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Recently, independent component analysis (ICA) has been widely used

in the analysis of brain imaging data. An important problem with most

ICA algorithms is, however, that they are stochastic; that is, their results

may be somewhat different in different runs of the algorithm. Thus, the

outputs of a single run of an ICA algorithm should be interpreted with

some reserve, and further analysis of the algorithmic reliability of the

components is needed. Moreover, as with any statistical method, the

results are affected by the random sampling of the data, and some

analysis of the statistical significance or reliability should be done as

well. Here we present a method for assessing both the algorithmic and

statistical reliability of estimated independent components. The method

is based on running the ICA algorithm many times with slightly

different conditions and visualizing the clustering structure of the

obtained components in the signal space. In experiments with magneto-

encephalographic (MEG) and functional magnetic resonance imaging

(fMRI) data, the method was able to show that expected components are

reliable; furthermore, it pointed out components whose interpretation

was not obvious but whose reliability should incite the experimenter to

investigate the underlying technical or physical phenomena. The

method is implemented in a software package called Icasso.
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Introduction

Independent component analysis (ICA) (Hyvärinen et al.,

2001b) is a general-purpose statistical model that has been widely

used in the analysis of brain imaging data (see, e.g., Makeig et

al., 1997; McKeown et al., 1998; Vigário et al., 2000). A major

problem in application of ICA is that the reliability of the

estimated independent components is not known. An ICA algo-
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rithm gives a specified number of components, but it is not

known which ones deserve further analysis and discussion.

As with any statistical method, it is necessary to analyze the

statistical reliability (statistical significance) of the obtained com-

ponents. The finite sample size induces statistical errors in the

estimation—this is the case where classical analysis of statistical

reliability should be used (Meinecke et al., 2002). Such an analysis

can be accomplished using bootstrapping, a well-known computa-

tional method for computing the statistical reliability in the case

where a simple mathematical formula cannot be found (Efron and

Tibshirani, 1993). Bootstrapping is a resampling method; that is,

the data sample is randomly changed by simulating the sampling

process, and the algorithm is then run many times with the

bootstrapped samples that are somewhat different from each other.

The reliability of the original estimate can then be analyzed by

looking at the spread of the obtained estimates.

A further problem typical of ICA is that most algorithms have

random (stochastic) elements; that is, the algorithms give some-

what different results at every run of the algorithm. Most ICA

algorithms such a FastICA (Hyvärinen, 1999) or the natural

gradient (infomax) algorithm (Amari et al., 1996; Bell and Sej-

nowski, 1995) are based on minimization or maximization of an

objective function, such as the likelihood, mutual information, or

negentropy (see Hyvärinen and Oja, 2000; Hyvärinen et al., 2001b

for a discussion). The randomness of the algorithm stems from the

fact that it is not possible to find the point that globally minimizes

the objective function (for simplicity of terminology, we shall talk

about minimization only because the principle is the same in the

case of maximization).

The problem is that most ICA algorithms are based on

methods related to gradient descent. The basic principle is to

start in some initial point, and then make steps in a direction that

decreases the objective function, until one finds a point in which

the objective function is locally minimized. Depending on the

point where the search was started (the ‘‘initial condition’’), the

algorithm will find different local minima. In the case of a very

high-dimensional signal space, the probability of finding the

global minimum may be very small. Yet, in the case of a high-

dimensional signal space, the situation is even more complicated,
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because at each local minimum, a subset of the components may

be accurately estimated. This is plausible because the estimation

of the individual components is partly decoupled from each other;

in fact, the components can be estimated one at a time by using

the criterion of negentropy or nongaussianity (Hyvärinen, 1999).

Thus, to assess the algorithmic reliability of the estimated

components, it is reasonable to run the estimation algorithm

many times, using different initial points, and assessing which

of the components are found in almost every run.

Algorithmic and statistical reliabilities in the context of sto-

chastic algorithms and local minima are illustrated in one dimen-

sion in Fig. 1. It is important to understand that these two

reliabilities are quite distinct properties. What we call statistical

reliability is basically the same as the classic notion of statistical

significance. Algorithmic reliability, on the other hand, is a

phenomenon that is irrelevant in the case of most classic statistical

methods; problems only appear in connection with modern com-

putationally intensive methods such ICA.

In this paper, we present a tool for investigating the reliability of

the independent components. The method is based on estimating a

large number of candidate independent components by running an

ICA algorithm many times, and visualizing their clustering in the

signal space. Each estimated independent component is one point

in the signal space. If an independent component is reliable,

(almost) every run of the algorithm should produce one point in

the signal space that is very close to the ‘‘real’’ component. Thus,

reliable independent components correspond to clusters that are

small and well separated from the rest of the estimates. In contrast,

unreliable components correspond to points which do not belong to

any cluster. We investigate both algorithmic and statistical reliabil-

ity by running the ICA algorithm either with different initial

conditions or with different bootstrapped data sets, respectively.

Our focus is on constructing a comprehensive set of methods

supported by explorative data analysis and visualization. We have
Fig. 1. Illustration of the problem of local minima. (a) An objective function

that is to be minimized. There is a global minimum at 6, and small local

minima at 2 and 9. If a gradient descent algorithm starts at the points

marked by circles, it will probably find the global minimum. However, if it

starts at the points marked by stars, it will probably converge the nearest

local minimum, at 2 or 9. Running the algorithm many times, it will

converge to 6 most of the time. (b) When the data is resampled in the

bootstrapping method, the optimized function changes a bit. The smaller

local minima at 2 and 9 disappear, and a new local minimum appears at 0.

The stable minimum at 6 is still a local (and global) minimum.
developed a software package called Icasso1 to implement these

operations and visualize the results. Preliminary results were

reported in Himberg and Hyvärinen (2003).
The Icasso software package

Overview of Icasso

First, we provide a concise overview of our method for ICA

reliability analysis, Icasso. It consists of the following steps:

(1) Parameters for the ICA estimation algorithm are selected. We

use FastICA whose parameters include the orthogonalization

approach (symmetric or deflationary), the nonlinearity, etc.

(2) The ICA algorithm is run a number of times using the selected

training parameters. Each time, the data is bootstrapped and/or

the initial point of the optimization is changed.

(3) The estimates (estimated components) are clustered according

to their mutual similarities. In principle, the clustering method

can be freely selected. We apply agglomerative clustering with

average-linkage criterion.

(4) The clustering is visualized as a 2-D plot. The user investigates

how the estimates are concentrated in the clusters. The

clustering of the estimated components is expected to yield

information on the reliability of estimation. A compact, tight

cluster emerges when a similar estimate is repeatedly obtained

despite the randomization.

(5) The user can retrieve the estimates belonging to certain

cluster(s) for further analysis and visualization.

To complete steps 1–3, the user simply sets the FastICA

parameters and launches a resampling and clustering application.

In step 4, the user explores the clustering by launching an

interactive visualization application. The user can examine the

quality of the clusters and rank them accordingly. Subsequently,

Icasso visualizes the similarity matrix between all the estimates

and their partition into clusters in a single graph. Thus, the user can

examine relationships between estimates and clusters in detail. In

step 5, the user can retrieve any set of estimates that belong to

certain cluster(s).

Our criteria for selecting the specific estimation and visuali-

zation methods for Icasso were that (i) methods for completing

each subtask are well known, (ii) they support visualization and

explorative data analysis, and (iii) to avoid redundant work,

existing, publicly available building blocks should be used.2 In

the rest of this section, we provide a detailed description of the

method.

Generating the estimates and comparing them

We consider the standard linear, noise-free ICA model x = As

of independent sources s and a mixing matrix A. However, what is

usually estimated in practice, is the demixing matrixW for s =Wx,

where W is a (pseudo)inverse of A (Hyvärinen et al., 2001b).
1 The MATLAB package is available at http://www.cis.hut.fi/projects/

ica/icasso.
2 We use the FastICAToolbox 2.1 and the SOM Toolbox 2.0 (Vesanto

et al., 2000) for MATLAB, both freely available from http://www.cis.hut.fi/

research/software.shtml.

 http:\\www.cis.hut.fi\projects\ica\icasso 
 http:\\www.cis.hut.fi\research\software.shtml 
 http:\\www.cis.hut.fi\projects\ica\icasso 
 http:\\www.cis.hut.fi\research\software.shtml 


Fig. 2. An illustration of a dendrogram and hierarchical agglomerative

clustering. The points are successively joined into clusters when moving

upwards in the dendrogram. The vertical axis gives the dissimilarity for

which the clusters are merged. Clustering can be performed at any level.
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The FastICA algorithm is run M times on the data matrix X =

[x1 x2. . .xN] consisting of N samples of k-dimensional vectors. The

estimates of demixing matrices Ŵi from each run i = 1,2,. . .,M are

collected into a single matrix Ŵ = [Ŵ1
TŴ2

T. . .ŴM
T]T. If ni inde-

pendent components are estimated on each round, we get K ¼P
i ni estimates, and the size of Ŵ will be K� k.

We can recompute independent component estimates by (a)

Randomizing the initial condition: FastICA is run M times for the

same data X, so that for each run the algorithm starts from a new

random initial condition; (b) Bootstrapping: FastICA is run M

times. The initial condition is kept the same in every run, but the

data is resampled by bootstrapping every time; and (c) Boot-

strapping with randomized initial condition as a combination of

(a) and (b).

A natural measure of similarity between the estimated indepen-

dent components is the absolute value of their mutual correlation

coefficients rij, i, j = 1,. . .,K. Straightforward calculations show

that they can be efficiently computed by simple matrix multipli-

cation. In fact, each correlation is given by one element of the

matrix R = ŴCŴT where C is the covariance matrix of the

original data X (this is exactly true in the case of different initial

points; for bootstrapping, some extra normalization is necessary).

The final similarity matrix then has the elements rij defined by

rij ¼ ArijA: ð1Þ

Later, we use clustering methods and validity indices that use

dissimilarities (distances). Therefore, we need to transform the

similarity matrix into a dissimilarity matrix with elements dij. A

classic way to make this transformation is obviously given by

(Everitt, 1993):

dij ¼ 1� rij: ð2Þ

We will also use a simple modification of this formula as will

be explained below.

Clustering the estimates

We can partition the set of all estimates (estimated independent

components) into several disjoint clusters using some basic clus-

tering algorithm and the dissimilarity measure in Eq. (2). Agglom-

erative hierarchical clustering is a well-known method for a modest

number of objects (Everitt, 1993; Gordon, 1987)). The tree-like

hierarchy (dendrogram) produced by agglomeration is intuitively

appealing in the sense that all clusters implied by lower levels of

the tree are always subsets of clusters at the higher levels. Thus, the

user is able to explore and compare the different level(s) of

clustering that are readily computed. The obvious way to obtain

a partition of L clusters from a dendrogram is to cut it at level

where L clusters are present. A dendrogram is illustrated in Fig. 2.

There are numerous reviews and studies on the many agglom-

eration strategies and cluster validity indices (see, e.g., Bandyo-

padhay and Maulik, 2001; Bezdek and Pal, 1998; Everitt, 1993;

Gordon, 1987; Maulik and Bandyopadhay, 2002). Unfortunately,

there is no easy way of selecting the optimal agglomeration

strategy for a specific set of data, and the selection must be based

on problem-specific considerations. The same applies also to

selecting a clustering validity index for determining a ‘‘natural’’

number of clusters (Bezdek and Pal, 1998).

Three basic agglomeration strategies that operate directly on the

similarity matrix are single-link (SL), complete-link (CL), and
group average-link (AL). Icasso uses AL as the default choice of

agglomeration strategy. This is because, first, SL is in general

reported to be more sensitive to noise than AL and CL (Everitt,

1993). Second, our experiments (not shown) revealed that when

the number of clusters is smaller than the data dimension (L < k),

CL starts to join clusters inconsistently.

To direct the attention of the user to those clusters that seem to

be the most compact and interesting, we introduce a (conservative)

cluster quality index Iq that reflects the compactness and isolation

of a cluster. It is computed as the difference between the average

intracluster similarities and average intercluster similarities. Let us

denote by C the set of indices of all the estimated components, by

Cm the set of indices that belong to the mth cluster and by jCmj the
size of the mth cluster. Then, we define the cluster quality index as

IqðCmÞ ¼
1

ACmA2

X

i;jaCm

rij �
1

ACmNC�mA

X

iaCm

X

jaC�m

rij; ð3Þ

where C�m is the set of indices that do not belong to the mth

cluster. Eventually, Iq(Cm) is equal to one for an ideal cluster when

Eq. (1) is used to compute the similarities rij, and decreases when

Cm becomes less compact and isolated.

An important parameter that needs to be selected in any

clustering method is the number of clusters L. We prefer leaving

the final selection of the number of clusters to the user who can

interactively explore the results produced by different levels of

dendrogram. It is reasonable to start studying the clustering from

the number of clusters L equal to the data dimension k and

investigate the values of cluster quality index in rank order, as

will be done in Fig. 5.

It is also possible to use quantitative indices for suggesting the

number of clusters that best fits to the data. We considered some of

the cluster validity indices that can be computed knowing only the

dissimilarity matrix. These included four of the Dunn-like indices

in Bezdek and Pal (1998) and the R-index defined in Levine and

Domany (2001). Empirical studies on such indices (e.g., Bandyo-

padhay and Maulik, 2001; Bezdek and Pal, 1998; Maulik and

Bandyopadhay, 2002) often yield different results depending on the

character of the data used, with no clear indication of general

superiority. Our own experiments on these indices did not suggest



Fig. 3. Comparison of different projection methods. The trustworthiness of

CCA, Sammon’s projection and MMDS are plotted as a function of

neighborhood size (1–40). CCA* is obtained when Eq. (2) was used, the

rest of the graphs result from using Eq. (5). Curvilinear component analysis

has the highest values of trustworthiness for all neighborhood sizes.

Fig. 4. The similarity graph of the estimates for MEG data. Clusters are

indicated by red convex hulls. Grey lines connect estimates whose

similarity is larger than a threshold, the darker the line the stronger the

similarity. Labels 1–20 correspond to Fig. 5. Convex hulls A and B show

how clusters agglomerate further if the number of clusters is set to L = 13

instead of L = 20.
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any definitive winner, either. Currently, Icasso shows the R-index

(IR) in the user interface. The index is defined as

IR ¼ 1

L

XL

m¼1

Sinm
Sexm

; ð4Þ

where

Sinm ¼ 1

ACmA2

X

i;jaCm

dij; and Sexm ¼ min
mVpm

1

ACmNCmVA

X

iaCm

X

jaCmV

dij:

The index is a variant of the Davies–Bouldin index (see

Bezdek and Pal, 1998). It searches for compact and well-separated

clusters and the minimum of IR suggests the best partition.

However, we note that such an index should be used only in

connection with explorative investigation.

As a spin-off of the reliability analysis, Icasso is also able to

improve the estimates of the components. In fact, it is possible to

integrate information over the many runs performed by computing

a representative point for each tight cluster. Icasso provides the

‘‘centrotype’’ of the cluster as such a representative point. The

centrotype is the point in the cluster that has the maximum sum of

similarities (as measured by correlation coefficients) to other points

in the cluster.

Visualization by nonlinear 2-D projection

In addition to assigning the estimated components to clusters,

Icasso provides a tool for getting a detailed look into the clustering

results, including relations between the clusters and the individual

estimates. The result of the hierarchical clustering is typically

presented as a dendrogram, but other types of visualization also

exist. In Icasso, each estimate is plotted as a point on the display, and

a convex hull bounds the estimates belonging to the same cluster

(Gordon, 1987). This presentation allows visualizing the similarities

rij rather explicitly; the points are connected with lines whose

thickness/color represent the similarities between them (see below).
We apply projection methods related to multidimensional

scaling (MDS) as suggested in Gordon (1987) to approximate

the original dissimilarities between estimates by Euclidean distan-

ces in two dimensions. This should result in a projection where the

smaller a convex hull is, the more compact the corresponding

cluster is. An ideal cluster should contract into a single point.

For this purpose, we compared the linear metric MDS (MMDS)

(Torgerson, 1952), and two nonlinear methods: Sammon’s projec-

tion (Sammon, 1969) and Curvilinear Component Analysis (CCA)

(Demartines and Hérault, 1997). In addition to visual comparison,

we used a trustworthiness index proposed in Venna and Kaski

(2001). Spatial proximity is one of the strongest visual indicators of

grouping (Ware, 2000). To be trustworthy, a projection should be

such that one can trust the visual proximity as an indicator of

similarity. The trustworthiness index in Venna and Kaski (2001) is

a function of the neighborhood size, and it must be evaluated for

the neighborhood sizes of interest; according to Venna and Kaski

(2001), it is especially important that the trustworthiness is retained

for small neighborhoods.

According to our experiments (see Fig. 3), CCA produces more

trustworthy projections than MMDS or Sammon’s method for the

dissimilarity measure in Eq. (2). We also considered visualization

based on the Self-Organizing Map (SOM) since it is reported to be

more trustworthy than many MDS-like methods (Nikkilä et al.,

2002; Venna and Kaski, 2001). However, we abandoned this

method because its regular grid visualization forces the lines of

the similarity graph to shadow each other more than they do on a

nonuniform projection.

The projection can be further controlled by modifying the

definition of dissimilarity in Eq. (2) suitably, for example, as

dij* ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rij

p
: ð5Þ

This spreads the distribution of the distances so that differences

in size among the most compact clusters can be seen better. For this

reason, Icasso uses transformation in Eq. (5) instead that of Eq. (2)

for making the visualization.



J. Himberg et al. / NeuroImage 22 (2004) 1214–12221218
The projection onto the 2D plane usually contains some

distortions, and therefore, it is useful to show some similarities

(correlations) by additional lines connecting the points. Such lines

are drawn in different colours between dots representing estimates

whose correlation (in absolute value) exceeds a certain threshold.

These thresholds are specified by the user; here we report the

thresholds used in Fig. 4. Icasso draws the lines in three different

gray levels, here using light-grey lines between estimates whose

correlation (in absolute value) is larger that 0.1; midgrey lines are

drawn for jrj>0.58 and black lines for jrj>0.82. To reduce the

number of graph lines, clusters that have an average within-cluster

larger than 0.9 are painted with solid light red and no lines are

shown within the cluster; clusters are painted with bright red if the

minimum within-cluster jrj is larger than 0.9.
Fig. 5. The quality index Iq in rank order for the clusters in Fig. 4.

Illustrative experiments

Here we illustrate the utility of Icasso by reanalyzing two data

sets whose properties are well known to us. First, we experimented

with a magnetoencephalographic (MEG) data set described in more

detail in Vigário et al. (1998). Next, we applied Icasso on

functional magnetic resonance imaging (fMRI) data from a fin-

ger-tapping experiment, described in more detail in Esposito et al.

(2003).

Magnetoencephalographic data

Methods

The data consisted of preprocessed signals originating from

122-channel whole-scalp MEG measurements from the brain

(Vigário et al., 1998). The output of each sensor was considered

one mixture signal. The original signals were band-pass filtered

between 0.5 and 45 Hz, and the data dimension (k) was reduced

from 122 to 20 using principal component analysis (PCA) to

reduce noise and overlearning. The recording lasted about 2 min

and contained 17,730 samples. The measurements from the brain

were disturbed by signals originating from various sources: heart

beat, eye blinks and saccade, other muscular activity—and a digital

watch.

We ran Icasso five times using three different settings. Setting

(I) random initial conditions, third power as nonlinearity; (II) as I,

but hyperbolic tangent (tanh) as the nonlinearity; and (III) as I, but

using both bootstrapping and random initial conditions.

Each time number of randomizations (M) was 15, and the

symmetrical approach was used in FastICA.

Results and discussion

In the following, we present results for a particular test run from

setting I. First, we select the number of clusters L to equal 20,

which is the dimension of the data (after PCA). The clusters and

their interrelation are visualized in Fig. 4. Fig. 5 shows the quality

index Iq for each cluster. Note how the diameter of the convex hulls

representing the clusters grows when the value of quality index Iq
decreases.

We notice a ‘‘knee’’ in the graph presenting the ranked Iq when

moving from cluster nos. 10 to 12 in Fig. 5. In addition, the

clustering validity index IR has a local minimum for L = 13 (not

shown). Thus, it is interesting to consider the case L = 13. Convex

hulls marked A and B show how clusters are merged if L = 13 is

selected instead. The estimated source signals for centrotypes
associated to the most tightest clusters #1–11 (being outside

of convex hulls A and B), are presented in quality rank order in

Fig. 6. From the previous studies, we know that source estimates #1

and #2 correspond to eye movements, #3 to heart and #7 to the

digital watch. Sources #5 and #6 are related to muscular activities

due to biting. Thus, well-known strong artifacts are all ranked to the

top which is quite reasonable. In repeated runs of Icasso with

different settings, all top four estimates were always ranked 1–4

with the first and the second only occasionally changing places. The

next seven estimates remained usually in top 11, except that

estimates #5–6 related to biting became less reliably estimated,

especially in setting II.

Icasso is thus able to point out some components that are worth

investigating further. Above all, source #4 is interesting since it is

clearly well estimated—even in repeated experiments and in other

settings—but the physiological explanation, if any, is not yet

known. The same applies, to a lesser extent, to the components

#8–11. These components may not look very interesting at first

sight, which is possibly why they were not investigated in detail by

Vigário et al. (1998).

Functional magnetic resonance images

Methods

A healthy volunteer participated in a dominant-hand finger-

tapping fMRI experiment (Esposito et al., 2003). Images were

acquired on a 1.5-T superconducting SIGNA MR scanner (Gen-

eral Electric Medical Systems, Milwaukee, WI, USA) using a

standard circularly polarized head coil. T1-weighted structural

volumes served as anatomical reference for the positioning of

five slices parallel to the bicommissural plane to cover optimally

the primary motor and supplementary motor areas. The functional

scans were acquired using a conventional gradient-echo echo-

planar imaging sequence (TR, 2 s; echo time TE, 60 ms; delay

time, 2 s thus resulting in the effective TR of 4000 ms; flip angle

90, field of view 210 mm, matrix 128128, slice thickness 5 mm,

slice gap 2 mm).

The experimental paradigm consisted of five intervals of five

time points during which a self-paced finger-tapping task (se-

quential opposition of all fingers of the right-hand against the

thumb) at a specified frequency of 2 Hz was carried out,

alternated with five intervals of five time points of resting. The

alternation between task and rest conditions was verbally trig-



Fig. 7. The similarity graph of the estimates for fMRI data. Clusters are

indicated by red convex hulls and grey/black lines connect similar

estimates.
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gered. Although the tapping rate was self-paced and the tapping

force unconstrained, the motor performance was carefully mon-

itored for being of constant rate and force during the experimental

periods. An additional ‘‘rest’’ block was acquired before the first

‘‘task’’ block of which the first two time points were discarded to

avoid the global effects induced by incomplete magnetization

equilibrium.

Each image of the slice time series was smoothed in space by

applying an isotropic gaussian kernel to low-pass filter each slice

at each time point. Then, the dimensionality of the data was

reduced to 30 by PCA. ICA can be performed on fMRI data is

two different ways, called spatial and temporal ICA (Calhoun et

al., 2001b); here we used spatial ICA. In FastICA, we used a

symmetric approach, the nonlinearity being tanh. We tested the

algorithmic reliability by running the ICA algorithm 15 times

with random initial conditions.

Results and discussion

The similarity graph is shown in Fig. 7, and the five first

centrotype activation maps are shown in Fig. 8. Based on previous

studies, we interpret the first five clusters as follows:

1. Task-related source. The highest values of the component

clearly appear to cluster anatomically in contralateral rolandic

region of the primary motor cortex and the supplementary

motor area. The primary somatosensory area (SI) is active as

well.

2. Vascular source, showing activation foci that cluster in the

regions of large blood vessels. The time course (not shown) was

poorly related to task execution.

3. This source is difficult to interpret and worthy of further study.

The nice bilateral structure and the shape of the time course

suggest the classification of this source as an ’’auditory source’’

caused by the auditory cue (GO-STOP), but it is not possible to

confirm this hypothesis in the absence of more inferior slices

that covered primary and secondary cortices.

4. Motion-related source, active at the boundaries of brain (typical

ring-like activation patterns). These phenomena are represen-

tative of head motion effects during scanning. The associated

time course (not shown) exhibited a long-term effect on the

data, starting at the onset of the first task block.
Fig. 6. Estimated sources corresponding to centrotypes of clusters #1–11 in

Fig. 4.
5. Another vascular source, showing activation foci that cluster in

the regions of large blood vessels. This source exhibits an

evident correlation with the task and includes the motor cortex

activity. Possibly, it corresponds to modulation of task-related

activity.

Thus, again we see that in addition to showing that some well-

known components are reliable (here, in the algorithmic sense),

Icasso is able to point out a component (#3) whose interpretation is

not obvious and which might not capture the attention of the

experimenter who just runs ICA once and is confronted with a

large number of estimated components.
Discussion

Utility of reliability analysis

We have shown how the reliability of the independent compo-

nents can be analyzed by a new software package. On one hand, it

is obvious why reliability analysis is needed; any conclusions on

the data should be based only on components that have been found

reliable. On the other hand, reliability analysis provides an inter-

esting data ‘‘mining’’ tool in itself; it highlights some components

and suggests that the experimenter discard some others. This may

greatly reduce the amount of work in the analysis of the compo-

nents given by an ICA algorithm because there is now extra

information on which components are worthy of further study.

This information is objective and reduces the subjective element

that is typically present in the selection of ‘‘interesting’’ compo-

nents among the dozens given by ICA. In fact, we saw in both sets

of experiments above that Icasso is able to find some components

that may not look interesting to the typical experimenter but which

are highly reliable.

Related work

Meinecke et al. (2002) have previously proposed a method for

analyzing the statistical reliability of independent components. It
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seems that their method is mainly applicable in the case of

algorithms that are algorithmically very reliable, which is not the

case for the algorithms used in most analyses of independent

components of brain imaging data. This is because Meinecke et

al. (2002) assumed that a small perturbation in the data results in a

small perturbation in the estimated mixing matrix, which is not

always true for the most widely used ICA algorithms where a small

perturbation in the data (or the initial conditions) may make the

estimator go to a different local minimum. Another difference to

our approach is that Meinecke et al. (2002) did not analyze the

algorithmic reliability of the estimates. Related studies on validat-

ing components estimated from brain imaging data can be found in

Calhoun et al. (2001a) and Duann et al. (2003).

An alternative approach to ours would be to measure the

independence of the components given by the algorithm. Basically,

as most ICA algorithms are based on the maximization of some

measure of independence (Hyvärinen et al., 2001b), this boils

down to measuring how well the algorithm optimized its objective
function. Thus, we could run the ICA algorithm many times and

choose the results of the run that gave the most independent

components. Such an approach seems to be quite unsatisfactory,

however. Some of the components may be well estimated in some

runs, others in other runs, so it is not reasonable to assume that the

best run gives the best estimates for each component. In Icasso, we

are able to combine information from several runs of the algo-

rithms. Indeed, we thus obtain a set of components (given by the

cluster centers in the signal space) that is presumably better than

any of the component sets provided by a single run. This is because

it is likely that the errors in the different estimates are independent

from each other; thus, the average of many estimates should have a

smaller error because the errors are reduced by averaging.

Let us also mention some further methods that may be of help

in finding the most interesting or meaningful components given by

ICA. Formisano et al (2002) developed some indices that are

correlated with the ‘‘interestingness’’ of the components; the

components can be ordered using these indices after ICA estima-
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tion. Hyvärinen et al. (2001a) developed a method that orders

components on a one-dimensional line or a two-dimensional grid

so that components that belong together, possibly being manifes-

tations of the same multidimensional signal source, are close to

each other.

Future directions

As for the computational load of the algorithm, we have

noted that the hierarchical clustering is clearly the bottleneck in

the current computational environment. Currently, say, 600–

1000 estimated components can be handled on an ordinary

PC, which corresponds to, for example, 10 runs of the algorithm

when the dimension of the data is 60–100. On the current

implementation the computational load in terms of time con-

sumption rises as a cubic function of the number of estimates.

Consequently, for bigger amounts of estimates, a more sophis-

ticated implementation may be needed. We are currently inves-

tigating alternative methods for clustering.

A large number of components also make it difficult to find a

satisfactory projection onto a two-dimensional plane. Thus, if the

number of components greatly exceeds 100, the quality of the

visualization suffers and more sophisticated methods may be

necessary.

In fact, an important point that is ubiquitous in the application

of ICA is choosing the number of principal components that are

retained, which typically determines the number of independent

components. In general, dimension reduction must be carefully

considered since interesting components may present part of their

variance in the low-power region of the eigenspectrum (Hyvärinen

et al., 2001b), and may be lost in PCA. In principle, Icasso can be

applied without any dimension reduction—with the reservations

just given. In practice, however, the quality of the ICA results is

greatly improved by PCA because the noise level is reduced.

Choosing the actual number of components is usually done

heuristically, which was also the case in this paper, although

attempts at finding principled methods for determining the dimen-

sion have been made (see Hyvärinen et al., 2001b for some

references). To control for the effect of PCA, we did another

experiment with the MEG data taking a larger number of dimen-

sions, 40 (results not shown). The stable components were essen-

tially unchanged.

The present version of Icasso uses the FastICA algorithm, but it

is possible to embed almost any ICA algorithm in the system.

Speed is, however, a crucial factor because we have to run the ICA

algorithm many times, which is why FastICA is very suitable for

this purpose.

Finding clusters in the high-dimensional signal space involves

fixing the number of clusters to be modeled, as well as the values

of other internal parameters. Automatic determination of optimal

values for these parameters is a most difficult theoretical problem;

ultimately, the optimal values also depend on application-specific

and subjective considerations. Therefore, we propose an interactive

method based on visualization of the clustering structure. Yet, it

may be possible to find purely automatic methods that offer

satisfactory performance. Then the visualization step could be

omitted, and numbers describing the reliability of each component

could be automatically computed. At this point, it seems, however,

that the visualization gives the user useful additional information

on the structure of the clusters and may be quite valuable in its own

right.
Conclusions

We have developed an interactive visualization method and

software package for analyzing the reliability (both algorithmic and

statistical) of independent components of brain imaging data. The

basic principle is to run an ICA algorithm many times, and look at

the clustering of the estimated components in the signal space.

Each reliable component should produce a ‘‘tight’’ cluster of

estimated components that are very close to each other and well

separated from the rest. Reliability has two aspects, algorithmic

and statistical, which can be probed by running the algorithm with

different initial conditions or bootstrap samples, respectively.
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