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ABSTRACT

Parametric statistical models of continuous or discrete val-

ued data are often not properly normalized, that is, they do

not integrate or sum to unity. The normalization is essen-

tial for maximum likelihood estimation. While in princi-

ple, models can always be normalized by dividing them by

their integral or sum (their partition function), this can in

practice be extremely difficult. We have been developing

methods for the estimation of unnormalized models which

do not approximate the partition function using numeri-

cal integration. We review these methods, score matching

and noise-contrastive estimation, point out extensions and

connections both between them and methods by other au-

thors, and discuss their pros and cons.

1. INTRODUCTION

We consider the problem of estimating a parametric sta-

tistical model from nx independent observations xi, i =
1, . . . , nx, of a m-dimensional random variable x with

probability distribution fx. The variable can be contin-

uous, so that fx is a probability density function (pdf), or

discrete, so that fx is a probability mass function (pmf).

The statistical model may be unnormalized, that is, the

largest measure it assigns to an event is not one. This

makes parameter estimation difficult, as will be explained

later in detail. The purpose of this paper to review two

estimation methods that are applicable to unnormalized

models: Score matching and noise-contrastive estimation.

We start with classifying statistical models into nor-

malized and unnormalized models (Section 2), and then

explain why unnormalized models are important but diffi-

cult to estimate (Sections 3 and 4). This is followed by a

brief overview of different approaches to the estimation of

unnormalized models (Section 5). Score matching is the

topic of Section 6, and Section 7 is on noise-contrastive

estimation. Section 8 concludes the paper.

2. NORMALIZED VS UNNORMALIZED

MODELS

In this paper, a statistical model is a family of nonnega-

tive functions that are indexed by a vector of parameters

θ ∈ Θ ⊂ R
d. A statistical model is normalized if each

member of the family integrates (sums) to one. The largest

measure it assigns to an event is thus one. For example,

the univariate Gaussian

f(u; θ) =
exp

(

−θ u2

2

)

√

2π
θ

, θ > 0, (1)

defines a normalized model with the precision as param-

eter. We use f(u;θ) to denote normalized models. If

the integration (normalization) condition is not satisfied,

we call the model unnormalized. To denote unnormalized

models, we use p(u;θ). For example, the models

p(u; θ) = exp

(

−θ
u2

2

)

, θ > 0, (2)

and

p(u;θ) = exp

(

−θ1
u2

2
+ θ2

)

, θ1 > 0, θ2 ∈ R, (3)

with θ = (θ1, θ2), are unnormalized. In the latter model,

θ1 affects the shape of p(u;θ) while θ2 affects its scale.

This model only integrates to one if θ1 and θ2 satisfy θ2 =
1/2 log(θ1/(2π)).

In some literature, unnormalized models are called en-

ergy based models [1, 2] since a nonnegative function can

be specified through the energy function E(u;θ),

p(u;θ) = exp (−E(u;θ)) . (4)

Regions of low energy have a large probability.

An unnormalized model does not automatically spec-

ify a pdf (or pmf) since it does not integrate (or sum) to

one for all parameters. If p(u;θ) is integrable for all θ, an

unnormalized model can be converted into a normalized

one by dividing p(u;θ) by the partition function Z(θ),

Z(θ) =

∫

p(u;θ)du. (5)

For the model in (2), for example, Z(θ) =
√

2π/θ. By

the definition of Z(θ),

f(u;θ) =
p(u;θ)

Z(θ)
(6)



satisfies the normalization condition.

Conversely, any normalized model f(u;θ) can be split

into unnormalized model p(u;θ) and partition function

Z(θ). With (6), the inverse partition function is given by

the multiplicative factor of f(u;θ) that does not depend

on u.

We show in Section 4 that the partition function is es-

sential for maximum likelihood estimation. The partition

function Z(θ) is defined via a parameter-dependent inte-

gral. Often, this integral cannot be computed in closed

form. Estimation methods for unnormalized models dif-

fer in how they handle the analytical intractability of the

integral.

One class of estimation methods relies on the possi-

bility to approximate the partition function pointwise by

numerically integrating p(u;θ) for any fixed value of θ.

However, such methods are computationally rather expen-

sive and also tricky to use (see Section 5). The estimation

methods which we review in this paper, score matching

and noise-contrastive estimation, belong to another class

of methods which does not rely on numerical integration

to approximate the partition function (see Sections 6 and

7).

3. OCCURRENCE OF UNNORMALIZED

MODELS

Unnormalized models are useful and practical tools to de-

scribe a data distribution. The reason is that, often, it is

easier and more meaningful to model the shape of the

data distribution without worrying about its normaliza-

tion. Thus, in probabilistic modeling we often encounter

unnormalized models. The following is an incomplete list

of examples:

• Graphical models which represent conditional depen-

dencies between the variables (undirected graphical net-

works, Markov networks) are unnormalized [2].

• In the modeling of images, the pixel value at a partic-

ular location is often assumed to only depend on the

values of the pixels in its neighborhood. That is, the

images are modeled as Markov networks (Markov ran-

dom fields). Capturing the local interaction between the

pixels is often enough to obtain a good global model of

the image. Markov random fields are used in various

image processing applications such as image restora-

tion, edge detection, texture analysis, or object classifi-

cation [3, 4].

• The structure of natural language (text) has been mod-

eled using neural probabilistic language models (kind

of neural networks) which specify unnormalized mod-

els [5]. Among other applications, neural probabilistic

language models can be used for machine translation,

sentence completion, or speech recognition [1].

• Unnormalized models occur in the area of unsupervised

feature learning (representation learning), and deep learn-

ing [1], where a goal is to extract statistics from the data

which are useful for classification or other tasks.

• Exponential random graphs which are used to model

social networks [6] are unnormalized models. The pres-

ence or absence of links between nodes in a network

are the (binary) random variables, and network statis-

tics define the model. The models are usually unnor-

malized because summing over all network configura-

tions to compute the partition function is rarely feasible

in practice.

• We have used unnormalized models in our research in

computational neuroscience [7, 8]. Making the basic

hypothesis that the visual system is adapted to the prop-

erties of the sensory environment, we modeled natu-

ral image (patches) and related the learned features and

computations to visual processing.

4. THE PARTITION FUNCTION IN MAXIMUM

LIKELIHOOD ESTIMATION

Next, we show that the partition function is essential in

maximum likelihood estimation.

Consider for instance the estimation of the precision

of the zero mean univariate Gaussian with pdf as in (1).
Given a sample with nx = 300 data points xi drawn from

fx(u) = f(u; θ∗) with θ∗ = 1, we can estimate the preci-

sion by maximizing the log-likelihood ℓ,

ℓ(θ) =
nx

2
log

θ

2π
−θ

nx
∑

i=1

x2

i

2
. (7)

Figure 1 plots ℓ(θ) (black curve), together with the variable-

dependent part (blue dashed curve) and the part due to the

normalizing partition function Z(θ) (red solid curve). The

partition function “balances” the data-dependent term by

punishing small precisions. This means that the partition

function is essential for maximum likelihood estimation

(MLE): Errors in the partition function translate immedi-

ately into errors in the estimate.

The importance of the partition function in MLE be-

comes also apparent if we consider estimating the unnor-

malized models in (2) and (3) by maximizing their “log-

likelihood”. The examples will show that maximizing the

“likelihood” of an unnormalized model does not provide

a meaningful estimator. We use the quotation marks be-

cause, strictly speaking, these models do not have a like-

lihood function as they do not specify a pdf. With their

“log-likelihood” we mean the sum of the log-models over

the data, in analogy to normalized models: For the unnor-

malized model in (2), the “log-likelihood” ℓ̃ is the data-

dependent part of ℓ(θ),

ℓ̃(θ) = −θ

nx
∑

i=1

x2

i

2
. (8)

For the unnormalized model in (3), we obtain as “log-

likelihood” ℓ̆,

ℓ̆(θ) = nxθ2−θ1

nx
∑

i=1

x2

i

2
. (9)
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Figure 1: The log-likelihood of a Gaussian random

variable with unknown precision (inverse variance). The

log-likelihood consists of two balancing parts, the data-

dependent and the normalizing part due to the partition

function. The data consisted of nx = 300 observations of

a zero mean Gaussian with precision θ∗ = 1.

As the precision is positive, θ → 0 is maximizing ℓ̃, and

ℓ̆(θ) is maximized if the shape parameter θ1 → 0 and the

scaling parameter θ2 → ∞. These estimates are obtained

irrespective of the data and are not meaningful. From the

example of ℓ̆, we find that separate estimation of the shape

and scaling parameter is not possible by maximizing the

“likelihood” of the unnormalized model.

In conclusion, for MLE, having an excellent model for

the shape of the data distribution does not yield much if we

do not know the proper scaling of the model in form of the

partition function.

5. APPROACHES TO ESTIMATE

UNNORMALIZED MODELS

We give here an overview of possible approaches to es-

timate unnormalized models. We assume that the parti-

tion function cannot be computed by analytical integra-

tion. Hereafter, an unnormalized model is thus an analyt-

ically unnormalizable model.

The previous section showed that maximizing the like-

lihood of unnormalized models does not lead to meaning-

ful estimates. Hence, other estimation approaches need

to be taken. The approaches can be divided into two cat-

egories: Those which approximate the partition function

and those which avoid it.

5.1. Approximating the partition function

We present here two estimation methods that stay in the

likelihood framework and approximate the intractable par-

tition function, or the gradient of its logarithm, by numer-

ical integration.

Numerical integration methods can be broadly divided

into deterministic methods, like Simpson’s rule, or (stochas-

tic) Monte Carlo methods. Deterministic numerical inte-

gration becomes quickly computationally very expensive

as the dimension m increases (“curse of dimensionality”).

In practice, they may only be applied for m ≤ 3. Monte

Carlo integration is applicable for larger dimensions, and

the two estimation methods reviewed here use this form

of numerical integration.

The first method uses importance sampling to approx-

imate the partition function as

Z(θ) ≈
1

ny

ny
∑

i=1

p(yi;θ)

fy(yi)
, (10)

where the yi are independent samples from a known aux-

iliary distribution fy . The justification for the approxima-

tion is that for large ny , it converges to Z(θ). Using this

approximation in the log-likelihood gives a method called

Monte-Carlo maximum likelihood estimation [9, 10]. A

possible drawback is that the variance of the approxima-

tion in (10) may be unbounded if fy decays more rapidly

than p(u;θ). Given the strong influence of the partition

function in MLE, this mismatch between the two distribu-

tions results in an estimate with large variance.

The second method is obtained when the log-likelihood

is maximized by steepest ascent. The gradient of the log-

likelihood contains a term with the gradient of the log-

partition function,

∇θ logZ(θ) =

∫

p(u;θ)

Z(θ)
∇θ log p(u;θ)du, (11)

which is the expectation of ∇θ log p(u;θ) under the model.

The expectation is intractable if the partition function is

intractable. The gradient can be approximated by a sam-

ple average where the samples are drawn from a Markov

chain with f(u;θ) = p(u;θ)/Z(θ) as target distribution.

It is possible to draw the samples after only a few tran-

sitions of the chain: The resulting estimation method is

known as contrastive divergence learning [11]. A possible

drawback of this method is the sensitivity to the choice

of the step-size in the optimization. If the step-size is too

small, the learning is slow, if too large, it is unstable.

5.2. Avoiding the partition function

In this review, we focus on two methods which avoid the

partition function. They are treated in Sections 6 and 7 in

more detail.

In score matching [12], instead of inferring fx or log fx
from the data, its slope Ψx(u) = ∇u log fx(u) is in-

ferred. In the log-domain, the partition function corre-

sponds to an additive offset, -logZ(θ), and by consider-

ing the slope Ψx, one gets rid of the partition function. As

taking derivatives suggests, score matching is only appli-

cable for continuous random variables, that is, if fx is a

pdf.

In noise-contrastive estimation [13], the partition func-

tion is avoided by replacing it with a scaling parameter.

The partition function normalizes p(u;θ) for all parame-

ters θ, which is, however, not necessary for the purpose of

estimation: It is enough that the model p(u; θ̂) after es-

timation is normalized, which can be achieved by having

a scaling parameter as part of θ. An example of such a

scaling parameter is θ2 in (3).



6. SCORE MATCHING

6.1. The method

In score matching [12], parameter θ is identified by min-

imizing the expected squared distance between the slope

Ψx and the slope under the model, Ψ(u;θ),

Ψ(u;θ) = ∇u log p(u;θ), (12)

that is, by minimizing

J SM(θ) =
1

2
Ex ||Ψ(x;θ)−Ψx(x)||

2, (13)

where Ex denotes the expectation with respect to fx. The

slope under the model is the Fisher score function with

respect to a hypothetical location parameter. Minimizing

J SM thus consists in matching the score of the model to the

score of the data, which gave the procedure its name.

The objective in (13) depends on the data Fisher score

function Ψx, which is unknown because the pdf fx is un-

known. However, under weak conditions, it is possible

to compute J SM up to a term not depending on θ without

actually knowing Ψx [12],

J SM(θ) = Ex

[

m
∑

i=1

∂kΨk(x;θ) +
1

2
Ψk(x;θ)

2

]

+ const.

(14)

Here, Ψk(u;θ) is the k-th element of the score Ψ(u;θ)
and ∂kΨk(u;θ) is its partial derivative with respect to the

k-th argument,

∂kΨk(u;θ) =
∂Ψk(u;θ)

∂uk

=
∂2 log p(u;θ)

∂u2

k

. (15)

An important regularity condition needed to go from (13)
to (14) is visible in the latter equation: log p(u;θ) must

be smooth enough so that its second derivative exists. If

the optimization is performed by gradient-based methods,

the third derivative needs to exist as well.

In practice, J SM(θ) is computed by replacing the ex-

pectation in (14) with the sample average over the ob-

served data. Parameter estimation consists in minimizing

J SM

T (θ),

J SM

T (θ) =
1

nx

nx
∑

i=1

m
∑

k=1

∂kΨk(xi;θ)+
1

2
Ψk(xi;θ)

2, (16)

which can be done with standard optimization tools.

Score matching has been used to estimate, for exam-

ple, a Markov random field and a two-layer model of nat-

ural images [14, 7], as well as a model of coupled oscilla-

tors [15].

6.2. Simple example

We consider here the estimation of the precision for the

unnormalized Gaussian in (2), or (3). The score function

is in both cases

Ψ(u; θ) = −θu, (17)
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Figure 2: Estimation of the precision of a Gaussian by

score matching, using the same data as in Figure 1.

and its derivative Ψ′(u; θ) = −θ. The score matching

objective is

J SM

T (θ) = −θ + θ2
1

nx

nx
∑

i=1

x2

i

2
, (18)

which we show in Figure 2. We plot the sign-inverted

objective in order to facilitate the comparison with the log-

likelihood. Like for the log-likelihood, the objective has

two parts, visualized in red and blue, that balance each

other. The optimum is at θ̂ = nx/(
∑nx

i=1
x2

i ) which is

the same as the maximum likelihood estimator. In fact,

for Gaussian distributions, the estimators obtained with

score-matching and maximum-likelihood are always the

same [12].

6.3. Score matching and denoising

Score matching has initially been proposed as presented

above, namely based on computational considerations to

avoid the partition function [12]. The score matching ob-

jective function J SM is also obtained if optimal denoising

is the goal. It occurs in two scenarios: One where x is the

corrupted signal and one where x is the clean one. The

corruption is additive uncorrelated Gaussian noise in both

cases.

As for the first scenario, assume that x is the corrupted

version of an unobserved random variable φ, x = φ +
σn, with n being a standard normal random variable. The

estimate φ̂ which minimizes the mean squared error

MSE1(φ̂) = Ex,φ

(

||φ̂(x)− φ||2
)

, (19)

is given by the posterior expectation, φ̂ = Eφ|x φ. It has

been shown that the posterior expectation can be written

in terms of the pdf of x only, without reference to the

distribution of the unobserved φ [16],

φ̂(u) = u+ σ2∇u log fx(u) = u+ σ2
Ψx(u). (20)

If the score function Ψx is known, optimal denoising can

be performed. If, however, the distribution of x is not



known but modeled by p(u;θ), with score function Ψ(u;θ),
the estimate depends on θ,

φ̂(u;θ) = u+ σ2
Ψ(u;θ). (21)

Consequently, also the mean squared error depends on θ,

and it is natural to ask which parameter θ yields the small-

est error. The answer is that the optimal choice is given

by the score matching estimator θ̂ = argminJ SM(θ) [16].

Hence, in order to optimally denoise x, its pdf should be

estimated by score matching.

The above result relates score matching to regression.

Denoising score-matching [17] exploits this connection:

The observed x is artificially corrupted to give χ = x +
σn and the mean-squared error

MSE2(θ) = Ex,χ

(

||x̂(χ;θ)− x||2
)

(22)

is minimized, using x̂(u;θ) = u + σ2
Ψ̃(u;θ) analogue

to (21). The above result shows that the minimization of

the mean-squared error allows one to estimate an unnor-

malized model for χ, but not for x. The distribution of χ

is a smoothed version of fx, and σ determines the strength

of the smoothing.

As for the second scenario, assume now that only χ is

observed and that x is estimated from χ as

x̂(χ) = argmaxu log fx(u)−
1

2σ2
||u− χ||2, (23)

which is the maximum-a-posteriori (MAP) estimate under

the additive noise model. The distribution fx is the prior in

the inference. If fx is not known but modeled by f(u;θ),
the estimate depends on θ,

x̂(χ;θ) = argmaxu log f(u;θ)−
1

2σ2
||u− χ||2. (24)

The parameter θ can be chosen so that the mean-squared

error is minimized. Assuming that both the noise level σ
and the mean squared error are small (and of the same or-

der), it has been shown that the optimal parameter is given

by θ̂ = argminJ SM(θ) [18]. Hence, for small levels of

noise, estimating the prior model by score matching min-

imizes (in a first-order approximation) the mean squared

error for MAP inference.

6.4. Key properties

The following are key properties of score matching. On

the positive side:

• Score matching yields a consistent estimator of θ [12].

• For the continuous exponential family, J SM is a convex

quadratic form and thus relatively easy to optimize [19].

• Score matching does not rely on auxiliary samples un-

like typical Monte Carlo methods.

On the negative side:

• Score matching only works for continuous random vari-

ables. Further, J SM is only defined if the model is smooth.

• For some models, like multilayer networks used in deep

learning, the analytical calculation of the derivatives in

J SM or its gradient can be difficult.

Data from fx

Data from fy

Random draw

from fx ? from fy

Figure 3: Noise-contrastive estimation formulates the

estimation problem as a logistic regression task, the task

of learning to distinguish between two data sets.

6.5. Extensions

Score matching has been extended in various ways. It

has been modified to work with binary data (the resulting

method is called ratio matching), or non-negative data [19].

Further, the idea of matching the model Fisher score to

the data Fisher score has been generalized to matching

L(p(u;θ))/p(u;θ) to L(fx(u))/fx(u) where L is a lin-

ear operator with the property that the mapping from p to

L(p)/p is injective [20]. The unknown partition function

is canceled in the ratio L(p(u;θ))/p(u;θ), and the injec-

tivity condition ensures that minimizing the squared dis-

tance between the transformed distributions can be used

for parameter estimation. Another possibility is to modify

the distance measure between the score functions in (13):
The rather large class of Bregman divergences can be used

instead of the Euclidean norm [21].

7. NOISE-CONTRASTIVE ESTIMATION

7.1. The method

Noise-contrastive estimation [22, 13] formulates the es-

timation problem as a logistic regression task, that is, the

task of learning to discriminate between two data sets. Lo-

gistic regression works by estimating the ratio of the two

distributions. The important point is that the distributions

are not required to be normalized which allows for the es-

timation of unnormalized models.

In more detail, let yi, i = 1 . . . ny , be some auxiliary

data that were independently drawn from a distribution fy .

Assume also that the xi and yi are mixed together and that

the task is to decide whether a data point from the mixture

is from fx or fy , see Figure 3. Logistic regression solves

this task by estimating a regression function h(u;θ),

h(u;θ) = (1 + ν exp(−G(u;θ))−1, (25)

with ν = ny/nx and G(u;θ) being some function para-

metrized by θ. The regression function is the probability

that the data point is from fx. The factor ν biases the deci-

sion according to the relative frequency of the xi and yi.

The regression function can be optimized by maximizing

the negative log-loss JNCE

T (θ),

JNCE

T (θ) =
1

nx

(

nx
∑

i=1

log h(xi;θ)+

ny
∑

i=1

log[1− h(yi;θ)]
)

,

(26)



which is the sample version of

JNCE(θ) = Ex log h(x;θ) + ν Ey log[1− h(y;θ)], (27)

where Ey denotes the expectation with respect to fy .

Noise-contrastive estimation makes use of the fact that

JNCE is maximized by the parameter θ̂ for which [13]

G(u; θ̂) = log fx(u)− log fy(u). (28)

Hence, if fy is known in closed from and G(u;θ) speci-

fied as

G(u;θ) = log p(u;θ)− log fy(θ), (29)

the unnormalized model can be estimated by maximizing

JNCE, or, in practice JNCE

T . The key point is that no assump-

tion about normalization of the model is needed: We can

work with the unnormalized model p(u;θ) and if θ con-

tains a parameter which allows for scaling, maximizing

JNCE will automatically scale the model correctly [13]. In

some cases, the model is rich enough so that no separate

scaling parameter is needed.

In summary, noise-contrastive estimation of p(u;θ)
consists of the following three steps:

1. Choose a random variable y whose distribution fy
is known in closed form and where sampling is easy.

2. Sample ny = νnx independent “noise” data points

yi ∼ fy .

3. Perform logistic regression to discriminate between

the {xi} and {yi}: Maximize JNCE

T (θ) in (26), us-

ing the log-ratio G(u;θ), defined in (29), in the re-

gression function h(u;θ).

The objective JNCE

T is maximized if θ̂ is such that G(u; θ̂)
takes, on average, large (positive) values for data from fx
and large negative values for data from fy . These oppos-

ing requirements generate a balancing mechanism similar

to what we have observed for likelihood-based estimation

or score matching, visualized using the blue dashed and

red solid curves in Figures 1 and 2.

The intuition behind noise-contrastive estimation is the

idea of learning by comparison [23]: fx is deduced from

the difference between fx and a known fy , and the dif-

ference is learned from the data. This procedure is re-

lated to but more than classification: While in classifica-

tion, we are interested in the decision boundary defined by

G(u;θ) = 0, here, for the purpose of estimating an unnor-

malized model, we are interested in the complete function

G(u;θ).
Examples where noise-contrastive estimation was used

in practice include the estimation of two and three-layer

models of natural images [13, 24, 8] and the estimation of

models of natural language [25, 26].

7.2. Simple example

We estimate here the unnormalized Gaussian in (3) from

the same data as before. The parameters are the precision
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Figure 4: Balancing mechanism in noise-contrastive esti-

mation of the precision of a Gaussian. The data-dependent

part of JNCE

T drives the precision to small values while the

noise-dependent part drives it to large values.

θ1 which is the parameter of primary interest and θ2 which

is the scaling parameter. As noise distribution, we take a

zero mean Gaussian with precision τy = 1/2, and we set

the ratio ν to 10. The log-ratio G(u;θ) is

G(u;θ) = (θ2 − cy) +
1

2
(τy − θ1)u

2, (30)

where cy = 1/2 log(τy/(2π)). For fixed θ2, G(u;θ) is

maximized for θ1 → 0 and minimized for θ1 → ∞.

The data-dependent part of the noise-contrastive objective

function JNCE

T drives θ1 to small values while the noise-

dependent part drives it to large values, see Figure 4. The

objective function JNCE

T combines these opposing require-

ments and thereby allows for estimation of θ.

Figure 5 shows a contour plot of JNCE

T as a function of

the precision θ1 and the scaling parameter θ2. Each point

(θ1, θ2) corresponds to a model. The models on the black

solid curve are normalized. The green lines show three op-

timization trajectories when JNCE

T is optimized with a non-

linear conjugate gradient method. Starting from their ini-

tial points, the optimization trajectories traverse the space

of unnormalized models. This visualizes the difference

between estimating a scaling parameter and approximat-

ing the partition function: In the methods where the parti-

tion function is numerically approximated (estimated), the

optimization trajectories would be constrained to (approx-

imately) lie on the black curve; in noise-contrastive esti-

mation, however, there is no such constraint and one can

move freely in the space of unnormalized models towards

the optimum. Due to the properties of the objective func-

tion, after optimization, the learned θ̂2 is an estimate of

the value which the partition function takes at θ̂1. Hence,

instead of approximating a function, only a normalizing

scalar is here estimated.

7.3. The auxiliary distribution

The auxiliary distribution fy influences the accuracy of

the estimate. We next briefly discuss its choice, a longer
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Figure 5: Contour plot of JNCE

T (θ) for the estimation of

an unnormalized Gaussian from the same data as in Figure

1. The parameters located on the black curve specify un-

normalized models. Sample optimization trajectories are

shown in green.

discussion can be found in our main reference on noise-

contrastive estimation [13, Section 2.4].

We derived an expression for the asymptotic mean squared

estimation error [13, Theorem 3]. Theoretically, it would

thus be possible to choose fy such that this error is mini-

mized. Practically, however, one faces a couple of issues:

First, the minimization is difficult. Second, the optimal

auxiliary distribution will likely depend on the data distri-

bution fx, which is unknown in the first place. Third, we

need to have an analytical expression for fy available and

also be able to sample from it easily, which is probably

not the case for the optimal one.

In our work on natural images [13, 24, 8], satisfactory

performance was obtained with choosing fy to be a uni-

form distribution or a Gaussian distribution with the same

covariance structure as the data.

For a specific choice of the auxiliary distribution, it

is possible to relate noise-contrastive estimation to score

matching [21]: Assume that y is obtained by shifting x by

a small amount ǫ so that fy(u) = fx(u+ǫ). Assume also

that p(u + ǫ;θ) is used instead of fx(u + ǫ) in G(u;θ),
and that ν = 1. The objective JNCE(θ) depends on the par-

ticular ǫ chosen and may be denoted by JNCE

ǫ (θ). From the

more general proof given in previous work [21], it follows

that if ǫ is an uncorrelated random vector of variance σ2,

the averaged objective is

Eǫ J
NCE

ǫ (θ) = const−
σ2

2
Ex

[

m
∑

k=1

∂kΨk(x;θ)+

1

2
Ψk(x;θ)

2

]

+ Eǫx φ(ǫ,x), (31)

where Eǫ denotes expectation with respect to ǫ and φ(ǫ,x)
is a function depending on x and third- or higher-order

terms of ǫ. Maximizing the term of order σ2 with respect

to θ is the same as minimizing J SM.

7.4. Key properties

Noise-contrastive estimation has the following key prop-

erties. On the positive side:

• It yields a consistent estimator of θ [22, 13].

• It is applicable to both continuous and discrete random

variables, that is, fx can be a pdf or a pmf [21].

• It is less sensitive to a mismatch between data and auxil-

iary distribution than importance sampling [27, 13, 25].

• The objective is algebraically not more complicated than

the likelihood, and existing classifier architectures may

be adapted to the estimation of unnormalized models.

On the negative side:

• It is not clear how to best choose the auxiliary distribu-

tion fy in practice.

• The requirement that fy needs to be known in closed

form and that sampling is possible is an important lim-

itation.

7.5. Extensions

The objective JNCE is the sum of two expectations over

functions that depend on the ratio p(u;θ)/fy(u), with the

first expectation being taken with respect to the data x and

the second with respect to the noise y, see (27). Figure 4

shows that the two terms balance each other. We inves-

tigated whether other kinds of functions are also suitable

for consistent estimation of θ [27]. We found that a rather

large set of functions is suitable and derived a necessary

condition for consistency; in later work, it was shown that

this set is a special case of an even larger estimation frame-

work for unnormalized models [21]. It is an open question

which estimator of this framework to choose for a given

model.

8. CONCLUSIONS

Unnormalized statistical models occur in various domains.

Methods for their estimation can be broadly classified into

those which are based on approximations of the partition

function (or likelihood) and those which avoid the par-

tition function. We reviewed two of the latter methods:

Score matching and noise-contrastive estimation.

Score matching has the advantage that it does not re-

quire sampling. Its downside is that the models need to

be smooth and that the objective function can get alge-

braically rather complicated for some models. Noise con-

trastive estimation does not have these drawbacks; its down-

side is the choice of the auxiliary distribution and that it

needs to be known in closed form.
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[7] U. Köster and A. Hyvärinen, “A two-layer model

of natural stimuli estimated with score matching,”

Neural Computation, vol. 22, no. 9, pp. 2308–2333,

2010.

[8] M.U. Gutmann and A. Hyvärinen, “A three-layer

model of natural image statistics,” Journal of

Physiology-Paris, 2013, in press.

[9] C.J. Geyer, “On the convergence of Monte Carlo

maximum likelihood calculations,” Journal of the

Royal Statistical Society. Series B (Methodological),

vol. 56, no. 1, pp. 261–274, 1994.

[10] A. Gelman, “Method of moments using Monte Carlo

simulation,” Journal of Computational and Graphi-

cal Statistics, vol. 4, no. 1, pp. 36–54, 1995.

[11] G.E. Hinton, “Training products of experts by min-

imizing contrastive divergence,” Neural Computa-

tion, vol. 14, no. 8, pp. 1771–1800, 2002.

[12] A. Hyvärinen, “Estimation of non-normalized statis-

tical models using score matching,” Journal of Ma-

chine Learning Research, vol. 6, pp. 695–709, 2005.

[13] M.U. Gutmann and A. Hyvärinen, “Noise-

contrastive estimation of unnormalized statistical

models, with applications to natural image statis-

tics,” Journal of Machine Learning Research, vol.

13, pp. 307–361, 2012.
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