize the results is by showing the Kullback-Leibler dimeces between
the 500 true and estimated distributions. Figure 2 shows boxplots of theyeihers forr = 1
(blue) andv = 10 (red). The results for MLE are shown in black. In line with the visualization
in Figure 1, the estimated distribution becomes closer to the true distribution aartipdessize
increases. Moreover, the divergences become clearly smalleésascreased from one to ten.

For unnormalized models, there is a subtlety in the computation of the divergaith a
validation set of siz’,, a sample versioy, of the Kullback-Leibler divergence is given by the
difference

Dy = Zlnpd (x¢) ( Zlnpm (x4;6)+1Inl/Z(& ))

”t 1 ”t 1
The first term is the rescaled log-likelihood (average, sign-invertetbles)-for the true distribution.
The term in parentheses is the rescaled log-likelinbaaf the estimated model. In the estimation
of unnormalized models, we do not assume to know the mapping Z(«) so thatL cannot be
computed. With noise-contrastive estimation, we can obtain an estimate

L= TZlnng(xt;&)—l—é, (13)

by using¢ in lieu of In1/Z(&), see Section 2.2. Figure 2(a) shows that the estimated is
sometimes negative which means ttiats sometimes larger than the rescaled log-likelihood of
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-4t

log10 squared error
i
(4]

log10 squared error

4.5 5 25 3

3.5 4 3.5 4
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(a) Precision matrix (b) Normalizing parameter

Figure 1: Validation of the theory of noise-contrastive estimation: Estimatiamsefor a 5 dimen-
sional Gaussian distribution. Figures (a) and (b) show the mean sgeacedor the
precision matrixA and the normalizing parameter respectively. The performance of
noise-contrastive estimation (NCE) approaches the performance of nraXikalihood
estimation (MLE, black triangles) as the ratie= T, /T, increases: the case of=1 is
shown with blue circlesy = 5 with green squares, and= 10 with red diamonds. The
thicker curves are the median of the performance for 500 random joreaigtrices with
condition number smaller than ten. The finer curves show the 0.9 and 0.filgsiahthe
logarithm of the squared estimation error.

the true distribution. This happens becadsmn be an over or underestimatelofl /Z(&). This
result follows from Figure 2(b) where we have compufeg with the analytical expression for
In1/Z(&), which is available for the Gaussian model considered here, see Eqitjon

3.2 Distribution of the Estimation Error

We validate and illustrate further properties of our estimator using the ICA hiseke for example
Hyvarinen et al., 2001b)
x = As. (14)

In this subsection; = 4, thatisx € R*, andA = (ay,...,a4) is a4 x 4 mixing matrix. The sources
in the vectors € R* are identically distributed and independent from each other so that the data
log-pdflnp, is

Inpy(x) = Zf(bz*x) +c*. (15)
i=1

Thei-th row of the matrixB* = A~! is denoted byb*. We consider here Laplacian sources of unit
variance and zero mean. The nonlineayitgnd the constant®, which normalizeg, to integrate
to one, are in this case given by

fu) = —v2[ul, c*:ln\detB*\—gan. (16)
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Figure 2: Validation of the theory of noise-contrastive estimation: Distribatmithe Kullback-
Leibler divergences between the true and estimated 5 dimensional Gaudstareach
sample size, from left to right, the results for maximum likelihood estimation (MLE) ar
shown in black, the results for noise-contrastive estimation (NCE)mth 0 in red, and
the results forr = 1 in blue. The sizd, of the validation set was00000. For MLE, the
results shown in Figures (a) and (b) are the same. For NCE, the divage Figure (a)
were computed using the estimatef In1/Z(&). In Figure (b), the analytical expression
forln1/Z(&) was used.

As in Section 3.1, we apply noise-contrastive estimation to the hypotheticai@ituehere we
want to estimate the unnormalized model
n
Inpy, (x;a) = f(bix) (17)
i=1
without knowing how to normalize it in closed form. The parameter veatar R'¢ contains the
elements of the row vectots,. For noise-contrastive estimation, we add an additional normalizing
parameter and estimate the model

Inp, (x;6) = Inp), (x; @) +c,

with @ = (a,c). As for the Gaussian case, we estimétby maximizingJr(8) in Equation(8)
with the nonlinear conjugate gradient algorithm of Rasmussen (2006)h&apise distributiop,,,
we used a Gaussian distribution with covariance matrix given by the samgeaamee of the data.

3.2.1 RESULTS

In Figures 3 and 4, we illustrate Theorem 2 on consistency and Theommil® asymptotic dis-
tribution of the estimator, as well as its corollaries. The results are avecagess00 random
estimation problems. The mixing matricAswere drawn at random by drawing their elements in-
dependently from a standard Gaussian and only accepting matrices velsichdondition number
smaller than ten.
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Figure 3(a) and (b) show the mean squared error (MSE}xfaorresponding to the mixing ma-
trix, and the normalizing parameterrespectively. As illustrated for the Gaussian case in Figure 1,
this figure visualizes the consistency of noise-contrastive estimation. Fudhe we see again
that makingr = T,,/T}; larger leads to a reduction of the error. The reduction gets, howenalies
asv increases. On average, changinffom one (red curve with asterisks as markers) to ten (light
blue squares) reduces the MSE for the mixing matrix by 53%; relative<td 0, v = 100 (magenta
diamonds) leads to a reduction of 18%. Fkpthe relative decrease in the MSE is 60% and 17%,
respectively.

In Figure 4(a), we test the theoretical prediction of Corollary 4 that, fgel@amples sizeg;,
the MSE decays liker 3 /T,. The covariance matriX can be numerically evaluated according to
its definition in Theorem 3. This allows for a prediction of the MSE that can be compared to the
MSE obtained in the simulations. The figure shows that the MSE from the simddtairelled
“sim” in the figure) matches the prediction (“pred”) for lar@g. Furthermore, we see again that
for large v, the performance of noise-contrastive estimation is close to the perfoenaéiidLE.

In other words, the trace & is close to the trace of the Fisher information matrix. Note that for
clarity, we only show the curves fore {0.1,1,100}. The curve forr = 10 was, as in Figure 3(a)
and (b), very close to the curve for= 100.

In Figure 4(b), we investigate how the valueto® (the asymptotic variance) depends on the
ratio v. Note that the covariance matr® includes terms related to the parametefThe Fisher
information matrix includes, in contrast B8, only terms related to the mixing matrix. For better
comparison with MLE, we show thus in the figure the trac&dboth with the contribution of the
normalizing parametet (blue squares) and without (red circles). For the latter case, theedduc
trace of3l, which we will denote byr 3 5, approaches the trace of the Fisher information matrix.
Corollary 6 stated that noise-contrastive estimation is asymptotically Fistigieeffor large values
of v if the normalizing constant is not estimated. Here, we see that this resultpgdsaxanately
holds for our unnormalized model where the normalizing constant needsdstimated.

Figure 4(c) gives further details to which extent the estimation becomes rifceldif the
model is unnormalized. We computed numerically the asymptotic variarEef the model is
correctly normalized, and compared it to the asymptotic variangg; for the unnormalized model.
The figure shows the distribution of the ratioEB/trS for different values of.. Interestingly, the
ratio is almost equal to one for all tested values dflence, additional estimation of the normalizing
constant does not really seem to have had a negative effect on tha@cof the estimates for the
mixing matrix.

In Corollary 7, we have considered the hypothetical case where the digisibutionp,, is the
same as the data distributipp. In Figure 4(d), we plot for that situation the asymptotic variance as
a function ofv (green curve). For reference, we plot again the curve for Gaussiatrastive noise
(red circles, same as in Figure 4(b)). In both cases, we only show yingpéstic variancer X g
for the parameters that correspond to the mixing matrix. The asymptotic vardang, = py is,
for a given value o¥, always smaller than the asymptotic variance for the case where the noise is
Gaussian. However, by choosinglarge enough for the case of Gaussian noise, it is possible to
get estimates which are as accurate as those obtained in the hypothetit@irsiiteerep,, = pq.
Moreover, for larger, the performance is the same for both cases: both converge to thementoe
of MLE.

4. See Appendix B.1 for the calculations in the special case of orthbgoriag matrices.
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Figure 3: Validation of the theory of noise-contrastive estimation: Estimatimrsefor an ICA
model with four sources. Figures (a) and (b) show the mean squad@rthe mix-
ing matrix B and the normalizing parameterrespectively. The performance of noise-
contrastive estimation (NCE) approaches the performance of maximum li@elisti-
mation (MLE, black triangles) as the ratio= T,, /T, increases: the case of= 0.01
is shown with blue circles; = 0.1 with green crosses; = 1 with red asterisksy = 10
with light blue squares, and = 100 with magenta diamonds. The thicker curves are
the median of the performance for 500 random precision matrices with canditimber
smaller than ten. The finer curves show the 0.9 and 0.1 quantiles of the logafithe
squared estimation error. To increase readability of the plots, the quamtiles=f 0.1
andv = 10 are not shown.

3.3 Scaling Properties

We use the ICA model from the previous subsection to study the behaviooisé-contrastive
estimation as the dimension of the data increases. As before, we estimate the parameters by
maximizingJ7(0) in Equation(8) with the nonlinear conjugate gradient algorithm of Rasmussen
(2006). Again, we use a Gaussian with the same covariance structueedaddlas noise distribution

Pn-

The randomly chosen x n mixing matricesA are restricted to be orthogonal. Orthogonality
is only used to set up the estimation problem; in the estimation, the orthogonalityriyrag not
used. A reason for this restriction is that drawing mixing matrices at randoim the previous
subsection leads more and more often to badly conditioned matrices as theidimeneases.
Another reason is that the estimation error for orthogonal mixing matricesndeponly on the
dimensionn and not on the particular mixing matrix chosen, see Appendix B.1 for a pHmice,
this restriction allows us to isolate the effect of dimensioon the estimation accuracy.
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Figure 4: Validation of the theory of noise-contrastive estimation: Estimation far large sample
sizes. Figure (a) shows that Corollary 4 correctly predicts the MSE1ige lsamples sizes
T,. Figure (b) shows the asymptotic variane@: as a function ofs. Figure (c) shows
a boxplot of the ratio between the asymptotic variance when the model ismalioed
and the asymptotic variance when the model is normalized. Figure (d) cosmpaise-
contrastive estimation with Gaussian noise to the hypothetical case wherpials the
data distributionpy. As in Figure 3, the curves in all figures but in Figure (c) are the
median of the results for 500 random mixing matrices. The boxplot in Figyirgh(mvs
the distribution for all the 500 matrices.

3.3.1 RESULTS

Figure 5(a) shows the asymptotic varianc& 5 related to the mixing matrix as a function of the
dimensiom. Noise-contrastive estimation (NCE) with=T,,/T; =1 is shown in red with asterisks
as markers, maximum likelihood estimation (MLE) in black using triangles as nsarkee markers
show the theoretical prediction based on Corollary 4; the boxplots the simulasults for ten
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Figure 5: Investigating how noise-contrastive estimation (NCE) scales wetdithension of the
data. Figure (a) shows the logarithm of the asymptotic variance for NCEI(, /T, = 1,
in red) and MLE (in black). The boxplots show simulation results; the asteaski
triangles theoretical predictions for NCE and MLE, respectively. Tineestigure shows
the ratio of the two asymptotic variances (blue circles, right scale). Fignrpldts the
ratio of the mean squared errors of the two estimators as a functiopefdimensiom.
The value ofv needs to be increased as the dimensions increases; a linear increase lead
to acceptable results.

random mixing matrices witi,; = 80000. The simulation results match the predictions well, which
validates the theory of noise-contrastive estimation in large dimensions.

Since the number of parameters increases with latgéris natural thatr X 5 increases with
n. However, for noise-contrastive estimation, the increase is larger traMl{E. This is more
clearly visible by considering the blue curve in Figure 5(a) (circles as engylscale on the right
axis). The curve shows the ratio between the asymptotic variance forcmistive estimation
and for MLE. By definition of the asymptotic variance, this ratio is equal to &tie rof the two
estimation errors obtained with the two different methods. The ratio doegpend on the number
of parameters and the sample siZge It is hence a suitable performance indicator to investigate
how noise-contrastive estimation scales with the dimensiofthe data. The plot shows that for
fixed v, the performance deteriorates as the dimension increases. In ordenteraxt this decline
in performance, the parameteneeds to be increased as the dimension increases.

Figure 5(b) shows the ratio of the squared errors as a functiofvoivhere we varied from ten
to eighty dimensions as in Figure 5(a). Importantly, both theoretical resuitsemve numerically
calculated the asymptotic variances, and simulation results show that faanadde performance
in comparison to MLEy does not need to be increased exponentially as the dimensimneases;
a linear increase with, for instance,c [n/2 n| suffices to lead to estimation errors of about 2-4
times of those that are obtained by estimating normalized models with MLE.
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4. Investigating the Trade-Off between Statistical and Corputational Performance

We have seen that for large ratio®f noise sample sizé,, to data sample siZ€;, the estimation
error for noise-contrastive estimation behaves like the error in MLEldfger, however, the com-
putational load becomes also heavier because more noise samples negudoelseed. There is
thus a trade-off between statistical and computational performance.aSuatie-off exists also in
other estimation methods for unnormalized models. In this section, we investigatade-off in
noise-contrastive estimation, and compare it to the trade-off in Monte Castormae likelihood
estimation (Geyer, 1994), contrastive divergence (Hinton, 2002)pansistent contrastive diver-
genceé (Younes, 1989; Tieleman, 2008), as well as score matchingyen, 2005).

In Section 4.1, we comment on the data which we use in the comparison. InrBé&jonve
review the different estimation methods with focus on the trade-off betwatstial and computa-
tional performance. In Section 4.3, we point out the limitations of our compakisfore presenting
the simulation results in Section 4.4.

4.1 Data Used in the Comparison

For the comparison, we use artificial data which follows the ICA model in tguél4) with the
data log-pdfin p,; being given by Equatiofil5). We set the dimension to ten and usé&; = 8000
observations to estimate the parameters. In a first comparison, we asspiagdrasources in the
ICA model. The log-pdfinp, is then specified with Equatiofi6). Note that this log-pdf has a
sharp peak around zero where it is not continuously differentiablea dacond comparison, we
use sources that follow the smoother logistic density. The nonlineArdyd the log normalizing
constant™ in Equation(15) are in that case

f(u) = —2Incosh ( T

T
——u ), c¢* =In|deB* —i—nln(
2v/3 ) | |

)

respectively. We are thus making the comparison for a relatively nonsnamatlsmooth den-
sity. Both comparisons are based on 100 randomly chosen mixing matricesowdhion number
smaller than 10.

4.2 Estimation Methods Used in the Comparison

We introduce here briefly the different methods and comment on our impletioenéed choices
of parameters.

4.2.1 NOISE-CONTRASTIVE ESTIMATION

To estimate the parameters, we maximizein Equation(8). We use here a Gaussian noise density
pn, With a covariance matrix equal to the sample covariance of the data. A&®b&fds maximized
using the nonlinear conjugate gradient method of Rasmussen (2006). Jf@uhahe trade-off
between statistical and computational performance, we measured the estienadiceind the time
needed to optimizdy for v € {1,2,5,10,20,50, 100,200,400, 1000}.

5. Persistent contrastive divergence is also known under the naomastc MLE.
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4.2.2 MONTE CARLO MAXIMUM LIKELIHOOD ESTIMATION

For normalized models, an estimate for the parametecan be obtained by choosing them such
that the probability of the observed data is maximized. This is done by maximizdtion o

JuLe (a Zlnpm (x;0) —InZ(cv). (18)

If no analytical expression for the partition functidiic) is available, importance sampling can be
used to numerically approximaf «) via its definition in Equatiorf2), that is
Lt phy ()

Zla) ~ —
(@) Th = ms(n)

Then, are independent observations of “noise” with distributign Note that more sophisticated
ways exist to numerically calculate the valuesbt a givena (see for example Robert and Casella,
2004, in particular Chapter 3 and Chapter 4). The simple approach ddmm® to the objective
function Jis(a) known as Monte Carlo maximum likelihood (Geyer, 1994),

1 <P (nga
Jis(a Zlnpm x¢ ;) —In (T me(t))

Ty = n = pis(ng)

We maximized/is(«) with the nonlinear conjugate gradient algorithm of Rasmussen (2006).
Like in noise-contrastive estimation, there is a trade-off between statisectlrmance and
running time: The largef,, gets the better the approximation of the log-likelihood. Hence, the
estimates become more accurate but the optimizatiohsafikes also more time. To map out the
trade-off curve, we used the same valuegd'pt= T, as in noise-contrastive estimation, and also

the same noise distribution, thatig, = p,,.

4.2.3 ONTRASTIVE DIVERGENCE

If JuLe is maximized with a steepest ascent algorithm, the update rute fer

oyl = o+ 1 Vadue (@) oy (19)

whereyy, is the step-size. For the calculationdf, JuLe, the gradient of the log partition function

In Z(«) is needed, see Equatighg). Above, importance sampling was used to evallaté( o)

and its gradienV,In Z(a). The gradient of the log partition function can, however, also be ex-

pressed as

VaZ(e) _ [ php(n;a)
Z(a) ~. Z(a)

If we had datan; at hand which follows the normalized model densify(.;a)/Z (), the last
equation could be evaluated by taking the sample average. The pararrt&t&ra/e:ould then

be learned based on Equatifi®). In general, sampling from the model density is, however, only
possible by means of Markov chain Monte Carlo methods. In contrastieegdince (Hinton, 2002),

to computea 1, Markov chains are started at the data powyitsnd stopped after a few Monte
Carlo steps before they actually reach the stationary distribpfign ax.) /Z (cx.). The data points

VolnZ(a) = Valnp?, (n;a)dn. (20)
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n, that are created in that way follow thus only approximai€ly(.; «x)/Z (). For every update
of a the Markov chains are restarted from the Note that this update rule fax is not directly
optimizing a known objective function.

In our implementation, we used Hamiltonian Monte Carlo (see for example Nei) 26th a
rejection ratio of 10% for the sampling (like in Teh et al., 2004; Ranzato antbhii2010). There
are then four tuning parameters for contrastive divergence: The erunfiiMonte Carlo steps, the
number of “leapfrog” steps in Hamiltonian Monte Carlo, the choice of the segs g, as well as
the number of data points; and noise pointai; used in each update stepa@f The choice of the
tuning parameters will affect the estimation error and the computation time. Faooyarison
here, we used contrastive divergence with one and three Monte Gapl® (§lenoted by CD1 and
CDa3 in the figures below), together with either three or twenty leapfrog skaszato and Hinton
(2010) used CD1 with twenty leapfrog steps (below denoted by CD1 Zt)e Weh et al. (2004)
used CD1 30 to estimate unnormalized models from natural image data. kqy, thve considered
constant step sizes, as well as linearly and exponentially decaying step Eiar each update step,
we chose an equal number of data and noise points. We consideredéhsf aging all data in each
update step, and the case of using minibatches of only 100 randomly dltettsgpoints.

We selected the step sizg and the number of data points used in each update by means of
preliminary simulations on five data sets. We limited ourselves to contrastiveydivee with one
Monte Carlo and three leapfrog steps (CD1 3). For both Laplacian aislitogpurces, using mini-
batches with an exponential decaying step size gave the best resultesths are reported below
in Section 4.4. The use of minibatches led to faster estimation results withoctiragféheir accu-
racy. Exponentially decaying step sizes are advocated by the thedoncbhstic approximation; in
some cases, however, linear decay was found to be more approprégen(@n, 2008, Section 4.5).
For Laplacian sources, the initial step sjzg was 0.005; for logistic sources, it wag = 0.01.
Note that in this selection of the tuning parameters, we used the true paratoeterspute the
estimation error. Clearly, this cannot be done in real applications sincauthpdrameter values are
not known. The choice of the tuning parameters must then solely be basegerience, as well
as trial and error.

4.2.4 FERSISTENTCONTRASTIVE DIVERGENCE

As contrastive divergence, persistent contrastive divergenmen@s, 1989; Tieleman, 2008) uses
the update rule in Equatiofi9) together with an approximative evaluation of the integral in Equa-
tion (20) to learn the parameters. The integral is also computed based on Markov chain Monte
Carlo sampling. Unlike contrastive divergence, however, the Markamns are not restarted at
the data points;. For the computation otx;;, the Markov chains are initialized with the
samplesn; that were obtained in the previous iteration by running Markov chainsergimg to

PO (sax_1)/Z(ag_1). As in contrastive divergence, the Markov chains are only run fdiaats
time and stopped before having actually converged.

Since persistent contrastive divergence differs from contrastisergénce only by the initial-
ization of the Markov chains, it has the same tuning parameters. As in divérdisergence, we
used preliminary simulations to select suitable parameters: again, exponeaddizdlying step sizes
1 together with minibatches of size 100 gave the best performance. The peglynsimulations
yielded also the same initial step sizes as in contrastive divergence. It turned out, however,

6. Linear decayuy, = uo(1 — k/maxIteration), exponential decayu, = poC/(C + k) with C' = 5000.
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that the number of leapfrog steps in persistent contrastive divergereds to be larger than in
contrastive divergence: using, for example, only three leapfrog stepn contrastive divergence
resulted in a poor performance in terms of estimation accuracy. For thiésresported below in
Section 4.4, we used 20 and 40 leapfrog steps, together with one and/ihmés Carlo steps.

4.2.5 SOREMATCHING

In score matching (Hy&rinen, 2005), the parameter vecteris estimated by minimization of the

cost functionJsy,
Ty n

Jsm(a ZZ \112 (xt; ) + Wi(x4; ).

t 1li= 1

The term¥; (x; ) is the derivative of the unnormalized model with respect(td, thei-th element
of the vectorx,
olnp? (x;a)

ox(1)
The term¥/(x; ) denotes the derivative oF;(x; ) with respect tax(i). The presence of this
derivative may make the objective function and its gradient algebraicatgraomplicated if a
sophisticated model is estimated. For the ICA model with Laplacian soub¢es, o) equals

Ui(x;a) =

@) =Y —V2sign(b;x) B;; (21)
7j=1

which is not smooth enough to be used in score matching. Using the smootbxiampgtion
sign(u) ~ tanh(10u) is a way to obtain a smooth enough(x;a) and ¥/ (x; ). The optimiza-
tion of Jsy is done by the nonlinear conjugate gradient algorithm of Rasmussen)(200@ that,
unlike the estimation methods considered above, score matching does eat tuming parameter
which controls the trade-off between statistical and computational perfeanavioreover, score
matching does not rely on sampling.

4.3 Limitations of the Comparison

For all considered methods but contrastive and persistent contrasteegence, the algorithm
which is used to optimize the given objectives can be rather freely chdbénchoice will influence
the trade-off between statistical and computational performance. Heresathe optimization al-
gorithm by Rasmussen (2006). Our results below show thus the tradétb# different estimation
methods in combination with this particular optimization algorithm. With this optimization algo-
rithm, we used for each update all data. The algorithm is not suitable fdnagtc optimization
with minibatches (see for example Schraudolph and Graepel, 2002). Ogtonibased on mini-
batches may well lead not only for (persistent) contrastive divergengains in speed but also for
the other estimation methods, including noise-contrastive estimation.

It is well known that a Gaussian as noise (proposal) distribution is notptimal choice for
importance sampling if the data has heavy tails (see for example Wassermdn Capter 24).
Gaussian noise is not the optimal choice for noise-contrastive estimatiom. eithe presented
results should thus not be considered as a general comparison of tlestimation methods per
se. Importantly, however, the chosen setup allows one to assess h@acooisastive estimation
behaves when the data has heavier tails than the noise, which is oftendhe peactice.
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Finally, the reader may want to keep in mind that for other kinds of data, ticpkar also in
very high dimensions, differences may occur.

4.4 Results

We first compare noise-contrastive estimation with the methods for which ev¢hessame opti-
mization algorithm, that is Monte Carlo maximum likelihood estimation and score matcriieq.,
we compare it with contrastive and persistent contrastive divergence.

4.4.1 GOMPARISON WITHMONTE CARLO MLE AND SCOREMATCHING

Figure 6 shows the comparison of noise-contrastive estimation (NCEquedes), Monte Carlo
maximum likelihood (IS, blue circles) and score matching (SM, black trianglEsg left panels
show the simulation results in form of “result points” where the x-coordingpeesents the time
till the algorithm converged and the y-coordinate the estimation error acogence. Convergence
in the employed nonlinear conjugate gradient algorithm by Rasmussen) (@2@@s that the line
search procedure failed twice in a row to meet the strong Wolfe-Powedlithams (see for example
Sun and Yuan, 2006, Chapter 2.5.2). For score matching, 100 resot$ gorresponding to 100
different random mixing matrices are shown in each figure. For noisgasiive estimation and
Monte Carlo maximum likelihood, we used ten different values’ &fo that for these methods,
each figure shows 1000 result points. The panels on the right présestmulation result in a
more schematic way. For noise-contrastive estimation and Monte Carlo maximelihdiéd, the
different ellipses represent the outcomes for different values. dEach ellipse contains 90% of
the result points. We can see that increasimgduces the estimation error but it also increases the
running time. For score matching, there is no such trade-off.

Figure 6(a) shows that for Laplacian sources, noise-contrastivesg®n outperforms the other
methods in terms of the trade-off between statistical and computational pparfoe. The large
estimation error of score matching is likely to be due to the smooth approximatiore cfigh
function in Equatior{21). The figure also shows that noise-contrastive estimation handles ndise tha
has lighter tails than the data more gracefully than Monte Carlo maximum likelihdimagi®n.
The reason is that the nonlinearityu; 0) in the objective function in Equatiof8) is bounded even
if data and noise distribution do not match well (see also Pihlaja et al., 2010).

For logistic sources, shown in Figure 6(b), noise-contrastive estimatidmi@ante Carlo max-
imum likelihood perform equally. Score matching reaches its level of acgwmbout 20 times
faster than the other methods. Noise-contrastive estimation and Monte Cailoumalikelihood
can, however, have a higher estimation accuracy than score matching lirge enough. Score
matching can thus be considered to have a built-in trade-off between estirpationmance and
computation time: Computations are fast but the speed comes at the cosbefmpable to reach
an estimation accuracy as high as, for instance, noise-contrastive egtimatio

4.4.2 GOMPARISON WITH CONTRASTIVE AND PERSISTENTCONTRASTIVE DIVERGENCE

Since contrastive and persistent contrastive divergence do netmaabjective function and given
the randomness that is introduced by the minibatches, it is difficult to choosl&ahle stopping
criterion. Hence, we did not impose any stopping criterion but the maximal eupfhterations.
The two algorithms had always converged before this maximal number dféresavas reached in
the sense that the estimation error did not visibly decrease any more.
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We base our comparison on the estimation error as a function of the runningftiime algo-
rithm. This makes the comparison independent from the stopping criterioisthaed in noise-
contrastive estimation. For noise-contrastive estimation, the parametettrols the trade-off be-
tween computational and statistical performance; for contrastive asis{gert contrastive diver-
gence, it is the number of leapfrog steps and the number of Markov stegrsitacach update. We
compiled a trade-off curve for each of the one hundred estimation proltigrizking at any time
point the minimum estimation error over the various estimation errors that aieethftar different
values of the trade-off parametérsFigure 7 shows an example for noise-contrastive estimation
and contrastive divergence. The distribution of the trade-off cus/esown in Figure 8. For large
running times, the distribution of the estimation error is for all estimation methods sitoithe
one for maximum likelihood estimation. For shorter running times, noise-congastimation is
seen to have for Laplacian sources a better trade-off than the other metrmdogistic sources,
however, the situation is reversed.

4.4.3 SIMMARY

The foregoing simulation results and discussion suggest that all estimationdsdthde, in one
form or the other, estimation accuracy against computation speed. In téthis wade-off, noise-
contrastive estimation is particularly well suited for the estimation of data distrilstigth heavy
tails. In case of thin tails, noise-contrastive estimation performs similarly to Mo&ati® maximum
likelihood, and contrastive or persistent contrastive divergencealzetter trade-off. If the data
distribution is particularly smooth and the model algebraically not too complicetede matching
may, depending on the required estimation accuracy, be the best option.

5. Simulations with Natural Images

In this section, we estimate with our new estimation method models of natural imageke |
theory of noise-contrastive estimation, we have assumed that all varGaridse observed. Noise-
contrastive estimation can thus not be used for models with latent variabiels eannot be inte-
grated out analytically. Such models occur for example in the work by Odgtmeand Field (1996),
Hyvarinen et al. (2001a), Karklin and Lewicki (2005),i¢ke and Sahani (2008) and Osindero and
Hinton (2008). We are here considering models which avoid latent vasiaRlEcent models which
are related to the models that we are considering here can be found inrthéyOsindero et al.
(2006), Koster and Hydrinen (2010) and Ranzato and Hinton (2010). For a comprehensige in
duction to natural image statistics, see for example the textbook birkhan et al. (2009).

The presented models will consist of two processing layers, like in a multitegal network.
The output of the network for a given input image gives the value of theeinudf at that image.
Because of the two processing layers, we call the models “two-layer models”

We start with giving some preliminaries in Section 5.1. In Section 5.2, we prdsesettings
of noise-contrastive estimation. In Section 5.3, we properly define théayer-model and estimate
a version with more than 50000 parameters. In Section 5.4, we presextieaision of the model
where the learned output nonlinearity of the network belongs to the flexibiéyf of splines. The
different models are compared in Section 5.5.

7. A comparison of CD and PCD for different settings can be found ipefglix C.1.
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Figure 6: Trade-off between statistical and computational performasrcadise-contrastive es-
timation (NCE, red squares), Monte Carlo maximum likelihood (IS, blue circled) a
score matching (SM, black triangles). Each point represents the résuiteosimula-
tion. Performing local linear kernel smoothing regression on the resuitggields
the thick curves. For noise-contrastive estimation and Monte Carlo maximum like
lihood, the ten ellipses represent the outcomes for the ten different vafuesc
{1,2,5,10,20,50,100,200,400,1000}. The ellipses were obtained by fitting a Gaussian
to the distribution of the result points, each one contains 90% of the resuts [jor
a givenv. The asterisks mark their center. For an ICA model with Laplacian squrces
NCE has the best trade-off between statistical and computational perfcemé&or lo-
gistic sources, NCE and IS perform equally well. For medium estimation acgscore
matching outperforms the other two estimation methods.

5.1 Data, Preprocessing and Modeling Goal

Our basic data are a random sample@hx x 25px image patches that we extracted from a subset
of van Hateren’s image database (van Hateren and van der Sch@@f, Te images in the subset
showed wildlife scenes only. The sample sizas 160000.
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Figure 7: Example of a trade-off curve for noise-contrastive estimatidrcantrastive divergence.
(a) The different curves in blue show the estimation error which is obtdidneke various
values ofv. The thicker curve in black shows the trade-off curve. It is is obtained b
taking at any time point the minimum estimation error. (b) The trade-off cuhays in
black, is similarly obtained by taking the minimum over the estimation errors which are
obtained with different settings of contrastive divergence.

As preprocessing, we removed from each image patch its average kedakenjean, DC com-
ponent), whitened the data and reduced the dimension ffes®5 - 25 = 625 to n = 160. This
retains93% of the variance of the image patches. After dimension reduction, we addiicea-
tered each data point and rescaled it to unit variance. In order to awvidtbd by small numbers,
we avoided taking small variance patches. This gave our Mata(x;,...,x7,). Because of the
centering and rescaling, each data painsatisfies

> xi(k) =0, ﬁ > xi(k)? =1 (22)
k=1 k=1

This means that each data point lies on the surfacenof d dimensional spher8.

This kind of preprocessing is a form of luminance and contrast gainalomhkrich aim at can-
celing out the effects of the lighting conditions (see for exampledtiynen et al., 2009, Chapter 9,
where also the statistical effects of such a preprocessing are analZatering and rescaling to
unit variance has also been used in image quality assessment in ordeeds #we structural com-
ponent of an image, which is related to the reflectance of the depicted ofWétg et al., 2004, in
particular Section I11.B). By modeling the dafé, we are thus modeling the structure in the image
patches.

Given a data poink;, we can reconstruct the original (vectorized) image patch via

i, =V x, V- =ED!?, (23)
whereE is thed x n matrix formed by the leading eigenvectors of the covariance matrix of the
image patches. The diagonak n matrix D contains the corresponding eigenvalues. The matrix
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Figure 8: Distribution of the trade-off curves for contrastive divaige(CD, green), persistent con-
trastive divergence (PCD, cyan), and noise-contrastive estimatiOk (Md). The distri-
bution of the estimation error for maximum likelihood estimation is shown in black. The
thick curves show the median, the finer curves the 0.9 and 0.1 quantiles.

V-~ defined above is the pseudoinverse of the whitening mafrix D—'/2E”’. Since the column
vectors ofV~ form a basis for a dimensional subspace Bf, x is the coordinate vector dfwith
respect to that basis. The dimension reduction implies that the reconstraatinat be perfect; the
reconstruction can also only performed up to the scale and averageofahe patch because of
the the luminance and contrast gain control. Figure 9(a) shows exampietuodl image patches
after extraction from the data base; Figure 9(b) shows the corresgpretonstructions. Since
all image patches in Figure 9 were rescaled to use the full colormap, tteesedfieluminance and
contrast gain control are not visible. The effect of the dimension textuis low-pass filtering.

5.2 Settings for Noise-Contrastive Estimation

Matlab code for the simulations is available from the authors’ homepage sauthadéscription here
will not be exhaustive. All the models considered in the next subsectiensstimated with noise-
contrastive estimation. We learn the parameters by optimization of the objdgtineEquation(8).
The two-layer models are estimated by first estimating one-layer models. Thedgaarameters
are used as initial values for the first layer in the estimation of the complete ywo#@odel. The
second layer is initialized to small random values.

For the contrastive noise distributigr, we take a uniform distribution on the surface of the
n — 1 dimensional spher® on whichx is defined Examples of image patches with coordinates
following p,, are shown in Figure 9(c). Samples frgm can easily be created by sampling from
a standard normal distribution, followed by centering and rescaling sattEtuation(22) holds.
Sincep,, is a constant, the log-rati@(.; @) in Equation(4) is up to an additive constant equal to

8.Inpn = —In(2) — 25 In(r) — (n— 2)In(r) + InT ("T_l) with r =+/n—1.
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Figure 9: (a) Natural image patches of st&px x 25px. (b) Reconstructed image patches after pre-
processing. These are examples of the image patches dendtédbguation(23) with
coordinate vectors € R'%°, (c) Noise images which are obtained via Equafi2i) if the
coordinates are uniformly distributed on the spt&r€omparison with Figure (b) shows
that the coordinate vectossfor natural images are clearly not uniformly distributed on
the sphere. In the next subsections, we model their distribution.

Inp,,(.;0),
G(.;0) =1npy,(.;0)+ constant

As pointed out in Section 2.8, evolves in the maximization ofy such thatG(u; 9T) is as large as
possible foru € X (natural images) but as small as possibledar Y (noise). For uniform noise,
the same must thus also hold florp,, (u; 87). This observation will be a useful guiding tool for
the interpretation of the models below.

The factorv = T,,/T,; was set to 10. We found that an iterative optimization procedure where
we separate the data into subsets and optinkjzéor increasingly larger values ofreduced com-
putation time. The optimization for eachis done with the nonlinear conjugate gradient method
of Rasmussen (2006). The size of the subsets is rather large, for lex@a@H0 in the simulation
of the next subsectioh A more detailed discussion of this optimization procedure can be found in
Appendix C.2.

5.3 Two-Layer Model with Thresholding Nonlinearities
The first model that we consider is
Inpp,(x;0) = Z (Yk; ar, b)) + yk =Y Qri(w] x)?, (24)
el i=1

where f is a smooth, compressive thresholding function that is parameterized agdb,. See
Figure 10 for details regarding the parameterization and the formuld.fdrhe parameter8 of

9. As pointed out in Section 4.3, the used nonlinear conjugate gradiemithfg is not suitable for stochastic optimiza-
tion with small minibatches.
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the model are the second-layer weigts > 0, the first-layer weightsv; € R™, the normalizing
parameter € R, as well asa;, > 0 andb;, € R for the nonlinearityf. The definition ofy;, shows

that multiplying Qy; by a factory? andw; at the same time by the factay~; does not change

the value ofy,. There is thus some ambiguity in the parameterization which could be resolved
by imposing a norm constraint either on the or on the columns of the matr& formed by the
weightsQy;. It turned out that for the estimation of the model such constraints weneegessary.

For the visualization and interpretation of the results, we chpsach that all thev; had norm one.

The motivation for the thresholding property pfs that, in line with Section 5.2n p,,,(.;€) can
easily be made large for natural images and small for noise.yJ Ineust just be above the thresh-
olds for natural image input and below for noise. This occurs when tb®rsaw,; detect features
(regularities) in the input which are specific to natural images, and wheuatrinthe second-layer
weightsQy; detect characteristic regularities in the squared first-layer featuretewtgix. The
squaring implements the assumption that the regularitiesand (—x) are the same so that the
pdf of x should be an even function of tive! x. Another property of the nonlinearity is its com-
pressive log-like behavior for inputs above the threshold. The motivédiaihis is to “counteract”
the squaring in the computation gf. The compression of large valuespf leads to numerical
robustness in the computationlafp,,.

A model like the one in Equatiof24) has been studied before by Osindero et al. (2006) and
Koster and Hyarinen (2010). There are, however, a number of differences.nTdie difference
is that in our casex lies on a sphere while in the cited work,was defined in the whole space
R™. This difference allows us to use nonlinearities that do not decay asyngdyptic —oco which
is necessary ik is defined inR™. A smaller difference is that we do not need to impose norm
constraints to facilitate the learning of the parameters.

5.3.1 RESULTS

For the visualization of the first-layer feature detectess note that the inner produet? x equals
(wI'V)i=wT'i. Thew; € R" are coordinate vectors with respect to the basis given by the columns
of V—, see Section 5.1, while the; € R? are the coordinate vectors with respect to the pixel basis.
The latter vectors can thus be visualized as images. This is done in Figade Abpther way to
visualize the first-layer feature detectars is to show the images which yield the largest feature
output while satisfying the constraints in Equati@®@2). These optimal stimuli are proportional

to V~(w; — (w;)), where(w;) € R is the average value of the elements in the veetgr see
Appendix B.2 for a proof. The optimal stimuli are shown in Figure 11(b)hBasualizations show
that the first layer computes “Gabor-like” features, which is in line with jmevresearch on natural
image statistics.

Figure 12 shows a random selection of the learned second-layer wéightsFigure 12(a)
shows that the weights are extremely sparse. The optimization started with itjetsveeing
randomly assigned to small values, with the optimization most of them shrankdp feer se-
lected ones, however, increased in magnitude. Note that this result veasezbwithout any norm
constraints orQ. From Figure 12(b), we see that the learned second-layer weigihtare such
that they combine first-layer features of similar orientation, which are csshegrnearby locations
(“complex cells”). The same figure shows also a condensed représardathe feature detectors
using icons. This form of visualization is used in Figure 13 to visualize all¢oersd-layer feature
detectors.

332



NOISE-CONTRASTIVE ESTIMATION

o]
o
&

o

In(ay+1)
B
fm(u+b)

N

(=)
U
N

o

1 2 3 4 0 2 4 6 8 0 1 2 3 4
y u y

(a) Compression (b) Rectification (c) Resulting nonlinearity

Figure 10: Two-layer model with thresholding nonlinearities. The family aflinearities used
in the modeling isf(y;a,b) = fin(In(ay +1) +b), y > 0. The parameterized func-
tion is composed of a compressive nonlineatityay + 1), shown in Figure (a), and a
smooth rectification functiorfy,(u + b) shown in Figure (b). Figure (c) shows exam-
ples of f(y;a,b) for different values ofu andb. Parameteb sets the threshold, and
parameter: controls the steepness of the function. Since the scale of the weights in
Equation(24) is not restrained, the parametersdo not need to be learned explicitly.
After learning, they can be identified by dividing in Equation(24) by a; so that
its expectation is one for natural images. The formula for the thresholdirgiifun is
fin(u) =0.251n(cosh(2u)) 4+ 0.5u+ 0.17. The curves shown in blue are foe= —3 and
a € {1,50,100,200,...,500}. For the dashed curves in réd= —5. The small squares
in Figure (c) indicate wher¢ changes from convex to concave.

Figure 14(a) shows the learned nonlineariff¢say, b). Note that we incorporated the learned
normalizing parameter as an offset/n for each nonlinearity. The learned thresholding is similar
for feature outputs of mid- and high-frequency feature detectorsi(fdatid curves). For the feature
detectors tuned to low frequencies, the thresholds tend to be smaller,(destred curves). The
nonlinearities in black are convex for argumentsmaller than two (see red rectangle in the figure).
That is, they show a squashing behaviorgot 2. Looking at the distribution of the second-layer
outputsy, in Figure 14(b), we see that it is more likely that noise rather than naturakisnags the
input when the second-layer feature outpytsare approximately between 0.5 and 2. In this regime,
the squashing nonlinearities map thus more often the noise input to small vauestiral images
o] thatlnpm(u;éT) tends to be larger when inputis a natural image than when it is noise (see
Section 5.2). One could, however, think that the thresholding nonlineaaigesuboptimal because
they ignore the fact that natural images lead, compared to the noise afémetoy, which are close
to zero, see Figure 14(b). An optimal nonlinearity should, unlike the tbtdstg nonlinearities,
assign a large value to both large and smglivhile mapping intermediate values gf to small
numbers. The next subsection shows that such kinds of mappings enaugally when splines
are used to learn the nonlinearities from the data.

5.4 Two-Layer Model with Spline Nonlinearities

In the previous subsection, the family of nonlinearitfeim Equation(24) was rather limited. Here,
we look for f in the larger family of cubic splines where we consider the location of the koots

333



Iﬂ..ﬁill.lllll.lllil.illlllllﬂ.l

GUTMANN AND HYVARINEN

—

= N NEY BCLEBNSNES
PEELTARREZ AEANSN
I e Y B W N S VA
£ A=A =R N B
[ N AT N
| AN AL LN
AA LT | ] =l [ LA |

O = e Il NS WAL
IIIHIIIIIIHIIIHIIHEIIIIHIZ

\'

IIHHIIII

o~

(a) Feature detectors (b) Optimal stimuli

Figure 11: Two-layer model with thresholding nonlinearities: Visualizatiornhef learned first-
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layer feature detectons;. (a) The feature detectors in the pixel basis. (b) The corre-
sponding optimal stimuli. The feature detectors in the first layer are “Glétair{lo-
calized, oriented, bandpass). Comparison of the two figures showisaiate detectors
which appear noisy in the pixel basis are tuned to low-frequency input.
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(a) Raw result (b) Graphical visualization

Two-layer model with thresholding nonlinearities: Random sefeof second layer
units. (a) Second-layer weights; for five differentk (five different rows of the matrix
Q) are shown. The weights are extremely sparse so that in th&3umQ; (w? x)?
only few selected squared first-layer outputs are added together. €by Eow shows
one second-layer feature detector. The first-layer feature detestoese shown as
image patches like in Figure 11, and the black bar under each patch indi@stsength
Qr; by which a certainw; is pooled by thek-th second-layer feature detector. The
numerical values),; for the first five rows are shown in Figure (a). The right-most
column shows a condensed visualization. The icons were created legeafing each
first-layer feature by a bar of the same orientation and similar length as tledeand
then superimposing them with weights given®y;.
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Figure 13: Two-layer model with thresholding nonlinearities: Visualizatiathefirst- and second-
layer feature detectors with icons. In the second layer, first-layerrsatf similar
orientations are pooled together. See Figure 12 for details of how theweesreated.
The feature detectors marked with a green frame are tuned to low fragsenc
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(a) Learned nonlinearities (b) Distribution of second-layer outpugs

Figure 14: Two-layer model with thresholding nonlinearities: Learnedimearities and interpre-
tation. Natural images tend to have larger second-layer ouptlsn noise input since
the two processing layers, visualized in Figures 11 to 13, detect strinh&sent to
natural images. Thresholding thg provides a way to assign to natural images large
values in the model-pdf and to noise small values. In Figure (a), the noritiaeact-
ing on pooled low-frequency feature detectors are shown in greshéddines), those
for medium and high frequency feature detectors in black (solid line® .bdkd curves
in Figure (b) show the median, the other curves the 5% and 95% quantilessolid
curves in blue relate to natural images, the dashed curves in red to nesisephined
in Figure 10, they, have expectation one for natural images.
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be fixed (regression splines represented with B-spline basis funcsiea$or example Hastie et al.,
2009, Chapter 5).
The model that we consider here is

Inpy,(x;0) = fyiar,a,...) +c, yr =Y Qri(w] x)*. (25)
k=1

=1

The difference between this and the model of the previous subsection ikel@mutput nonlinearity

f is a cubic spline. Part of the paramet@rare thus as previously the; € R™, Qx; > 0, andc € R.
Additional parameters are the € R which are the coefficients of the B-spline basis functions of
the cubic splinef. As before, we denote the matrix formed by thg by Q.

For the modeling of the nonlinearity, we must define its domain, which is the range of its
argumentsy,. A way to control the range aqf;, is to constrain the norm of the columns @fand
also to constrain the vectovs,, such that

max E {(wiTx)z} =1, (26)
7
where the expectation is taken over the natural images.

We estimated the model in Equati@®5) by first estimating a spline-based one-layer model
which is presented in Appendix C.3. In brief, in this model, we did not sqinerérst-layer feature
outputsw x and the matrixQ was the identity. The arguments of the spline nonlineafityere
thus the feature outputs? x without additional processing. The learned nonlinearity is shown in
Figure 16(a). In the following, we denote it Ify. In Appendix C.3, we point out that the shape of
f1is closely related to the sparsity of the feature outputs when natural imagés anput. Because
/1 is an even function, and because of the squaring in the definitigp, afe initialized f for the
estimation of the two-layer model &$u) = f1(1/u). This function is shown in Figure 16(b) (blue,
dashes). The learnad; of the one-layer model were used as initial points for the estimation of the
two-layer model. The); were randomly initialized to small values. It turned out that imposing
Equation(26) was enough for the learning to work and no norm constraint for the cawh@)
was necessary. The results were very similar whether there were mstraints or not. In the
following, we report the results without any norm constraints.

5.4.1 RESULTS

Figure 15 visualizes the learned parametersand Q); in the same way as in Figures 12 and 13
for the two-layer model with thresholding nonlinearities. The learned featutraction stage is
qualitatively very similar, up to two differences. The first difference ig tinany second-layer
weightsQy; shrank to zero: 66 out of 160 rows of the maté)xhad so small values that we could
omit them while accounting for 99.9% of the sin),; Qx;. The second difference is that the pooling
in the second layer is sometimes less sparse. In that case, the secortillag@nbines first-layer
feature detectors of the same orientation but they are not all centerexisartte location.

The learned nonlinearity is shown in Figure 16(b) (black, solid). The nonlinearity from the
one-layer model, shown in blue as a dashed curve, is altered so that sihddirge inputs are
assigned to larger numbers while intermediate inputs are mapped to smaller sui@berpared
to the thresholding nonlinearities from the previous subsection, the leaordihearity has also
for small inputs large outputs. Since the second-layer feature oujpatse sparser (that is, more
often very small or large) for natural images than for the noise, the sifdpe learned nonlinearity
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Figure 15: Two-layer model with spline nonlinearities. (a) Random seleofithe learned second-
layer units. (b) Representation of all the learned second-layer fedgtgetors as iconic
images.
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Figure 16: Two-layer model with spline nonlinearities. (a) Learned noatitye(black, solid) and
its random initialization (blue, dashes) for the one-layer model. The lemo@thearity
is used as starting point in the learning of the two-layer model. (b) Leamthearity
(black, solid) and its initialization (blue, dashes) for the two-layer model. ddshed
vertical lines indicate the 99% quantile for all the feature outputs for nainades.
Due to the lack of training examples, the nonlinearities should not be coedigalid
beyond these lines.

implies that the estimated model assigns more often a higher probability densitytal i@ages
than to the noise.
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5.5 Model Comparison

We have estimated models for natural images, both with thresholding nonlineantevith splines.
We make here a simple model comparison.

A guantitative comparison is done by calculating for ten validation sets the ofile objective
function Jr of noise-contrastive estimation (see Equati®hfor the definition). The sample size
of each validation set wdg, = 100000, andr was set to 10, as in the estimation of the models. For
the same validation data, we also computed the performance mdasutgT), >, In p,, (x:; 67),
which is an estimate for the rescaled log-likelihood, see Equatidhin Section 3.1. As pointed
out there,ﬁ is only an estimate of the rescaled log-likelihood becatjsghich is an element of
the parameter vectdr, is used instead of the correct normalizing constant. Bhthand the
log-likelihood have the property that models which fit the data better havehathégore.

Comparing the structure of data points which are considered likely by treretiff models is
a way to make a qualitative model comparison. Another approach would l@eriples from the
models, which we do in Appendix C.5. In order to get the likely points, we deswlom samples
that followed the noise distributiop, (uniform on the sphere), and used them as initial points in
the optimization of the various Iog—densitihgom(x;éT) with respect tax under the constraint of
Equation(22). We used the same initial points for all models and visualized the likely pginia
Equation(23) as image$ = V~%.

The ICA model with Laplacian sources is a simple model for natural imagéssipreviously
also been used to model natural images after they have been projectedlmra (Hy@rinen et al.,
2009, Chapter 9). The unnormalized model has been defined in SectionBg2ation(17) and
consists of one processing layer with the fixed nonlinegfity) = —/2|u|. We include it in our
comparison and refer to it as one-layer model with “Laplacian nonlinearity”

5.5.1 RESULTS

Table 1 shows that the spline-based two-layer model of Section 5.4 ginesjerage, the largest
value of the objective functioo’r, and alsoLr. To investigate the merits of the spline output-
nonlinearity, we fixed the feature extraction stage of the thresholding miod&tction 5.3 and
learned only the nonlinearity using splines (for details, see Appendix C.4). The resulting model,
labeled “refinement” in the table, performs nearly as good as the best mdaebnE-layer models
with thresholding or Laplacian nonlinearities have the smallest objectiyeand L. The two
models achieve the objectives in different, complimentary ways. For thehtlidsg model, the
absolute value of the feature outpwts x must be large to yield a large objective while for the
model with the Laplacian nonlinearitf(w?! x) = —/2|w x|, the feature outputs must have small
absolute values. The two models consider thus different aspects obtmatéiral images, typically
sparse feature outputs! x. The one-layer model with spline nonlinearity combines both aspects,
see Figure 16(a), and yields also a higher score in the comparisonaitgersason explains why
spline-based two-layer models have higher scores than the two-layer mitil¢he thresholding
nonlinearity.

Figure 17 shows the likely data points from the various moggls The models with large
objectives in Table 1 lead to image patches with particularly clear structure.efifergence of
structure can be explained in terms of sparse coding since image patclobsledd to sparse
activations of the feature detectors are typically highly structured. 8pass of the feature outputs
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One-layer model Two-layer model
Thresholding Laplacian  Spline| Thresholding Refinement  Spline
Jr, av -1.871 -1.518 -1.062 -0.8739 -0.6248 -0.6139
Jr, std 0.0022 0.0035 0.0030 0.0029 0.0030 0.0037
Lr,av| -223.280 -222.714 -219,786 -220.739 -213.303 -212.598
L, std 0.0029 0.0077 0.0137 0.0088 0.0282 0.0273

Table 1. Quantitative model comparison. The objectiye of noise-contrastive estimation, see
Equation(8), and the estimaté of the (rescaled) log-likelihood, see Equatiar3), are
used to measure the performance. Larger values indicate better peréernmibhe table
gives the average (av) and the standard deviation (std) for ten validsgien All models
are defined on a sphere and learned with noise-contrastive estimatienfedtares for
the one-layer models with thresholding and Laplacian nonlinearity are ootrsh the
paper. The “one-layer, thresholding” model is identical to the “two-lagreesholding”
model when the second layer is fixed to the identity matrix. With Laplacian nomiipea
we mean the functiorf (u) = —v/2|u|. The “two-layer, thresholding” model has been
presented in Section 5.3, and the “two-layer, spline” model in Section 5&l.dfte-layer,
spline” and “two-layer, refinement” models are presented in the Appendixa@id C.4,
respectively.

is facilitated by the nonlinearities in the models, and through the competition betivedésatures
by means of the sphere-constraint on the coordinates specified in Equatiof22).

6. Conclusions

In this paper, we have considered the problem of estimating unnormalizéticah models for
which the normalizing partition function cannot be computed in closed formh Sudels cannot be
estimated by maximization of the likelihood without resorting to numerical approximatidich
are often computationally expensive. The main contribution of the papekis astimation method
for unnormalized models. A further contribution is made in the modeling of ndtnege statistics.

We have proven that our new estimation method, noise-contrastive estinpatiwiges a con-
sistent estimator for both normalized and unnormalized statistical models. $hmptions that
must be fulfilled to have consistency are not stronger than the assumptb@sdémeeded in max-
imum likelihood estimation. We have further derived the asymptotic distributioneogégtimation
error which shows that, in the limit of arbitrarily many contrastive noise sanmiblesestimator per-
forms like the maximum likelihood estimator. The new method has a very intuitive retatn in
terms of supervised learning: The estimation is performed by discriminatingebetthe observed
data and some atrtificially generated noise by means of logistic regression.

All theoretical results were illustrated and validated on artificial data whesengl truth is
known. We have also used artificial data to assess the balance betvtesticatand computational
performance. In particular, we have compared the new estimation methoditoteenof other es-
timation methods for unnormalized models: Simulations suggest that noisestivetiestimation
strikes a highly competitive trade-off. We have used the mean squameaétine estimated param-
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ARSI TR Iﬂ.ﬂl‘ll'l..ll!

(d) Two-layer, thresholding (e) Two-layer, refinement (f) Two-layer, spline

Figure 17: Likely points under the learned models for natural images. &smie of Table 1 for
information on the models.

eters as statistical performance measure. It should be noted that this Enenbossible criterion
among many (see Hy@inen, 2008, for a recently proposed alternative measure of peafare).

Noise-contrastive estimation as presented here extends the previausatefiiven by Gut-
mann and Hy#rinen (2010) since it allows for more noise samples than data points. Wealsa/
previously considered such a generalization (Pihlaja et al., 2010). Unliket preliminary ver-
sion, our method here is asymptotically Fisher-efficient for all admissibleem@asities when the
number of noise samples becomes arbitrarily large. Pihlaja et al. (201@stadished links of
noise-contrastive estimation to importance sampling which remain valid for thés.pap

We applied noise-contrastive estimation to the modeling of natural images.eBasilidating
the method on a large two-layer model, we have, as a new contribution to thestarting of nat-
ural image statistics, presented spline-based extensions: In previoessirthd output nonlinearity
in the pdf was hand-picked. Here, we have parameterized it as a splineaaned it from the data.
The statistical models were all unnormalized and had several ten-thsuspdrameters which
demonstrates that our new method can handle demanding estimation problems.
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Appendix A. Proofs of the Theorems

We give here detailed proofs for Theorem 1, 2 and 3 on nonparamstiigagion, consistency and
the asymptotic distribution of the estimator, respectively.

A.1 Preliminaries

In the proofs, we often use the following properties of the functigiu),

1
rv(u) = 1+vexp(—u)’
which was introduced in Equatidi6):
1—ry(u) = r%(—u)
ory(u)
A )
0
%lnﬂ,(u) = r%(—u)
32
Wlnry(u) = —T%(—u)r,,(u)
0
%ln[l—n(u)} = —ry(u)
2
Wln[l—rl,(u)} = —r%(—u)ry(u)

The functionsh(u;0) =, (G(u;0)) andl — h(u;0) =r1 (—G(u;0)) are equal to

oy Pm(u0) ) — vpn(u)
M) = i 0) T vpa(w) L) = ) vy P7)
see Equation3). It follows that
. _ Vpn(u)pm(u;e)
ety Pa(Wpa(w)
pary OO =, 6] + vpn() )

which are key properties for the proofs below.
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The first and second order derivatives are used in the following Tayjmansions

Inr, (u+eus +€uy) = Inr,(u)+ery(—u)u; +
2 [r}/(u)uz - ;ri(u)r,,(u)uﬂ +
O(€%), (30)

In [1 —ry(u+eu + EZUQ)} = In[l—r,(u)]—ery(u)u; +

O(é). (31)

A.2 Proof of Theorem 1 (Nonparametric Estimation)

For clarity of the proof, we state an important stepping stone as a lemma.

A.2.1 LEMMA

The Taylor expansions in Equati@B0) and Equatior{31) are used to prove the following lemma.

Lemma 8 For e > 0 and¢(x) a perturbation of the log-pdf,,(x) = Inp,, (x),

T(fm+ed) = () +e [ pala)ry (= fnlw) +np(w) -
pa()r fm<u>—1npn< )ou)du—
s )+ mpu)r (o) )
(pa(w) +vpn (W) (w)*du +O(e).

Proof The proof is obtained by evaluating the objective functibm Equation(11) at f,,, + €,
and making then use of the Taylor expansions in EquatBfy) and Equation(31) with v =
fm(x) —Inpp(x), u1 = ¢(x) andug = 0. |

A.2.2 PROOF OF THETHEOREM

Proof A necessary condition for optimality is that in the expansiod @f,,, + €¢), the term of order
e is zero for any perturbatiop. This happens if and only if

Pa(W)7 1 (= fim(w) +Inpy(w)) = vpn(a)ry (fn(w) —Inp,(u)).

With Equation(28) and Equatior{29), this implies that/ has an extremum at,, if and only if

Vpn(u)pd(u) — Vpn(u)pm(u)
pm(u)+vpn(u) () + vpn(u)

Thatis, as > 0, py,(u) = p4(u) at all pointsu wherep, (u) # 0. At points wherep,(u) = 0, the
equation is trivially fulfilled. Hencep,, = pq, or f,,, = Inp,, leads to an extremum of.
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Insertingf,, = Inpy into J in Lemma 8 leads to

62 vpn(u u
Hnpeteo) = Jonp 5 { [ ety

5 d)(u)2du} +0(e).

Since the term of ordef is negative for all choices @f, the extremum is a maximum. The assump-
tion thatp,, (u) # 0 whenevep,(u) # 0 shows thatf,,, = Inp, is the only extremum and completes
the proof. |

A.3 Proof of Theorem 2 (Consistency)

For clarity of the proof, we state important stepping stones as lemmata.

A.3.1 LEMMATA

The Taylor expansions in Equati¢80) and Equatior(31) are used to prove the following lemma
which is like Lemma 8 for/ but for the objective functiod in Equation(10).

Lemma9 Fore > 0andy € R™,
JO+ep) = J(O)+e [unlpa(w)(1-h(w6)) - vpn(w)h(u:6)]du+
{ [~ 3t B 0)) (i) (a(w) + v (w) dut

/U2 (Pa(w)(1 = h(w;8)) — vpn(a)h(u; 0)) du} +0(€),

where
u = ¢'g(u;0),
1
u = ¢ Ho(w;0)p.

The termg(u; 0) is VG(u; 0), andH denotes the Hessian matrix@fu; 8) where the derivatives
are taken with respect t@.

Proof With the definition ofJ in Equation(10), we have
JO+ep) = [Infr, (Gluib+ )] palu)du-+
v [1n[1 =1, (G(us6+ep)) pn(u)du
DevelopingG(u; 8 + e¢p) till terms of ordere? yields
G0+ ) = Gl 6) + e g(w;0) + & L o Ho(w:0)p+ O(c)).
Definingu; andus as in the lemma, we obtain

Inr, (G(u;0+ev)) =1nr, (G(u;G) + euy + €2uy —i—O(eS)) .
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Using now the Taylor expansions in Equati(80) and Equation31) for u = G(u;0), and the
identitiesh(u;0) =1, (G(u;0)) as well asl — h(u;0) =r1 (—G(u;0)) proves the lemma. W

Lemma 10 If p,,(u) # 0 whenevep,(u) # 0 and if

Z, - [ g P (wps(u)du
is full rank, where
’/pn(u)
P,(u —
(u) pa(u) +vp,(u)
g(u) = Velnp,(u;0)[e—e-,

then

J(0%) > J(O0"+¢) Ve #O0.
Proof A necessary condition for optimality is that in the expansiotd @ + ) in Lemma 9, the
term of ordere is zero for anyp. This happens if

pa(u)(1—h(u;0)) = vp,(u)h(u;0),
thatis, if

vpn(Wpa(w) — vpa(u)pm(u;6)

Pm(0;0) +vpp(u)  pm(w;0)+vp,(u)’
where we have used Equati(28) and Equatior{29) as in the proof for Lemma 8. The assumption
thatry > 0 andpy(.) = pm(.;0*) implies together with the above equation that the term of order
zero if@ = 0*.
The objective functior/ (6* + ep) becomes thus

62
JO +ep) = TO)-5 / W2(1— h(w;0%))h(u; 0%)

(pa(w) +vpn(u)) du+O(e%).
The termsh(u; 6*) and1 — h(u;0*) are with Equation(27)

0%\ _ pd(“) ~ h(a:0*) = Vpn(u)
;6 )_pd(u)+vpn(u)’ L h(u67) pa(w) +vpy(u)’

The expression foy (0" + ep) becomes then

"1 [ e P (wpa(uydu| ¢ +O(e)

by inserting the definition ofi; evaluated a®*, and making use of the definitions fét,(u) and
g(u) in the statement of the lemma. The term of orefedefines the nature of the extremum at
0*. If Z, is positive definite,J(6*) is a maximum. AsZ, is a positive semi-definite matrix, it is
positive definite if it is full rank.

Depending on the parameterization, there might be other véludsch make the term of order
¢ zero. Note that, by definition](8) = .J(Inp,,(.;0)) for any 6 so thatJ(8) = J(Inp.(.;0)) and
J(6%) = J(Inpp,(.;0*)) = J(Inpy). Now, by Theorem 17(8) < .J(6*) for a suitable noise density
pr, SO thatJ attains a global maximum &t". |

J(O +ep) =
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A.3.2 PROOF OF THETHEOREM

The proof of consistency goes along the same lines as the proof of temsigor MLE (see for
example Wasserman, 2004, Chapter 9).
Proof To prove consistency, we have to show that given0, P(||@ — 6*|| > ¢) tends to zero as
T, — oo. In what follows, it is sometimes useful to make the underlying probabilityespaplicit
and writeP(||@7 — 6*]| > €) asP({w : ||87(w) — 6*|| > €}).

Since, by Lemma 10/ (6*) is a global maximum||@ — 8|| > e implies that there is &(¢) such
thatJ(0) < J(6*) —d(e). Hence,

{w: 1107(w) =67 > e} € {w: J(Br(w)) < J(6%) —d(e)}
and thus
P(||67—6*|| > ¢) < P(J(B7) < J(67) — 6(c)). (32)
Next, we investigate what happensk¢.J (87) < J(6*) — §(¢)) whenT; goes to infinity. We have

A

J(0*)—J(07r) = J(0%)—Jr(6%)+ Jr(0*) —J(0r)
< J(0%) = Jp(0%) + Jr(07) — J(67)

as67 has been defined as the argument which maximizes Using the triangle inequality we
obtain further

|J(6%) = I (87)| < |7(6") — J7(6%)| +|Jr(8r) — T (87)],

and
|7(6) = J(B7)] < 2s1;p\J(9) —Jr(8)],

from which follows that

P(J(0%) = (01)| > 8(0) < P(2sup| J(0) ~ Jr(6)] > 6(¢)).

Using the assumption thdi-(@) converges in probability uniformly ovétto J(0), we obtain
that for sufficiently largel’;
P(|.7(6%) = J(B7)| > 6(€)) < 2

for anyes > 0. As J(0*) > J(0) for any @, we have thus the result that
P(J(O7) < J(0*)—d()) < e

for any e; > 0. The probabilityP(.J(67) < J(6*) — é(e)) can thus be made arbitrarily small by
choosingT}; large enough. Combining this result with Equati@®2), we conclude thaP’(||61 —
0*|| > ¢) tends to zero a%,; — oc. [ |

A.4 Proof of Theorem 3 (Asymptotic Normality)

For clarity of the proof, we state important stepping stones as lemmata.
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A.4.1 LEMMATA

In the following lemma, we use the definitions of the score funcgtx; ) andg(x) = g(x;0"),
as well as the definition of the Hessikh;, which were given in Lemma 9 and Lemma 10.

Lemmall
0 = VeJr(6")+H,;(6%)(6r—6")+O0(]|6r—6*[]%)
where
1 Ty 1 Tn
VoJr(0*) = flt:l(l—h(xt;e ))g(xt)—uT—n;h(yt;G )g(yt),
Ty
H)(0) = 2> {~(1-hlxi0)hix: 0 )8 xr)gx) +
di=1
(1= h(x¢;0%))He(x¢;0%)} —
Ty
v > {0 hyi 6 )h(y0")aly s+
=1

h(y:;6")He(y6%)}
Proof Using the chain rule, it follows from the relations in Section A.1 that

Volnh(x4;0) = (1—h(x;0))g(x;0)
Voln[l—-h(yi;0)] = —h(y:;0)g(y:;0).
The derivativeVy Jr(0) of Jr(0), defined in Equatior9) as

1 1 %
Jr(@) = —/ Inh(x;0)+v—> In[l—h(y;0)],
Ta = Tn =
'S 1 Td 1 Thn
Vo J7(60) = sz(l —h(x1;0)g(x:0) — v > h(yi;0)g(ye;0).

t=1 ni=1

As 07 is the value o which maximizesJ7 (), we must havéVg.J;(67) = 0. Doing a Taylor
series aroun@,, we have

0= Vg Jr(6*)+H,(6") (67 —6") +O((||6r — 6*]%).

Half of the lemma is proved wheWy Jr is evaluated af*. To prove the other half, we need to
calculate the HessiaH ; at8*. Thek-th row of the Hessiall ;(0) is Vo F(0)" whereF, is the
k-th element of the vectdvy.Jr. Denoting byg;, the k-th element of the score functign we have

Ty
VeFi(8) — ;dZ{—vemxt;e)gk(xt;e)+<1—h<xt;e>>vagk<xt;0>}
t=1

T,
_V%Z{Veh(yt;ﬂ)gk(yt;é’)+h(yt;0)vggk(xt;9)},

ny=1
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Using the chain rule, it follows from the relations in Section A.1 that

Voh(u;0) = (1—h(u;0))h(u;0)g(u;0).

Hence,
1 &
VoFi(0) = EZ{_(l_h(xﬁ9))h(xt§O)g(XtSO)gk(Xt;9)+
t=1
(1—=h(x4;0))Vogr(xt;0)} —
1 &
v > A= hlye:0)h(yi: 0)8(ye:0)g(v1;0)+
nt=1
h(y:;0)Vegr(y:;0)},
which proves the lemma. |

For the next lemma, recall the definition®f, given in Lemma 10 or Theorem 2.
Lemma 12 H;(0*) converges in probability te-Z, as the sample siZE; tends to infinity.

Proof AsT, =vT,, T, also tends to infinity whefly; tends to infinity. As the sample sizes become
arbitrarily large, the sample averages become integration over the caumoisg densities so that

Jim Hy67) B [ (1= hxi07)hx0")g (g (x) palx)dx +
[0 1(x:6) s (36" paloo)dx —
/(1 —(y;0"))h(y;6)g(y)g(y) vpu(y)dy —
/ hy; 6" )He(y; 0%)vpn(y)dy.

Reordering of the terms and changing the names of the integration varialiegves

lim H;(6%) L —/(1—h(u;@*))h(u;0*)g(u)g(u)T(pd(u)—|—1/pn(u))du+

Tg—00
[ (= h(wi6)pa(w) ~ h(w:6*)vpn(w) Ho(w:6")du

With Equation(28) and Equatior{29), we have

(1= h(u;0%))pa(u) = h(w;)vp,(u), (33)
B 0w %) (g () 4 v, () = Pn(Wpa()
(1—h(u;0%))h(u;0%)(pa(u) + vp,(u)) pa(w) T p ()’
Hence,
lim H,(0%) 5 - / VPn(Wpa(W) o) du
Ty—00 pa(u) +vp,(u) ’
whichis—Z,,. [ |
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Lemma 13 The expectatioft Vy.J;(0*) is zero.

Proof We calculate

Ty

EVegJr(6¥) ZEg x¢)(1— h(x¢;0%)) —

’/*ZEg yi)h
”t 1

Eg(0)(1 - h(x:0")) - vEg(y)h(y:0")
[ 81— h(w:6"))pa(u)du -

v [ gwh(u;6)p, (wdu

yt7 )

where the second equality follows from the i.i.d. assumption of the sam@adY’, respectively.
Reordering leads to
)= [gw

which is, with Equatior(33), zero.

EVeJr(6 h(u;0%))pq(u) — h(u;0*)vp,(u))du,

Lemma 14 The variancéVar Vo Jr(0*) is

1 1
—(z,-(1+= |E(P,g)EP,g)T),
(7 (1+; ) EReERS)T)
whereZ,, P, andg were defined in Lemma 10, and the expectation is taken over the dagg-pdf

Proof As the expectatioft Vq.J7(0*) is zero, the variance is given BV .J7(0*)VgJr(6*)T.
Multiplying out gives

Ty Ty
VarVoJr (%) = j%E Z(lh(xt;e*»g(xﬁ)Z(lh(xt;e*»g(xﬂ]
t=1 t=1
L[ L |
—E Z(l—h(xt;O*))g(Xt)Zh(}’ﬁe*)g(}’t)T -
T3 [t=1 t=1 J
1 & |
2 E Zhyt,a* 7o) D (1~ hixi07))glxo)T | +
d t=1 i
.
%E Zh(yt;e*)g(}"t)Zh(Yt;e*)g(Yt)T]'
i S t=1
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Since the samples are all independent from each other, we have

Var VQJT(G*) =

Ty
1}3 S B[ hxi;07) (x| +
t=1

Ty

LS Bl - h(xi0")gx) E[ (1~ h(x:67)g(x)"] -

Td t,r=1

t#£T

1 Ta Tn

77 2 2 Bl —hxis8")g(xo)] E [h(y-:67)8(y)"] -
t=11=1

1 T, Tg

722 > Elh(ys0)g(yo)]E [(1-h(xr:07)g(x,)" | +

d t=171=1

Ty
LS Blh(ys0")g(vi) E [hiy.:6")(y.)"] +
Td t,r=1

t#T

Th
7}3 > E|h(y:0")’e(vey)|-
t=1

As we assume that a#l;, and alsqgy, are identically distributed, the above expression simplifies to

1
VarVoJr(6) = o / (1—h(u;6%))*g(u)g(u)  pa(u)du+
T2 T T,T
d 5 dmmmZ— dQnmwmg_
iy 17
TdTn T Tr%_ n T
TC% ymy + TC% m,m, +
Tn *\ 2 T
= / h(u;0%)2g(w)g(w) pn(u)du, (34)
where
m, = / (1— h(w;0))g(u)pa(u)du,
my, = [ hw6")g(wp,(w)du.

Denoting byA the sum of the first and last line of Equatigt), we have

A = z{d / g(Wg(w)” [(1-h(w;6"))*pa(w) + h(w;0")*vp, ()] du

sinceT,, = vT,;. Now, Equation27) andp,, (u;0*) = ps(u) imply that

(1—h(u;0%))%pg(u) + h(u;0*)?vp,(u) =

vpn(u)pa(u)
pa(u) +vpy(u)
= PI/pd(u)7
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so that
1
A = o [ewew Ppu)du
d
1
i

Tq
Denote byB the second line of Equatiof34). Rearranging the terms, we have
B = m, / [(1 = h(u;0%))pg(u) — h(u;0%)vp,(u)] g(u)du—
1 T
memz .
Again, Equation27) andp,, (u;0*) = py(u) imply that

(1= h(u;6%))pg(u) = h(u;0")vpp(u)
vpp(u)pa(u)
pa(u) +vpp(u)

= Pypa(u),
so that the first line in Equatiof85) is zero and

m, = [ Pgwpau)du.

The termB is thus

1
B = —Td/Pyg(u)pd(u)du/P,,g(u)Tpd(u)du.
Denote byC the third line of Equatior{34). Rearranging the terms, we have with= vT,
C = —Tldmymg + me(umg — mf)

The termvm,, is with Equation(27) andp,, (u; 6*) = ps(u)
vm, = [ Pg(wpa(wdu,
so thatvm,, = m,, and hence
C = ——(vmy)(vmy)
= -—-B.

Allin all, the varianceVar Vo Jr(6*) is thus
VarVeJr(0*) = A+B+C

_ ;}l (IV _ (1 n i) E(P,g)E (PygT)> :

E(P,,g) = /Pug(u)pd<u)du'

where
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A.4.2 PROOF OF THETHEOREM

We are now ready to give the Qroof of Theorem 3.
Proof Up to terms of orde©(||87 — 6*||?), we have with Lemma 11

VTy(0r —6%) = —H;'\/T;VeJ7(6%).
By Lemma 12H ; B 1, for large sample siz€g;. Using Lemma 13 and Lemma 14, we see that

VT4V Jr(6%)

converges in distribution to a normal distribution of mean zero and covariaiatrix
1 T
Iu — |1 + ; E(Pvg) E(Pug) )

which implies that,/Ty (67 — 6*) converges in distribution to a normal distribution of mean zero
and covariance matrix,

s=7,'- (1 + i) Z,'E(P,g)E(Pg) T, .

Appendix B. Calculations

The following sections contain calculations needed in Section 3.3 and Se@ion 5

B.1 Theory, Section 3.3: Asymptotic Variance for Orthogonal ICA Model

We calculate here the asymptotic covariance matrix of the estimation error fottaogonal ICA
model when a Gaussian distribution is used as noise distribution in noisesiirgrestimation.
This resultis used to make the predictions about the estimation error in Se@idrh@ calculations
show that the asymptotic variance does not depend on the mixing matrix bugrotig dimension
of the data. Similar calculations can be used to show that this also holds for rmikalihood
estimation.

A random variablex following an ICA model with orthogonal mixing matriA = (a;...a,)
has the distribution

1 n
pa(x) = 7 Hf(a;-fx),
=1
whereZ is the partition function. By orthogonality of,

1 n
pa(Ax) =~ ] f(o),
=1
which equalsps(x) whereps is the distribution of the sourcesof the ICA model. Also by or-
thogonality of A, the noise distributiom,, with the same covariance &sis the standard normal
distribution. In particularp,, (Ax) = p,(x).
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For the calculation of the asymptotic variance, we need to compute the @atvikich occurs
in Theorem 2,Z, = [g(u)g(u)” P, (u)pg(u)du . With the above data and noise distribution,
P,(u) has the property that

vpn(Au)
pa(Au)+vp,(Au)
vpn (1)
ps(u) +vpn(u)

P,(Au) =

HenceP,(Au) does not depend oA. Below, we will denoteP, (Au) by P,(u). For the ICA
model, the vectog(u) has the form

g(u) = (g1(u),...,gn(u),gc(w))"

whereg;(u) = Va, Inp,,(u) = f/(al u)u andg.(u) = d.Inp,,(u) = 1. By orthogonality ofA, we
have
gi(Au) = A f/(u;)u.

We denote the vectaf’ (u;)u by g;(u) so thatg;(Au) = Ag;(u). Hence,
g(Au) = A(él(“)? s 7gn(u)7 I)T

whereA is a block-diagonal matrix with matricesA on the diagonal and a single 1 in the+1)-
th slot. As a shorthand, we will denog¢ Au) by Ag(u).
With these preliminaries, using the change of varialles Av,

Z = [pdwsg P (w)du

_ / ps(v)Ag(v)g(v)TAT B, (v)dv
= AL, AT,

where the matrix
Z,= [ ps(v)E(V)&(v)" B, (v)dv

does not depend on the mixing matex but only on the distribution of the sourcesthe noise
distributionp,,, andv. Moreover, by orthogonality oA\, the inverse ofZ,, is given by

I, = AT, A"
The same reasoning shows that
[ pawP(wewdu = A [ p,()E0) P (v)dv.

which we will denote below bydm. Again, m does not depend oA. Hence, the asymptotic
covariance matrix:,

1
2=, - (14, )T, ERRE(Re) L,
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in Theorem 3 is for the ICA model with orthogonal mixing matAxgiven by

-~ 1\ ~— -~
Sortica = A [I,, o (1 + V) z, 1ﬁlﬁflTIl, 'AT

The block matrixA is orthogonal sinceé\ is orthogonal. The asymptotic variance, that is the trace
of Xortca, does hence not depend dn

B.2 Natural Images, Section 5.3: Optimal Stimuli

We show here that the optimal stimulus, namely the image which yields the largestfeutput for
featurew while satisfying the sphere constraints in Equati®), is proportional tovV ~— (w — (w)).
The term(w) denotes the average value of the elements in the vector

Each coordinate vector defines an image= V™~ x, see Equationf23). The optimal image is
thusi* = V~x* wherex* is the solution to the optimization problem

max WTX
X

subjecttoy "}, x(k) =0andl/(n—1) 3 7_, x(k)? = 1, which are the constraints in Equati(@®).
The Lagrangian associated with this constrained optimization problem is

L(x,\w)=wlx—\ (nil Zx(k)2 — 1) —w Zx(k‘)
k=1 k=1

The maximizing<* isx* = (n—1)/(2)\)(w —w). Takingw such that the constrait;_, x*(k) =0

is fulfilled gives
n—1

W(W_ (w)).
Hence, the optimal imagé is proportional toV~(w — (w)).

Note that if we had a norm constraint @rinstead of the constraints in Equati¢®2), the
Lagrangian would be

*_

L(x,\) =wlx—\ <Z x(k)2dy, — 1)
k=1

where we have used thiffi = x7V-"V~x = x”Dx. Then x n matrix D is diagonal with the
eigenvalued; of the covariance matrix of the natural image patcheg-#s element. The opti-
mal x would thus bex* = 1/(2A)D~'w so that the optimal imagé would be proportional to
V-D !w = ED /2w = VTw, for which we have used the notatignin Section 5.3. Since the
eigenvaluesi;, fall off with the spatial frequency (like 1/f2, see for example Hyarinen et al.,
2009, Chapter 5.6) the norm constraintiopunishes low frequencies more heavily than the con-
straints in Equatiori22). As a consequence, tiwe, which are shown in Figure 11(a), are tuned to
high frequencies while the optimal stimuafi, shown in Figure 11(b), contain more low frequency
components.

Appendix C. Further Simulation Results

The following sections contain additional simulation results related to Sectiod &ection 5.
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Figure 18: Trade-off between statistical and computational perfornfancentrastive divergence
(CD).While the algorithms were running, measurements of the estimation ereor at
given time were made. The time variable indicates thus the time since the algorithm
was started. Note the difference to Figure 6 where the time indicates the time-till-
convergence. The plots show the median performance over the 100 egtipratitems.

CDz y refers to contrastive divergence witHMonte Carlo steps, each usipdeapfrog
steps.

C.1 Trade-Off, Section 4. Comparison of the Different Settings of ©ntrastive and Persistent
Contrastive Divergence

We compare here the different settings of contrastive and persisteinastive divergence. Since
the two estimations methods do not have an objective function, and giveartdlemness that is
introduced by the minibatches, choosing a reliable stopping criterion is dliffiéence, we did not
impose any stopping criterion but the maximal number of iterations. The algorhachalways
converged before this maximal number of iterations was reached, in tee gt the estimation
error did not visibly decrease any more. In real applications, wherdrtieeparameters are not
known, assessing convergence based on the estimation error is gnoglearly not possible.

C.1.1 ResuLTS

Figure 18 shows that for contrastive divergence, using 20 leasheys gives better results than
using only three leapfrog steps. A trade-off between computation time anoteay is visible:
running the Markov chains for three Markov steps (CD3 20, in darkmgrgields more accurate
estimates than running them for one Markov step (CD1 20, in cyan) bubthpwutations take also
longer.

Figure 19 shows that for the tested schemes of persistent contrastergetice, using one
Markov step together with 40 leapfrog steps (PCD1 40, in cyan) is thenpeelfchoice for Laplacian
sources; for logistic sources, itis PCD1 20 (shown in light green).
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Figure 19: Trade-off between statistical and computational perform@ngeersistent contrastive
divergence (PCD). The results are plotted in the same way as for divgrdisergence
in Figure 18.

C.2 Natural Images, Section 5: Reducing Computation Time in the Optirization

The objective function/r in Equation(8) is defined through an sample average. In an iterative
optimization scheme, not all the data may be used to compute the average a3t f@ using a
smaller subset of the data can lie in memory considerations or in the desireetblgpéhe compu-
tations. We analyze here what statistical cost (reduction of estimatioreaggsuch a optimization
scheme implies. Furthermore, we show that optimiziagfor increasingly larger values of re-
duces computation time without affecting estimation accuracy. The presesidtsrwere obtained
by using the the nonlinear conjugate gradient algorithm of Rasmusse®)(@0@he optimization.

As working example, we consider the unnormalized Gaussian distributioeatio® 3.1 for
n = 40. Estimating the precision matrix and the normalizing parameter means estimating-821 pa
rameters. We usé&,; = 50000, andv = 10. We assume further that, for whatever reason, it is
not feasible to work with all the data points at the same time but only Wjte- 25000 samples
(although for the present example, it is of course possible to use all tag da

C.2.1 ResuLTs

The lower black curve in Figure 20(a) shows the performance for thethgtical situation where
we could use all the data. The mean squared error (MSE) reaches ¢éhevldeh Corollary 4
predicts (dashed horizontal line). This is the smallest error which carbtzéned with noise-
contrastive estimation far = 10 and7,; = 50000. The upper black curve in the same figure shows
the MSE when only a fixed subset wiffy = 25000 data points is used in the optimization. This
clearly leads to less precise estimates. The performance can, howeweptoved by randomly
choosing a new subset of siZg after two updates of the parameters (red curve). The improved
performance comes, however, at the cost of slowing down conveegdhthe resampling of the
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Figure 20: Analysis of the optimization strategy in Section 5. See Section Cd2faits.

subset is switched at a lower rate, for example, after 10 updates, the apeonvergence stays the
same but the accuracy does not improve (blue curve).

Figure 20(b) shows the proposed optimization strategy, which we also &extion 5 for the
simulations with natural image data: We iteratively optimizefor increasingly larger values of
Whenever we increaseto v + 1, we also take a new subset. Whemeaches its maximal value,
which is herev = 10, we switch the subset after two parameter updates. For the other values of
v, we switch the subsets at a lower rate of 50 iterations. The results for tiiisizgtion strategy
are shown in green (curve labelled “iterative optim”). It speeds upagance while achieving the
same precision as in the optimization with resampled subsets df siene (red curve in Figures
(a) and (b)). By resampling new subsets, all the data are actually useddptiimization. However,
the estimation accuracy is clearly worse than when all the data are usankgtsnn the lower black
curve). Hence, there is room for improvement in the way the optimization ferpezd.

C.3 Natural Images, Section 5.4: Details for the Spline-Based One-kar Model
The one-layer model that we consider here is

n

Inpm(x;0) =Y f(Wix;a1,az,...)+c,
k=1

where the nonlinearity is a cubic spline. While the two-layer models in Section 5.3 and Section 5.4
were hardcoded to assign the same value &md —x, here, no symmetry assumption is made. The
parameters are the feature weights € R, ¢ € R for the normalization of the pdf, as well as
thea; € R for the parameterization of the nonlinearify For the modeling of the nonlinearity, its
domain needs to be defined. Its domain is related to the range of its argumestsTo avoid
ambiguities in the model specification, we constrain the vectors as in Eq@aéiprDefining f as

a cubic spline on the whole real line is impossible since the number of paramgterald become
intractable. With the constraint in Equati@26), it is enough to defing only on the interval
[—10 10] as a cubic spline. For that, we use a knot sequence with an equal sp&6idg Outside
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the interval, we defing to stay constant. With these specifications, we can wfite terms of
B-spline basis functions with 203 coefficients .. ., ass.

C.3.1 ResuLTs

The learned features are “Gabor-like” (results not shown). Werebdehowever, a smaller number
of feature detectors that are tuned to low frequencies. Figure 16(agiio8 5.4 shows the learned
nonlinearity f (black solid curve) and the random initialization (blue dashed curve). delsbed
vertical lines indicate the interval where 99% of the feature outputs oocuratural image input.
The learned nonlinearity should thus only be considered valid on thatahtditve nonlinearity has
two striking properties: First, it is an even function. Note that no suchtcaing was imposed, so
the symmetry of the nonlinearity is due to the symmetry in the natural images. Thisvaglates

the symmetry assumption inherent in the two-layer models. It also updated@usreesult of ours
where we have searched fpin a more restrictive space of functions and no symmetric nonlinearity
emerged (Gutmann and Hagsinen, 2009). Second,is not monotonic. The shape dfis closely
related to the sparsity of the feature outputSx. Since the absolute values of the feature outputs
are often very large or very small in natural imaggésends to map natural images to larger numbers
than the noise input. This means that the model assigns more often a highabipty density to
natural images than to the noise.

C.4 Natural Images, Section 5.5: Refinement of the Thresholding Miel

We are taking here a simple approach to the estimation of a two-layer model Virith spnlinearity
f: We leave the feature extraction layers that were obtained for the thdeslmodel in Section 5.3
fixed, and learn only the cubic splirfe The model is thus
n n
lnpm(x, 0) = Z f(yk’a a,az,.. ) +C, Y. = ZQk‘Z(W'LTX)Qa

k=1 =1
where the vectof contains the parametedig for f and the normalizing parameter The knots of
the spline are set to have an equal spacing of 0.1 on the int@r28]. Outside that interval, we
define f to stay constant. With that specification, we can wiiten terms of 203 B-spline basis
functions. The parameter vect®rc R?4 contains then the 203 coefficients for the basis functions
and the parametet

C.4.1 ResuLTS

Figure 21(a) shows the learned nonlinearity (black solid curve) andrittiora initialization (blue
dashed curve). The dashed vertical line aroyrd4 indicates the border of validity of the nonlin-
earity since 99% of thg, fall, for natural image input, to the left of the dashed line. The salient
property of the emerging nonlinearity is the “dip” after zero which make®n-monotonic, as the
nonlinearity which emerged in Section 5.4. Figure 21(b) shows the effeatinlinearities;, when
the different scales of the second layer outpyt@and the normalizing parameterare taken into
account, as we have done in Figure 14(a). We calculated the gcale taking the average value
of y over the natural images. The different scatgghen define different nonlinearities. Incorpo-
rating the normalizing parameteinto the nonlinearity, we obtain the set of effective nonlinearities
fr(y),

fe(y) = flory)+c¢/n, k=1,...n. (36)
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Figure 21: Refinement of the thresholding model of Section 5.3. Only thigeanity was learned,
the features were kept fixed. The features are shown in Figures 13 t@)JlLearned
spline (black solid curve) and the initialization (blue dashed curve). Thieathvertical
line indicates the border of validity of the learned nonlinearity since 99% oftHall,
for natural image input, to the left of it. (b) The different scales ofgh@ive rise to a
set of effective nonlinearitieg,, as defined in Equatiof86). Nonlinearities acting on
low-frequency feature detectors are shown in green (dashed lthesdthers in black
(solid lines), as in Figure 14(a).

For the nonlinearitieg}, the dip occurs between zero and two. Inspection of Figure 14(b)show
that the optimal nonlinearitief, take, unlike the thresholding nonlinearities, the distribution of the
second-layer outputg, fully into account. The region where the dip occurs is just the region where
noise input is more likely than natural image input. This means that the modeiggiagsmore
often a higher probability density to natural images than to the noise.

C.5 Natural Images, Section 5.5: Samples from the Different Models

In Figure 17, we compared images which are considered likely by theatitferodels. In Figure 22,
we show samples that we drew from the models using Markov chains (Hamilthtoate Carlo).
Since the models are defined on a sphere, we constrained the Hamilitonamidgry projecting
the states after each leapfrog step back onto the sphere. The numlagfaidesteps was set to 100,
and the rejection rate to 0.35 (Neal, 2010, Section 4.4, p.30). The top mmsghe most likely
samples while the bottom row show the least likely ones. The least likely sangpearasimilar
for all models. For the more probable ones, however, the two-layer mizdel¢o more structured
samples than the one-layer models.
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Figure 22: Sampling from the learned models of natural images. Figuredassamples from the
one-layer models, Figure (b) shows samples from the two-layer modetssarples
are sorted so that the top ones are the most likely ones while those at the botttim
least probable ones. See caption of Table 1 in Section 5.5 for informatitireenodels
used. Samples of the training data and the noise are shown in Figure 9 imJedtio
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