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a b s t r a c t

An important property of visual systems is to be simultaneously both selective to specific patterns found
in the sensory input and invariant to possible variations. Selectivity and invariance (tolerance) are oppos-
ing requirements. It has been suggested that they could be joined by iterating a sequence of elementary
selectivity and tolerance computations. It is, however, unknown what should be selected or tolerated at
each level of the hierarchy. We approach this issue by learning the computations from natural images.
We propose and estimate a probabilistic model of natural images that consists of three processing layers.
Two natural image data sets are considered: image patches, and complete visual scenes downsampled to
the size of small patches. For both data sets, we find that in the first two layers, simple and complex cell-
like computations are performed. In the third layer, we mainly find selectivity to longer contours; for
patch data, we further find some selectivity to texture, while for the downsampled complete scenes,
some selectivity to curvature is observed.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Our paper belongs to the larger body of work on Bayesian per-
ception. This theory of vision entails that the visual system is
adapted to the properties of the world which it senses. In other
words, it ‘‘knows’’ about the regularities within the visual stimuli
(see, for example, Barlow, 2001; Simoncelli and Olshausen, 2001;
Hyvärinen et al., 2009; Freeman and Simoncelli, 2011). Knowledge
about the regularities can be mathematically expressed as knowl-
edge about the probability distribution of the visual stimuli. Our
goal here is to model this distribution and relate it to visual
processing.

One powerful class of models specifies the distribution in a top-
down manner in terms of latent variables which explain the struc-
ture in the visual stimuli (Olshausen and Field, 1996; Hyvärinen
et al., 2009; Karklin and Lewicki, 2009; Zoran and Weiss, 2009;
Ranzato and Hinton, 2010; Cadieu and Olshausen, 2012). Another
class of models corresponds to a bottom-up approach where the vi-
sual stimuli are processed in multiple layers of computation (Osin-
dero et al., 2006; Köster and Hyvärinen, 2010; Gutmann and
Hyvärinen, 2012b). The model in this paper belongs to this latter
class.
ll rights reserved.
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It has been proposed that the layers should alternate between
elementary selectivity and invariance, or tolerance computations
(Fukushima, 1980; Riesenhuber and Poggio, 1999). In line with
simple models for experimental data (see, for example, Hubel,
1995), the first layer should be selective to localized, oriented
bandpass structure, and the second layer should be tolerant to
variations in the localization of that structure. The idea is that after
several layers of computations, high selectivity to specific structure
could be combined with moderate tolerance to its possible varia-
tions. The combination of the opposing poles of selectivity and
invariance is thought to be essential for reliable object recognition,
or for biological and artificial visual processing in general (DiCarlo
and Cox, 2007; Serre et al., 2007; Jarrett et al., 2009; Rust and
Stocker, 2010).

A fundamental question that arises with the bottom-up ap-
proach is to know what should be selected or tolerated at each
layer. We approach this issue by learning the selectivity and toler-
ance computations from natural images. This approach has previ-
ously accounted for the computations on the first two layers
(Osindero et al., 2006; Köster and Hyvärinen, 2010; Gutmann
and Hyvärinen, 2012b). Here, we learn all layers in a three-layer
model, and pay particular attention to the computations which
emerge in the third layer.1
1 Preliminary results were reported at the International Conference on Pattern
Recognition 2012 (Gutmann and Hyvärinen, 2012a).
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2. Material and methods

In Section 2.1, we present the natural image data used. In Sec-
tion 2.2, we introduce and explain the parametric model of the
processing in the three layers. Section 2.3 shows how to learn
the parameters by fitting a probability density function to the nat-
ural image data.

2.1. Data and preprocessing

We use two types of natural image data. The first data set con-
sists of image patches that we have extracted from thirteen larger
gray-scale images which have been used before to study properties
of natural images (Hyvärinen et al., 2009). The patches are of size
32 � 32 pixels. The second data set is the tiny images data set by
Torralba et al. (2008), converted to gray scale. That data set con-
sists of about eighty million images which show complete visual
scenes downsampled to 32 � 32 pixels. Examples from the two
data sets are shown in Figs. 1a and 1b. When referring to both data
sets at the same time, we will call them ‘‘natural images’’.

As preprocessing, we removed the DC component (average va-
lue of each tiny image, or image patch) and normalized the norm
of the resulting image. The norm used here was computed in the
whitened space. Unlike the ordinary norm without whitening, this
norm is not dominated by the low-frequency content of an image
(Hyvärinen et al., 2009, Chapter 5). This preprocessing is a form of
luminance and contrast gain control. Further, the preprocessing
makes it easier to model the statistical dependencies between
the pixels by normalizing their marginal distributions to some ex-
tent. This preprocessing thus is motivated by both neuroscience
and data-modeling considerations. After normalization, we re-
duced the dimensionality by PCA from 1024 to 600, which corre-
sponds to low-pass filtering of the images. After dimension
reduction, the images are elements inside a 600 dimensional
sphere. The retained dimensions account for a bit more than 98%
and 99% of the variance of the image patches and the tiny images,
respectively. We denote the resulting, preprocessed images by x.

Fig. 1c and d show the effect of the preprocessing for the natural
image examples in Fig. 1a and b, respectively. For visualization, we
scaled each preprocessed natural image such that the full colormap
is used. The examples visualize the luminance and contrast gain
control, and they show further that our dimension reduction does
not cause a perceptible blurring.
Fig. 1. Natural images before and after preprocessing. (a and b) Examples of extracted pa
zero are shown in black, and white corresponds to pixel values of 255. (c and d) The sam
from each image, standardizing its norm, and PCA-based dimension reduction. Each pre
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2.2. Parametric model for the three layers of computation

After the initial preprocessing (gain control), an input image is
processed in three layers of computation. The outputs of each layer
form statistics which we use in Section 2.3 to define the value that
a probability density function px takes at x, that is, at a given image
after gain control. The three layers are defined as follows.

2.2.1. First layer
The gain-controlled image x is projected onto features wð1Þi , fol-

lowed by half-wave rectification. This gives the outputs yð1Þi of the
first-layer units,

yð1Þi ¼max wð1Þi � x;0
� �

; i ¼ 1 . . . nð1Þ: ð1Þ

Here, wð1Þi � x denotes the dot-product between the vectors wð1Þi and x.
The features wð1Þi are parameters of the model which will be learned
from the data using the procedure outlined in Section 2.3 below. The
number of first-layer units was fixed to n(1) = 600. A linear stage fol-
lowed by rectification is a simple model for the steady-state firing
rate of neurons (Dayan and Abbott, 2001, Chapter 7.2). In this model,
the features wð1Þi correspond to the receptive fields of the neurons.

Based on the symmetry of natural images (see, for example,
Gutmann and Hyvärinen, 2012b, Section 5.4), we make the simpli-
fying assumption that for each receptive field wð1Þi , there exists a
receptive field wð1Þ

i0
with a sign-inverted spatial pattern, that is

wð1Þ
i0
¼ �wð1Þi . We also assume that the weights in the second layer

(see below) are the same for yð1Þi and yð1Þ
i0

. This assumption reduces
the number of free parameters, and we can compute the first layer
outputs as yð1Þi ¼ wð1Þi � x, for i = 1 � � � n(1)/2 = 300.

2.2.2. Second layer
After elementwise squaring, the outputs yð1Þ ¼ ðyð1Þ1 ; . . . ; yð1Þnð1Þ Þ

from the first layer are projected onto second-layer features wð2Þi .

The outputs yð2Þi of the second-layer units are obtained as

yð2Þi ¼ ln wð2Þi � ðy
ð1ÞÞ2 þ 1

� �
; i ¼ 1 � � �nð2Þ: ð2Þ

The number of second-layer units was fixed to n(2) = 100. The
weight vectors wð2Þi are, again, parameters that we learn from the
data. Each element wð2Þki of a vector wð2Þi is constrained to be nonneg-
ative. The functional form of (2) corresponds to the energy model
for complex cells (Adelson and Bergen, 1985), albeit with receptive
tches from larger images and examples from the tiny images data set. Pixel values of
e images after preprocessing. Preprocessing consists of removing the average value
processed image was re-scaled to use the full color map.
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Fig. 2. (a) The nonlinearity ln (u + 1) (red solid) used in (2) is qualitatively similar to the square-root (blue dashed). (b) The nonlinearity fth (u + b) (red solid for b = �3 and
magenta with circles for b = 1/2) used in (5) and (6) is a smooth approximation of max (u + b,0) (blue dashed for b = �3 and black dash-dotted for b = 1/2). We learn the value
of b from the data. Negative b result in thresholding.
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fields and pooling patterns that are not yet specified, but to be
learned from the data. The nonlinearity ln (u + 1) is concave, which
is important for both a practical and a conceptual reason. Practi-
cally, a concave nonlinearity keeps the second-layer outputs within
a reasonable range (this argument for having such a nonlinearity
after the pooling was also given by Adelson and Bergen (1985)).
The nonlinearity ln (u + 1) is shown in Fig. 2a. It is qualitatively sim-
ilar to the square root, but has a smaller slope at zero and grows
also more slowly, which makes it more robust. Conceptually, com-
bining a concave nonlinearity with a convex one (the squaring) can
be considered to be a mathematical abstraction of the idea of com-
bining a tolerance with a selectivity computation (see Section 4.4
for a discussion of this point).
2.2.3. Intermediate gain control layer
Next, we pass the outputs of the second layer through a gain

control stage,

zð2Þ ¼ gain controlðyð2ÞÞ; ð3Þ

which is defined in the same way as on the level of the pixels: The
DC value 1=nð2Þ

P
iy
ð2Þ
i is first removed from yð2Þ ¼ ðyð2Þ1 ; . . . ; yð2Þnð2Þ Þ. The

resulting centered vector is thereafter whitened and its norm stan-
dardized. If some of the yð2Þi are strongly correlated, we reduce the
dimension by PCA before performing whitening.2 Just like on the le-
vel of the pixels, gain control makes the statistical dependencies be-
tween the second-layer outputs more accessible, which is helpful for
the learning of the features on the third layer.
2.2.4. Third layer
The third processing layer has the same form as the first one.

The outputs yð3Þi of the third-layer units are computed as

yð3Þi ¼max wð3Þi � z
ð2Þ;0

� �
; i ¼ 1 � � �nð3Þ: ð4Þ

The third-layer features wð3Þi are also learned from the data. They
are the parameters which we are the most interested in. The num-
ber of third-layer units was fixed to n(3) = 50. We will call negative
elements in a vector wð3Þi inhibitory weights. If the corresponding
element in z(2) is negative too, disinhibition occurs.
2 Strong correlations would make the whitening operation nonrobust. As we will
see in Section 3.2, dimension reduction was only necessary for patch data.
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2.3. Learning the parameters by fitting a probability density function

We learn the parameters which govern the computation of the
three layers by fitting a probability density function (pdf) px to nat-
ural image data. The basic idea is that the overall activity of the fea-
ture outputs determines how likely an input image is. Because of
the computational complexity of the processing, we first learn
the parameters of layer one and two, ignoring layer three. After-
wards, we keep the first two layers fixed, and learn the parameters
of layer three.

We have learned the parameters of the first two layers for a dif-
ferent kind of natural image data before (Gutmann and Hyvärinen,
2012b, Section 5.3). The data consisted of image patches from the
woods. While the patch data here is similar, we can expect differ-
ent results for the tiny images data. Our previous work contained a
detailed description of the general learning principles so here, we
will be brief.

2.3.1. Learning the parameters of layer one and two
The pdf is defined as

pxðxÞ /
Ynð2Þ
i¼1

exp fth yð2Þi þ bð2Þi

� �� �
; ð5Þ

where the coefficient bð2Þi is an additional parameter that we learn
from the data, together with the first- and second-layer features

wð1Þi and wð2Þi . No constraints are imposed on the bð2Þi . The function
fth(u) = 0.25 ln (cosh (2u)) + 0.5u + 0.17 is a smooth approximation
of the function max (u,0), see Fig. 2b. The figure also shows that

the behavior of fth yð2Þi þ bð2Þi

� �
, which takes only non-negative yð2Þi

as input, is quite different for negative or positive bð2Þi . For negative

bð2Þi , thresholding occurs, for positive and zero bð2Þi , on the other
hand, the function resembles an affine transformation.

In case of thresholding, only feature outputs above the thresh-
old effectively contribute to px(x). For sufficiently negative bð2Þi ,
an input x is only assigned a large relative probability px if the fea-
ture outputs are large, that is, if strong presence of some character-
istic image structure is detected. Thresholding is thus related to
feature detection (for a more detailed argument, see Gutmann
and Hyvärinen, 2012a, Section 5.3).

Note that we do not need to impose any constraints on the fea-
ture outputs. The fact that px should take large values for likely but
small values for unlikely x prevents the feature outputs from
becoming too large or from staying large all the time.

The probabilistic model in (5) is unnormalized. That is, we do
not know the correct normalizing proportionality factor (partition
er model of natural image statistics. J. Physiol. (2013), http://dx.doi.org/
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function) for which px integrates to one for all parameters. Given
the complexity of the model, analytical integration is not possible,
and numerical integration is computationally too costly because of
the high dimensionality of x. The standard approach of estimating
the model by maximizing the likelihood is thus not feasible. We
use instead noise-contrastive estimation (Gutmann and Hyvärinen,
2012b) which we recently developed to estimate unnormalized
models in a statistically principled, yet computationally feasible
way. Its basic idea is to estimate unnormalized models by perform-
ing nonlinear logistic regression between the observed data and
some artificially generated noise. Here, the observed data are the
natural images, and the uniform distribution in the sphere where
x is defined serves as contrastive noise.

2.3.2. Learning the parameters of layer three
Keeping the first two layers fixed, we learn the parameters of

the third layer by estimating the pdf

pxðxÞ /
Ynð3Þ
i¼1

exp fth yð3Þi þ bð3Þi

� �� �
: ð6Þ

Here, fth is the same function as in (5). The coefficients bð3Þi are again
learned from the data, together with the third-layer features wð3Þi . As
for the first two layers, we use noise-contrastive estimation for the
learning of the parameters.

3. Results

Section 3.1 briefly considers the learned parameters which gov-
ern the computation in the first two layers. Our main focus is on
the learned computation in layer three, which is presented in
Section 3.2.

3.1. Computation in layer one and two

The learned parameters bð2Þi are all negative. As pointed out in
Section 2.3, the second-layer outputs are thus thresholded in the
computation of px in (5). If a second-layer output is below the
threshold is does not effectively contribute to the value which px

takes for the input x. For patch data, the individual second-layer
units contribute to px in 10 ± 3% of the inputs (average over the
units ± standard deviation).3 For the tiny images, they contribute
in 12 ± 2% of the inputs. These percentages measure the contribution
of a single unit for many inputs; they are lifetime percentages. Pop-
ulation percentages are equally interesting; they indicate how many
units of the whole population contribute to px for a single input. We
find that 10 ± 5% of all units contribute for patch data (average over
10,000 test images ± standard deviation). For the tiny images, it is
12 ± 5%. That is, about 5 to 17 units tend to contribute to the compu-
tation of px(x). The ‘‘active’’ second-layer units above the threshold
signal that some characteristic structure is strongly present in an in-
put image. We next visualize that structure by visualizing the
learned features.

Fig. 3 shows the learned first and second-layer features in the
same way as in previous work of ours (Gutmann and Hyvärinen,
2012b, Fig. 12). The results for patch data are shown in Fig. 3a;
the results for the tiny images in Fig. 3b. We only show a small ran-
dom selection of the learned features. The complete set is shown in
Appendix A. After learning, the second-layer weight vectors wð2Þi

are extremely sparse: For patch data 97%, and for tiny images
95% of the elements in the vectors wð2Þi are smaller than the
109th fraction of their maximal elements. Note that this result
was obtained without norm constraints or other measures that im-
3 We used 10,000 test images to compute the percentages, both for the lifetime and
the population measurements.
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pose sparsity on the weight vectors. Because of the high level of
sparsity, we visualize a second-layer unit i in Fig. 3 by showing
the few wð1Þk for which the corresponding elements wð2Þki of the vec-
tor wð2Þi , that is the weights for the ðyð1Þk Þ

2 in (2), are ‘‘nonzero’’. A
first-layer feature wð1Þk itself is visualized by showing the image
which yields the largest value of yð1Þk . First-layer features for which
the weights wð2Þki are largest are shown first.

The first processing layer is mostly sensitive to Gabor-like im-
age features, and the second layer pools dominantly over similarly
oriented and localized first-layer features. The first layer thus
implements a selectivity stage, with the Gabor-like image features
being the preferred input. The visualization of all the features in
Appendix A shows that the first layer is more often sensitive to
low frequency image structure for patch data than for the tiny
images.

Fig. 3 also shows a condensed visualization of the features by
means of icons that we have created by representing each Gabor-
like feature wð1Þk by a bar and superimposing them weighted by
wð2Þki (like in Gutmann and Hyvärinen, 2012b, Fig. 12). Below, we
use the icons to visualize some properties of the third-layer fea-
tures. Low-frequency features are, however, not well represented
by their icons and hence not used in this third-layer visualization.

We next show that the processing on the second layer can be
interpreted as a max-like computation over selected first-layer fea-
ture outputs yð1Þk

��� ��� where the selection is learned from the natural
images. For each second-layer weight vector wð2Þi , we computed
the maximum value over the yð1Þk , limiting the maximum operation
to those indices k for which the pooling weight wð2Þki was larger than
0.0001, relative to the maximal element of wð2Þi . We thus consid-
ered the learned weights wð2Þki as indices that select over which
first-layer outputs to take the max operation. We then computed
the correlation coefficient between each second-layer output yð2Þi

and the obtained maximum value, using natural images as input.
Fig. 4 shows the distribution of the correlation coefficients that
we have obtained for all yð2Þi . For both patch data and the tiny
images, the correlation coefficients are close to 0.9. To establish a
baseline, we also used random vectors with positive elements that
sum to the same value as the learned second-layer vectors. This
yields correlation coefficients with median 0.02 for patch data,
and 0.07 for tiny images. Hence, the strong correlation obtained
for the learned weights is due to the adaptation of the weights to
the properties of the natural images; it is not merely a consequence
of the assumed functional form of yð2Þi in (2).

3.2. Computation in layer three

Some of the second-layer outputs are strongly correlated for
patch data. We thus reduced the output-dimensionality of the gain
control layer as discussed in Section 2.2. Finding the right amount
of dimension reduction was straightforward since the eigenvalues
of the covariance matrix of y(2) dropped abruptly for the last two
dimensions. For tiny images, no dimension reduction was
necessary.

Like the learned bð2Þi , the learned bð3Þi are all negative: the third-
layer outputs are thresholded in the computation of px in (6). We
computed how often the third-layer outputs are above the thresh-
old. As for the second-layer results, we performed lifetime and
population measurements. Regarding the lifetime measurements,
we find that, for patch data, the individual third-layer units are
in 23 ± 8% of the inputs above the threshold. For the tiny images,
it happens 32 ± 12%. Regarding the population measurements, we
find similar results: 23 ± 6% for patch data and 32 ± 5% for the tiny
images. Since we had fixed n(3) to 50, about 8 to 15 and 13 to 19
third-layer outputs tend to contribute to px(x) for patch data and
the tiny images, respectively. Thus, compared to the second layer,
the percentages are larger on the third layer, the absolute number
er model of natural image statistics. J. Physiol. (2013), http://dx.doi.org/
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Fig. 3. Visualization of the learned processing on the first two layers. The five rows in (a) and (b) visualize five randomly selected second-layer units learned for patch data
and the tiny images, respectively. We visualize second-layer unit i on a certain row by showing the few wð1Þk for which the elements wð2Þki of wð2Þi , that is the weights for the

yð1Þk

� �2
in (2), are ‘‘nonzero’’. The first-layer features wð1Þk are visualized by showing the optimal stimulus. The nonzero weights wð2Þki are visualized by the lengths of the black

horizontal bars under the optimal stimuli. The first processing layer is mostly sensitive to Gabor-like image features, and the second layer pools dominantly over similarly
oriented and localized first-layer features. The icons of the second-layer units will be used for the visualization of the third-layer units.
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Fig. 4. The figures show the distribution of the correlation coefficients between second-layer outputs and maximal first-layer outputs, both for learned second-layer weights
and random weights to obtain a baseline. Comparison with the baseline shows that the strong correlation for the learned weights is due to the adaptation to the natural
images. The learned pooling in the second layer gives rise to a max-like computation over selected first-layer outputs, with the selection being learned from the data.
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of ‘‘active’’ feature outputs, on the other hand, is similar, even
though still a bit larger on the third layer.

In Figs. 5 and 6, we visualize selected third-layer features that
emerged for the patch data and the tiny images, respectively. The
complete set of features is visualized in Appendix B in the same
way. Each row corresponds to a single third-layer unit. The figures
have four columns. The leftmost (panels with black frames) con-
tains space-orientation receptive fields, which visualize the re-
sponse to local gratings of different orientations (similarly to
Please cite this article in press as: Gutmann, M.U., Hyvärinen, A. A three-lay
10.1016/j.jphysparis.2013.01.001
what has been done by Anzai et al., 2007). These receptive fields
show the space-dependent orientation tuning of the third-layer
units. The second column contains inhibitory space-orientation
receptive fields (panels with red frames). These show the location
and orientation of local gratings which inhibit the units most. The
third column visualizes the activity patterns of layer two which
lead to the largest outputs yð3Þi in the third layer. The fourth column
shows examples of natural images for which the third-layer out-
puts yð3Þi are large.
er model of natural image statistics. J. Physiol. (2013), http://dx.doi.org/
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Fig. 5. Third-layer features for patch data. The numbers on the left label the features. Each row visualizes one third-layer unit. The complete set of the learned features is
shown in Appendix B. See main text for explanation of the visualization used.
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3.2.1. Space-orientation receptive fields
The space-orientation receptive fields are shown in the first col-

umn of Figs. 5 and 6. We constructed them by probing the third-
layer units with Gabor stimuli (localized gratings) of different fre-
quency, location, and orientation. The tested spatial frequencies
Please cite this article in press as: Gutmann, M.U., Hyvärinen, A. A three-lay
10.1016/j.jphysparis.2013.01.001
were 0.1, 0.15, 0.2, and 0.25 cycles per pixel. The Gabor stimuli
were fixed to have an aspect ratio of one, and a frequency band-
width of 1.4 octaves (full width at half response), which is a typical
value for simple cells in the cat or macaque monkey (Daugman,
1985). The standard deviation r of the Gaussian window which
er model of natural image statistics. J. Physiol. (2013), http://dx.doi.org/
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Fig. 6. Third-layer features for tiny images. The numbers on the left label the features. Each row visualizes one third-layer unit. The complete set of the learned features is
shown in Appendix B. See main text for explanation of the visualization used.
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underlies a Gabor stimulus thus depends on the fixed frequency
bandwidth and the frequency itself. The test locations formed a
grid with a spacing of about 2r. We use circles to indicate the loca-
tions of the test stimuli in each receptive field. Their radius is r,
Please cite this article in press as: Gutmann, M.U., Hyvärinen, A. A three-lay
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and they contain about 68% of the total mass of the Gaussian win-
dow. The spacing was thus frequency-dependent: it is more nar-
row for high-frequency and wider for low-frequency stimuli. For
each third-layer unit, we only show the space-orientation recep-
er model of natural image statistics. J. Physiol. (2013), http://dx.doi.org/
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tive field of the spatial frequency which elicited the largest
response.

Figs. 5 and 6 show that the space-orientation receptive fields
are well structured: areas where the units on the third layer are
susceptible to stimulation are mostly contiguous, and often local-
ized. These areas form the classical receptive field. Visual inspec-
tion shows that for both kinds of data, homogeneous and
inhomogeneous receptive fields have emerged, albeit, for tiny
images, inhomogeneous receptive fields seem to occur more often.
For inhomogeneous receptive fields, the preferred orientation var-
ies across the receptive field; for homogeneous receptive fields, the
preferred orientation does not change with location. Localized
homogeneous receptive fields resemble longer straight contours
(as for example unit 46 in Fig. 5). We next quantify homogeneity
and orientation tuning on population level.

Regarding orientation tuning, we computed the preferred orien-
tation for all units, that is, we computed the orientation of the local
grating that results in the largest response, for each unit. The cor-
responding histogram is shown in Fig. 7a. For tiny images, horizon-
tally and vertically oriented local gratings often yield the largest
response (red, circles). The preferred orientation for patch data,
on the other hand, is more uniformly distributed (blue, asterisks).
The horizontal preference is, however, still the dominant one.

We quantified the level of homogeneity by investigating the dif-
ference in orientation tuning within the receptive fields. Locations
(the circle-centers) in the receptive field where the response was
less than a certain fraction r of the maximal response were ex-
cluded from the analysis because for small responses, the preferred
orientation cannot be computed reliably. Fig. 7b shows cumulative
distribution functions for the difference in orientation tuning, for
r 2 {0.25,0.5,0.75}. The difference was computed for all possible
pairs of locations, and pooled across the population. Whatever
the value of r, the cumulative distribution functions for the tiny
images (curves in red) tend to increase more slowly than those
for the patch data (curves in blue). This means that, within a recep-
tive field, large differences in preferred orientation are more prob-
able for tiny images than for patch data. The figure illustrates also
the influence of r: retaining only locations in the receptive field
where the response is large (large value of r), makes the occurrence
of large differences in preferred orientation less probable. This ap-
plies both to the results for patch and tiny images data.

An alternative analysis of homogeneity consists in showing the
distribution of the maximal difference in orientation tuning within
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a receptive field. We show the results for this kind of analysis in
Fig. C.14 in Appendix C. If only locations where the response is
large are included (case of r = 0.75), we find that about 70% of
the units have a maximal difference of less than 30�, both for patch
and tiny images data. For tiny images, about 20% of the units have a
maximal difference of more than 60�; for patch data, the number
drops to about 10%. If locations with smaller responses are in-
cluded in the analysis (smaller values of r), the maximal difference
tends to get larger. Nevertheless, whatever measure used, we find
that the receptive fields are more inhomogeneous for tiny images
than for patch data.

3.2.2. Inhibitory space-orientation receptive fields
The receptive fields shown in the first column of Figs. 5 and 6

are based on the third-layer outputs yð3Þi ¼max wð3Þi � zð2Þ; 0
� �

, de-
fined in (4). The inhibitory space-orientation receptive fields
shown in the second column are, in contrast, based on the outputs
�min wð3Þi � zð2Þ;0

� �
. They show the orientation and location of lo-

cal gratings which inhibit the units most. For better comparison,
we computed the inhibitory receptive fields for the same fre-
quency band as the receptive fields in the first column.

The inhibitory receptive fields show that local gratings placed
outside the classical receptive field often have an inhibitory effect.
In fact, the inhibitory receptive fields appear ‘‘spatially comple-
mentary’’ to the actual receptive fields. This structure of the inhib-
itory receptive fields enhances localization and orientation tuning.
We next investigated the role of inhibition on the population level.
We computed space-orientation receptive fields after having re-
moved inhibitory connections (negative elements in the weight
vectors wð3Þi were set to zero). With this intervention, the maximal
response to the local gratings drops for the tiny image data by
40 ± 12% (median ± median absolute deviation from the median).
For patch data, the drop is 41 ± 9%. The drop in the maximal re-
sponse is due to disinhibition effects. Fig. 8 shows the distribution
of the responses within a receptive field, before (blue) and after
(red) the intervention. The responses are computed relative to
the maximal response per receptive field. The figure shows that
removing inhibition reduces the fraction of small responses. This
means that the receptive fields become less localized if inhibition
is removed.

Visual inspection of the inhibitory receptive fields suggest that
strongest inhibition often occurs for local gratings which are
orthogonally oriented to the preferred orientation. In order to
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quantify this observation on population level, we computed the
angle between the preferred and the least preferred orientation
for all receptive fields. The least preferred orientation was defined
as the orientation of the grating yielding the strongest inhibition.
Fig. 9a shows the resulting histogram for patch data (blue) and tiny
images (red). With the largest angle being 90�, the mode of the dis-
tribution was for both data sets at 83� ± 7�.

3.2.3. Optimal stimuli
The space-orientation receptive fields represent the sensitivity

of the third-layer units to local gratings. In order to investigate
the sensitivity of each unit to nonlocal stimuli, we computed the
outputs yð2Þi of the second layer which together give rise to the larg-
est response on the third layer. Because of the gain control in (3),
this optimal activation pattern of layer two is defined up to a scal-
ing constant and an additive offset. We complemented this analy-
sis by finding natural images which yielded particularly large
responses for a given third-layer unit.

The optimal activation patterns of layer two are shown in the
third column in Figs. 5 and 6 for patch data and tiny images,
respectively. We visualize the optimal activation patterns by color-
ing the second-layer icons in Fig. 3 as follows. Second-layer units
that are more activated than the DC value are visualized in shades
of yellow to red, while units that are less activated than the DC va-
Please cite this article in press as: Gutmann, M.U., Hyvärinen, A. A three-lay
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lue are colored in light to dark blue. Red corresponds to the largest
activation, dark blue to the smallest. Green colored units have an
activation around the DC value. In order to make the plots more
legible, we separately show the colored icons for second-layer
units tuned to horizontally, vertically, and diagonally oriented
stimuli.

The six natural images yielding the largest responses among
10,000 randomly selected data points are shown in the fourth col-
umn of the figures (in descending order, row-wise from left to
right). For each unit, the smallest response, obtained for the sixth
image, was still larger than 65% of the maximal response. Each im-
age was independently scaled in order to use the full colormap.

Visual inspection of the optimal stimuli suggest that for patch
data, the third layer units respond prominently to longer straight
contours (for example unit 7 or 46) or to texture (for example unit
8 or 12). The boundaries of the contours can be defined in terms of
texture or luminance. For the tiny images, the third-layer units en-
code longer straight contours, too. In addition, they are sensitive to
curvatures (for example unit 5 and 7) or triangular shapes (for
example unit 9). The properties of some units likely reflect the fact
that in complete visual scenes, center and surround have distinct
characteristics (for example unit 40).

We noted above that gratings which are orthogonal to the pre-
ferred orientation of the third-layer units often produce strong
er model of natural image statistics. J. Physiol. (2013), http://dx.doi.org/
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inhibition. We relate here this orientation inhibition to the statis-
tics of natural images. In particular, we show that there is a con-
nection between the different tuning properties of the second-
layer units, the statistical dependencies between them, and the
way they are combined by the third-layer units: For each optimal
second-layer activation pattern, we identified the most and the
least active second-layer unit, and computed both the difference
in preferred orientation and the correlation coefficient between
the two units (the correlation was computed for natural image in-
put). Fig. 9b shows the resulting scatter plot for patch data (blue
asterisks) and the tiny images (red circles). In line with Fig. 9a,
(close to) perpendicular angles are the most probable ones. The
scatter plot shows that the two second-layer units are negatively
correlated. For the case of tiny images, as the angle between the
two units increases, the units become more negatively correlated
(p-value of 0.02). For the patch data, the collected data does not
give evidence for a linear relation between orientation difference
and correlation coefficient.
4. Discussion

We start with Section 4.1 where we discuss our probabilistic
approach to learn the computations. In Section 4.2, we discuss then
the computations that we have learned for each layer. In Sec-
tion 4.3, we explore the differences between the results for patch
and tiny images data. Section 4.4 is on possible modifications
and extensions of our model.
4 The percentages indicated in Sections 3.1 and 3.2 are for the binary situation of
the features being above or below the threshold. In Appendix D, we show that the
percentages are in a straightforward way related to the sparsity indices S2 and S3.
4.1. Learning computations by fitting a probability density function

In this paper, we estimated probabilistic models of natural
images. That is, we learned the parameters of our models such that
the resulting probability density functions represent the relative
probability of natural image structure as correctly as possible.
We discuss here this learning scheme and contrast it with other
approaches.

The basic reason why we construct and estimate probabilistic
models of natural images is the theory of Bayesian perception,
where the brain is assumed to use a model of the environment to
interpret incoming sensory signals. Since sensory signals are often
ambiguous, such an interpretation is useful in order to respond
appropriately or to make proper predictions. Bayesian perception,
together with Darwinian arguments of evolution, asserts that the vi-
sual system is highly adapted to its sensory environment. Due to the
adaptation, it has knowledge about what in our environment is
likely and what not. Mathematically, this knowledge corresponds
to knowledge about the probability density function (pdf) of the nat-
ural stimuli. The pdf serves as prior information in Bayesian infer-
ence, which is optimal from a normative viewpoint. The fact that
the optimal inference depends on the prior is the reason why we fo-
cus on modeling and estimating the prior from the data. In other
words, the computations learned in this paper are assumed to occur
whenever our model is used as a prior in Bayesian inference.

In this paper, learning means fitting a probabilistic model. Other
learning approaches have also been used in computational neuro-
science or computer vision. Biologically plausible learning rules
such as Hebbian learning, together with some stabilizing mecha-
nisms, are often used in computational neuroscience (see, for
example, Miller et al., 1989; Turrigiano and Nelson, 2000; Bednar,
2012). This learning has its roots in experimental findings while
our learning has its roots in a normative theory (this point was also
discussed by Bednar, 2012, Section 4). In computer vision, learning
is guided by performance in some target applications instead of
theoretical considerations per se (see, for example, LeCun et al.,
2006; Bengio, 2009).
Please cite this article in press as: Gutmann, M.U., Hyvärinen, A. A three-lay
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A related but different normative approach is sparse coding,
which says that strong neural activity should be a relatively rare
event (for an introduction, see, for example, Hyvärinen et al.,
2009, Chapter 6). Sparse coding is a rather broad concept (see,
for example, Willmore et al., 2011, Fig. 2). Among other possibili-
ties, it can refer to the situation where a neuron is activated by only
a few stimuli (lifetime sparsity), or to the case where only a few
neurons inside a larger population are activated by any single stim-
ulus (population sparsity). Using similarly lifetime and population
measurements, we analyzed how often the learned features effec-
tively contribute to the pdf. We found that the features relatively
rarely take values above the learned thresholds, meaning that their
contribution to the pdf is rather sparse, both in terms of lifetime
and population sparsity.4

In Appendix D, we analyze the sparsity of the feature outputs
before thresholding. In particular, we compare the levels of spar-
sity in the three different layers. We focus here on lifetime spar-
sity; the comparison of population sparsity is more intricate
because of the smaller sample sizes and because of the fact that
the number of units is different in the three layers, see Appendix
D for a further discussion of this point. For lifetime sparsity, on
average, we found that the feature outputs in the first and third
layer are equally sparse, while those in the second layer are less
sparse. This finding relates well to the processing in the different
layers: As discussed in Section 4.2 below, in layers one and three,
selectivity computations are performed, while in layer two, toler-
ance computations occur. Intuitively, tolerance entails tuning to a
wider range of stimuli, which may explain the reduced sparsity
in layer two. The finding also relates to recent experimental work
by Willmore et al. (2011) where no evidence for an increase in life-
time sparsity across the visual hierarchy was observed. Further, the
finding illustrates that modeling structure of natural images, as
done in this paper, is not equivalent to maximizing the (lifetime)
sparsity of the feature outputs; they are related but different nor-
mative approaches.

4.2. Learning of selectivity and invariance computations

In our three layers of computation, presented in Section 2.2, the
units in layer one and three have the same functional form. We
thus may see them as instantiations of the same canonical comput-
ing unit. The units in the second layer belong to a different class of
canonical units.

We learned the parameters which govern the behavior of the
canonical units by fitting a probability density function (pdf) to
natural images. After learning, the units in the first layer are selec-
tive to Gabor-like image features (‘‘simple cells’’). In the second
layer, similarly oriented and localized first-layer outputs are
pooled together (‘‘complex cells’’). We showed that the processing
in the second layer can be interpreted as a max-like computation
where the maximum is taken over selected first-layer outputs.
Importantly, the selection was learned from the data. Max-like
computations can be interpreted as tolerance (invariance) compu-
tations (Serre et al., 2005). In the third layer, units which are selec-
tive to longer contours emerged. These findings hold qualitatively
for both patch data and the tiny images (see below for some differ-
ences on the quantitative level). On the third layer, units that are
specific to the two different data sets emerged as well: For patch
data, these units preferred texture input, for the tiny images, they
preferred strong curvatures. In addition to grating stimuli, we used
mathematically derived optimal activation patterns as well as
sample images to perform the analysis. An interesting further
er model of natural image statistics. J. Physiol. (2013), http://dx.doi.org/
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analysis would consist in using texture patterns (El-Shamayleh and
Movshon, 2011), or complex shapes (Hegdé and Van Essen, 2000)
as input.

These results generalize previous results of ours where the first
two processing layers were tuned by hand (Hyvärinen et al., 2005).
Learning the computations on all three layers is also in contrast to
work in the computer vision community where selectivity or toler-
ance computations are often fixed by the researchers and not learned
from the data (see, for example, Serre et al., 2007; Jarrett et al., 2009).

Inhibition sharpened the selectivity of the third-layer units to the
orientation and localization of the stimulus. Second-layer outputs
which tend to be negatively correlated for natural images were
weighted with opposite signs. Thus, inhibition increases the sparsity
of the response. Willmore et al. (2010) found that neurons in visual
area V2 had a stronger suppressive tuning than neurons in the pri-
mary visual cortex. The authors speculated that the strong suppres-
sion is related to the higher-order statistics of natural scenes. Our
modeling study of natural images seems to confirm their conjecture.

Hierarchically organized processing based on canonical selectiv-
ity or invariance units has been proposed as a model for cortical
computation (see, for example, Fukushima, 1980; Riesenhuber
and Poggio, 1999; Kouh and Poggio, 2008). A fundamental problem
is, however, to know what the canonical units should be selective or
invariant to on each layer of the hierarchy. Our results suggest that
it is possible to learn the selectivity or invariance computations
from ecologically valid stimuli – using very few assumptions. Only
the general form of the layers and the pdf, as well as the non-neg-
ativity of the second-layer weights were assumed. The fact that
there are differences in the results for natural image patches and
tiny images (see below), and that random weights in the second
layer do not induce max-like computations suggest that our
assumptions impose only very weak constraints.

In line with the theoretical developments above, it has been
empirically shown that visual processing, on population level, be-
comes gradually more selective and invariant along the hierarchy
(Rust and DiCarlo, 2010). But it is currently unknown what kind
of single-neuron properties could underlie the observed properties
on population level. The computations that we have learned in this
paper could yield predictions for possible properties on single-neu-
ron or cell assembly level – with the caveat that our model can
only provide functional explanations or predictions of cortical pro-
cessing. The actual neural implementation is another issue. For the
discrepancy between function and implementation in the particu-
lar case of simple and complex cells, we refer the reader to the dis-
cussion by Ringach (2004).

4.3. Natural image patches versus tiny images

We applied the same statistical model on two different kinds of
natural image data: patches extracted from larger images and com-
plete scenes downsampled to patch size (‘‘tiny images’’). While
comparison of the two data sets was not the primary purpose of
this paper, we discuss here some differences that we have ob-
served. We would like to emphasize that despite these differences,
qualitatively similar computations emerged for both data sets, in
particular on layers one and two (see Section 4.2 above).

For patch data, the first processing layer was more sensitive to
low frequency content than for the tiny images. This presumably re-
flects the fact that an image patch can be an extract of a smooth area
in the larger image. Since the tiny images represent complete visual
scenes, such data points are more rare in the tiny images data set.

For both patch data and the tiny images, the processing layers
are particularly sensitive to horizontal image structure, which is
in line with previous findings (Betsch et al., 2004). For tiny images,
however, the preference for horizontal structure is much stronger,
and vertical structure is dominant too. This can be understood by
Please cite this article in press as: Gutmann, M.U., Hyvärinen, A. A three-lay
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noting that the tiny images can be considered to be visual scenes
seen from a larger distance. Torralba and Oliva (2003) found that,
as viewing distance grows, natural structure becomes increasingly
biased to horizontal and vertical orientation.

We found that tiny images more often produce inhomoge-
neous receptive fields on the third layer, compared to image
patches. While this may be due to the limited set of larger images
from which we extracted the patches,5 it makes intuitive sense
that complete scenes have stronger variations in orientation than
image patches. The degree of inhomogeneity in visual area V2
has been recently investigated for macaque monkeys by Anzai
et al. (2007) and Tao et al. (2012). Both studies found similar per-
centages of homogeneous receptive fields (60–80% had a maximal
orientation difference of less than 30� within a receptive field).
Concerning strongly inhomogeneous receptive fields with a maxi-
mal orientation difference of more than 60�, rather different per-
centages were found (30% versus 5%). In agreement with the two
studies, we found that about 70% of the learned third-layer units
have a maximal difference of less than 30� – under the condition
that only locations in the receptive field where the response is
strong are included. Concerning the receptive fields with a maximal
orientation difference of 60� or more, we obtained percentages that
lie between the two experimental values, namely 10% for patch
data and 20% for the tiny images. However, given the sensitivity
of the results to the exact criteria used, such a quantitative compar-
ison should not be taken too seriously. The main thing we can con-
clude concerning homogeneity is that homogeneous receptive
fields emerged more often than strongly inhomogeneous ones,
and that inhomogeneous receptive fields emerged more often for
tiny images than for patch data.
4.4. Nonlinearities and model definition

Only the squared outputs of the first layer appear in our
model, see Section 2.2. We could have subsumed the squaring
into the definition of yð1Þi in (1) without changing the model.
The processing in the first layer would have been a dot-product
between the input and a feature vector followed by a convex
nonlinearity (the squaring). In the second layer, we would have
had a dot-product followed by a concave nonlinearity (the loga-
rithm). Note that this setup would give exactly the same output
on the second layer as the current definitions, only the interpre-
tation is different.

A dot-product followed by a convex nonlinearity can be consid-
ered to be a mathematical abstraction of a selectivity unit. A dot-
product followed by a concave nonlinearity, on the other hand,
may be taken as an abstraction of an invariance unit. While such
interpretations may not be entirely new, we are not aware of work
where they are explicitly mentioned or where the feature vectors
underlying the dot-products are learned from the data. The assign-
ment of the two classes of nonlinearities to the two classes of com-
putational units relates well to their opposing effects on sparsity: as
shown in Fig. D.15 in Appendix D, squaring increases sparsity while
taking the logarithm reduces it.

Our definition of the computation in the third layer does not in-
clude a squaring. In additional simulations using squaring (results
not shown), we obtained similar features as with our current def-
inition. The results were, however, less robust. The reason for this
is presumably that squaring puts too much emphasis on large val-
ues, which makes the learning less stable.

For the learning of the third-layer parameters, the pdf px was
defined on the level of the third-layer outputs only, see (6). It
er model of natural image statistics. J. Physiol. (2013), http://dx.doi.org/
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would have been possible to include the outputs from the second
layer to obtain a pdf of the form

px /
Ynð2Þ
i¼1

exp fth yð2Þi þ bð2Þi

� �� �Ynð3Þ
i¼1

exp fth yð3Þi þ bð3Þi

� �� �
: ð7Þ

Moreover, we could have included terms that depend on the DC val-
ues and norms which are removed by gain control. While not nec-
essary to obtain meaningful features, such a pdf might be more
appropriate if it is used as a prior in Bayesian inference. Moreover,
since the thresholding nonlinearities are not optimal (Gutmann and
Hyvärinen, 2012b, Section 5.4), for Bayesian inference tasks, it
might be a good idea to further refine the pdf by relearning the non-
linearities, leaving the features wð1Þi to wð3Þi fixed.

Part of our model is gain control. We removed the DC value
from the vector subject to gain control and normalized its norm
after whitening. We assumed this fixed form of gain control for
simplicity. It would, however, be possible to learn the parameters
which govern it, too. In particular, learning which elements to in-
clude in the normalization pool would be interesting. This would
presumably lead to an improved model (Schwartz and Simoncelli,
2001).
5. Conclusions

Simultaneous selectivity and invariance is an important prop-
erty of visual systems. It has been proposed that this property
Fig. A.10. Patch data: complete set of learned features fo
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emerges when elementary selectivity and tolerance computations
are iterated in a hierarchical fashion. In this paper, we have ad-
dressed the fundamental question what to select or tolerate at each
layer of the hierarchy. We sought an answer for the first three lay-
ers of the hierarchy by learning the computations from natural
images. We are hopeful that this approach can be extended to learn
the computations in further layers.
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Appendix A. Complete set of second-layer features

For patch data, seven of the one hundred second-layer weight
vectors converged with learning to small values. For tiny images,
this happened to three weight vectors. These vectors were omitted.
We show here the remaining complete set of features for layers one
and two, visualized as in Fig. 3. Figs. A.10 and A.11 show the results
for patch data; Figs. A.12 and A.13 the results for tiny images.
r layer one and two (part 1), visualized as in Fig. 3.
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Fig. A.11. Patch data: complete set of learned features for layer one and two (part 2), visualized as in Fig. 3.
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Fig. A.12. Tiny images: complete set of learned features for layer one and two (part 1), visualized as in Fig. 3.
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Fig. A.13. Tiny images: complete set of learned features for layer one and two (part 2), visualized as in Fig. 3.
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Appendix B. Complete set of third-layer features

We visualize here the complete set of the learned third-layer features. For patch data, the features are enumerated using upright num-
bers. For tiny images, we use italic numbers. The features are visualized as in Figs. 5 and 6. Note that icons for low-frequency second-layer
units were not used in the visualization of the optimal second-layer activity, as pointed out in the main text.
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Fig. C.14. Cumulative distribution functions (cdfs) for the maximal difference in orientation tuning within a third-layer receptive field. The distribution functions were
computed for 50 units. The dash-dotted curves show the cdfs ± one standard error. Locations within a receptive field which yielded a response less than r times the maximal
response were excluded from the analysis, as in Fig. 7b in the main text. The reason is that the preferred orientation cannot be computed reliably if the response is small.
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(a) Results for patch data
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(b) Results for the tiny images

Fig. D.15. Lifetime sparsity of the feature outputs across the hierarchy. L1 refers to the first, L2 to the second and L3 to the third-layer feature outputs, as defined in
Section 2.2. The labels ‘‘sq’’ and ‘‘pool’’ denote the intermediate quantities ðyð1Þi Þ

2 and wð2Þi � ðyð1ÞÞ
2 that occur in the computation of the second-layer outputs yð2Þi . We use three

indices, S1 to S3, to measure sparsity, see (D.1), (D.2), (D.3) for their definitions. Zero indicates minimal, one maximal sparsity. The markers denote averages, the vertical lines
are two standard deviations long. We find, first, that sparsity in layer one and three is about the same, second, that pooling reduces sparsity, and third, that squaring increases
sparsity while taking the logarithm reduces it.
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Appendix C. Homogeneity of the receptive fields

In Fig. C.14, we show the distribution of the maximal difference
in orientation tuning within a receptive field for the population of
learned third-layer units.

Appendix D. Sparsity of the feature outputs

We analyze here the sparsity of the feature outputs across the
hierarchy. We use three different indices to measure sparsity. We
first define the indices in a more general way and explain then
how to apply them to measure lifetime or population sparsity.

Assume we would like to measure the sparsity of a vector
r = (r1 � � � rm) which consists of m non-negative entries rk. The first
index that we use, S1, is the Gini index which can be computed as
Please cite this article in press as: Gutmann, M.U., Hyvärinen, A. A three-lay
10.1016/j.jphysparis.2013.01.001
S1ðrÞ ¼ 1� 2P
krk

Xm

k¼1

rðkÞ 1�
k� 1

2

m

� �
; ðD:1Þ

where r(k) denotes the kth smallest entry in r, that is, r(1) 6 r(2) -
6 � � � 6 r(m) (see, for example, Hurley and Rickard, 2009). A value
of zero indicates minimal sparsity, it is obtained if rk is the same
for all k. Maximal sparsity is obtained if r contains only one non-
zero element, where S1 equals 1 � 1/m, which tends to one with
increasing m. The Gini index was shown to have a number of desir-
able properties to measure sparsity (Hurley and Rickard, 2009). The
following two indices, S2 and S3, are based on the ‘‘1–2 mean’’ a(r)
which shares the same desirable properties (Hurley and Rickard,
2009),6
In the definition by Hurley and Rickard (2009), the sign is reversed.
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aðrÞ ¼
1
m

P
krkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
m

P
kr2

k

q : ðD:2Þ

Note that a(r) is one if rk is the same for all k and 1=
ffiffiffiffiffi
m
p

if r contains
only one non-zero element. The indices S2 and S3 are two different
transformations of a(r) so that zero indicates minimal and one max-
imal sparsity,

S2ðrÞ ¼ 1� ðaðrÞÞ2 S3ðrÞ ¼ 1� aðrÞ: ðD:3Þ

Strictly speaking, S2 and S3 attain one only in the limit of large m.
Index S2 was, for example, used by Willmore et al. (2011) to mea-
sure the lifetime sparsity of cortical cells. With a different normal-
izing factor,7 index S3 was used by Hoyer (2004) to measure sparsity.
For binary vectors r, a ¼ ffiffiffi

p
p

where p is the fraction of ones in r.
Hence, for binary vectors, S2 = 1 � p measures the fraction of zeros
in r, and S3 ¼ 1� ffiffiffi

p
p

.
For the measurement of lifetime sparsity, the vector r contains

the outputs of a single feature for several different input images.
We use a test set of m = 10,000 natural images. For each feature
output, we can then compute the three indices S1 to S3. Averaging
over the different features in the same layer gives aggregate spar-
sity indices for each layer. These aggregate indices are shown in
Fig. D.15, together with their standard deviations: D.15a shows
the results for patch data, D.15b the results for the tiny images.
The figures suggest three points: First, sparsity in layer one and
three is about the same. There is not evidence that, on average, fea-
tures in layer three are more sparse than in layer one. Second, pool-
ing in the second layer reduces sparsity. Third, the point-wise
nonlinearities that occur in the definition of yð2Þi in (2) affect spar-
sity in opposite ways: squaring increases sparsity while taking the
logarithm reduces it.

For the measurement of population sparsity, the vector r con-
tains for a single input the outputs of the m features which form
the population. Aggregate indices can be obtained by averaging
over different inputs. For the measurement of population sparsity,
the role of the population and the inputs is thus reversed. The fact
that the number of features in each layer is smaller than the num-
ber of test images, and that each layer contains a different number
of features makes measuring population sparsity, however, more
difficult. With these caveats in mind, we report that the indices
for average population sparsity, computed directly as outlined
above and without any adjustment to the different population
sizes, take similar values as for lifetime sparsity.
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