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Abstract

Components estimated by independent component analysis and related methods
are typically not independent in real data. A very common form of nonlinear
dependency between the components is correlations in their variances or ener-
gies. Here, we propose a principled probabilistic model to model the energy-
correlations between the latent variables. Our two-stage model includes a linear
mixing of latent signals into the observed ones like in ICA. The main new fea-
ture is a model of the energy-correlations based on the structural equation model
(SEM), in particular, a Linear Non-Gaussian SEM. The SEM is closely related to
divisive normalization which effectively reduces energy correlation. Our new two-
stage model enables estimation of both the linear mixing and the interactions re-
lated to energy-correlations, without resorting to approximations of the likelihood
function or other non-principled approaches. We demonstrate the applicability of
our method with synthetic dataset, natural images and brain signals.

1 Introduction

Statistical models of natural signals have provided a rich framework to describe how sensory neurons
process and adapt to ecologically-valid stimuli [28, 12]. In early studies, independent component
analysis (ICA) [2, 31, 13] and sparse coding [22] have successfully shown that V1 simple cell-like
edge filters, or receptive fields, emerge as optimalinferenceon latent quantities under linear genera-
tive models trained on natural image patches. In the subsequent developments over the last decade,
many studies (e.g. [10, 32, 11, 14, 23, 17]) have focused explicitly or implicitly on modeling a par-
ticular type of nonlinear dependency between the responses of the linear filters, namely correlations
in their variances orenergies. Some of them showed that models on energy-correlation could ac-
count for, e.g., response properties of V1 complex cells [10, 15], cortical topography [11, 23], and
contrast gain control [26].

Interestingly, such energy correlations are also prominent in other kinds of data, including brain
signals [33] and presumably even financial time series which have strong heteroscedasticity. Thus,
developing a general model for energy-correlations of linear latent variables is an important problem
in the theory of machine learning, and such models are likely to have a wide domain of applicability.

Here, we propose a new statistical model incorporating energy-correlations within the latent vari-
ables. Our two-stage model includes a linear mixing of latent signals into the observed ones like
in ICA, and a model of the energy-correlations based on the structural equation model (SEM) [3],
in particular the Linear Non-Gaussian (LiNG) SEM [27, 18] developed recently. As a model of
natural signals, an important feature of our model is its connection to “divisive normalization”
(DN) [7, 4, 26], which effectively reduces energy-correlations of linearly-transformed natural sig-
nals [32, 26, 29, 19, 21] and is now part of a well-accepted model of V1 single cell responses [12].
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We provide a newgenerativeinterpretation of DN based on the SEM, which is an important con-
tribution of this work. Also, from machine learning perspective, causal analysis by using SEM has
recently become very popular; our model could extend the applicability of LiNG-SEM for blindly
mixed signals.

As a two-stage extension of ICA, our model is also closely related to both the scale-mixture-based
models, e.g. [11, 30, 14] (see also [32]) and the energy-based models, e.g. [23, 17]. An advantage of
our new model is its tractability: our model requires neither an approximation of likelihood function
nor non-canonical principles for modeling and estimation as previous models.

2 Structural equation model and divisive normalization

A structural equation model (SEM) [3] of a random vectory = (y1, y2, . . . , yd)
⊤ is formulated as

simultaneous equations of random variables, such that

yi = κi(yi,y−i, ri), i = 1, 2, . . . , d, (1)

or y = κ(y, r), where the functionκi describes how each single variableyi is related to other
variablesy−i, possibly including itself, and a corresponding stochasticdisturbanceor external input
ri which is independent ofy. These equations, called structural equations, specify the distribution
of y, asy is an implicit function (assuming the system is invertible) of the random vectorr =
(r1, r2, . . . , rd)

⊤.

If there exists a permutationΠ : y 7→ y′ such that eachy′i only depends on the preceding ones
{y′j |j < i}, an SEM is called recursive or acyclic, associated with a directed acyclic graph (DAG);
the model is then a cascade of (possibly) nonlinear regressions ofyi’s on the preceding variables
on the graph, and is also seen as a Bayesian network. Otherwise, the SEM is called non-recursive
or cyclic, where the structural equations cannot be simply decomposed into regressive models. In
a standard interpretation, a cyclic SEM rather describes the distribution of equilibrium points of a
dynamical system,y(t) = κ(y(t− 1), r) (t = 0, 1, . . .), where every realized inputr is fixed until
y(t) converges toy [24, 18]; some conditions are usually needed to make the interpretation valid.

2.1 Divisive normalization as non-linear SEM

Now, we briefly point out the connection of SEM to DN, which strongly motivated us to explore the
application of SEM to natural signal statistics.

Let s1, s2, . . . , sd be scalar-valued outputs ofd linear filters applied to a multivariate input, collec-
tively written ass = (s1, s2, . . . , sd)

⊤. The linear filters may either be derived/designed with some
mathematical principles (e.g. Wavelets) or be learned from data (e.g. ICA). The outputs of linear
filters often have the property that theirenergiesϕ(|si|) (i = 1, 2, . . . , d) have non-negligible depen-
dencies or correlations to each other, even when the outputs themselves are linearly uncorrelated.
The nonlinear functionϕ is any appropriate measure of energy, typically given by the squaring func-
tion, i.e.ϕ(|s|) = s2 [26, 12], while other choices will not be excluded; we assumeϕ is continuously
differentiable and strictly increasing over[0,∞), andϕ(0) = 0.

Divisive Normalization (DN) [26] is an effective nonlinear transformation for eliminating the
energy-dependencies remained in the filtered outputs. Although several variants have been pro-
posed, a basic form can be formulated as follows: Given thed outputs, their energies are normalized
(divided) by a linear combination of the energies of other signals, such that

zi =
ϕ(|si|)∑

j hijϕ(|sj |) + hi0
, i = 1, 2, . . . , d, (2)

wherehij andhi0 are real-valued parameters of this transform. Now, it is straightforward to see that
the following structural equations in thelog-energydomain,

yi := lnϕ(|si|) = ln(
∑
j

hij exp(yj) + hi0) + ri, i = 1, 2, . . . , d, (3)

correspond to Eq. (2) wherezi = exp(ri) is another representation of the disturbance. The SEM will
typically be cyclic, since the coefficientshij in Eq. (2) are seldom constrained to satisfy acyclicity;
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Eq.(3) thus implies a nonlinear dynamical system, and this can be interpreted as the data-generating
processes underlying DN. Interestingly, Eq. (3) also implies a linear system with multiplicative
input, ỹi = (

∑
j hij ỹj + hi0)zi, in the energy domain, i.e.̃yi := ϕ(|si|). The DN transform of

Eq. (2) gives the optimal mapping under the SEM to infer the disturbance from givensi’s; if the true
disturbances are independent, it optimally reduces the energy-dependencies. This is consistent with
the redundancy reduction view of DN [29, 19].

Note also that the SEM above implies̃y = (I − diag(z)H)−1diag(h0)z with H = (hij) and
h0 = (hi0), as shown in [20] in the context of DN1. Although mathematically equivalent, such a
complicated dependence [20] on the disturbancez does not provide an elegant model of the under-
lying data-generating process, compared to relatively the simple form of Eq. (3).

3 Energy-dependent ICA using structural equation model

Now, we define a new generative model which models energy-dependencies of linear latent compo-
nents using an SEM.

3.1 Scale-mixture model

Let s now be a random vector ofd source signals underlying an observationx = (x1, x2, . . . , xd)
⊤

which has the same dimensionality for simplicity. They follow a standard linear generative model:

x = As, (4)

whereA is a square mixing matrix. We assume hereE[x] = E[s] = 0 without loss of generality, by
always subtracting the sample mean from every observation. Then, assumingA is invertible, each
transposed rowwi of the demixing (filtering) matrixW = A−1 gives the optimal filter to recover
si fromx, which is constrained to have unit norm,∥wi∥22 = 1 to fix the scaling ambiguity.

To introduce energy-correlations into the sources, a classic approach is to use a scale-mixture rep-
resentation of sources, such thatsi = uiσi, whereui represents a normalized signal having zero
mean and constant variance, andσi is a positive factor that is independent ofui and modulates the
variance (energy) ofsi [32, 11, 30, 14, 16]. Also, in vector notation, we write

s = u⊙ σ, (5)

where⊙ denotes component-wise multiplication. Here,u andσ are mutually independent, andui’s
are also independent of each other. ThenE[s|σ] = 0 andE[ss⊤|σ] = diag(σ2

1 , σ
2
2 , . . . , σ

2
d) for any

givenσ, whereσi’s may be dependent of each other and introduce energy-correlations. A drawback
of this approach is that to learn effectively the model based on the likelihood, we usually need some
approximation to deal with the marginalization overu.

3.2 Linear Non-Gaussian SEM

Here, we simplify the above scale-mixture model by restrictingui to be binary, i.e.ui ∈ {−1, 1},
and uniformly distributed. Although the simplification reduces the flexibility of source distribution,
the resultant model is tractable, i.e. no approximation is needed for likelihood computation, as will
be shown below. Also, this implies thatui = sign(si) andσi = |si|, and hence the log-energy
above now has a simple deterministic relation toσi, i.e. yi = lnϕ(σi), which can be inverted to
σi = ϕ−1(exp(yi)).

We particularly assume the log-energiesyi follow the Linear Non-Gaussian (LiNG) [27, 18] SEM:

yi =
∑
j

hijyj + hi0 + ri, i = 1, 2, . . . , d, (6)

where the disturbances are zero-mean and in particular assumed to be non-Gaussian and independent
of each other, which has been shown to greatly improve the identifiability of linear SEMs [27];
the interaction structure in Eq. (6) can be represented by a directed graph for which the matrix

1To be precise, [20] showed the invertibility of the entire mappings 7→ z in the case of a “signed” DN
transform that keeps the signs ofzi andsi to be the same.
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H = (hij) serves as the weighted adjacency matrix. In the energy domain, Eq. (6) is equivalent to

ỹi =
(∏

j ỹ
hij

j

)
ehi0zi (i = 1, 2, . . . , d), and interestingly, these SEMs further imply a novel form of

DN transform, given by

zi =
ϕ(|si|)

ehi0
∏

j ϕ(|sj |)hij
, i = 1, 2, . . . , d, (7)

where the denominator is now not additive but multiplicative. It provides an interesting alternative
to the original DN.

To recapitulate the new generative model proposed here: 1) The log-energiesy are generated accord-
ing to the SEM in Eq. (6); 2) the sources are generated according to Eq. (5) withσi = ϕ−1(exp(yi))
and random signs,ui; and 3) the observationx is obtained by linearly mixing the sources as in
Eq. (4). In our model, the optimal mapping to inferzi = exp(ri) from x under this model is the
linear filteringW followed by the new DN transform, Eq. (7). On the other hand, it would also be
possible to define the energy-dependent ICA by using the nonlinear SEM in Eq. (3) instead. Then,
the optimal inference would be given by the divisive normalization in Eq. (2). However, estimation
and other theoretical issues (e.g. identifiability) related to nonlinear SEMs, particularly in the case
of non-Gaussianity of the disturbances, are quite involved, and are still under development, e.g. [8].

3.3 Identifiability issues

Both the theory and algorithms related to LiNG coincide largely with those of ICA, since Eq. (6)
with non-Gaussianr implies the generative model of ICA,y = Br + b0, whereB = (I −H)−1

andb0 = Bh0 with h0 = (hi0). Like ICA [13], Eq. (6) is not completely identifiable due to
the ambiguities related to scaling (with signs) and permutation [27, 18]. To fix the scaling, we set
E[rr⊤] = I here. The permutation ambiguity is more serious than in the case of ICA, because
the row-permutation ofH completely changes the structure of corresponding directed graph, and is
typically addressed by constraining the graph structure, as will be discussed next.

Two classes of LiNG-SEM have been proposed, corresponding to different constraints on the graph
structure. One is LiNGAM [27], which ensures the full identifiability by the DAG constraint. The
other is generally referred to as LiNG [18] which allows general cyclic graphs; the “LiNG discovery”
algorithm in [18] dealt with the non-identifiability of cyclic SEMs by finding out multiple solutions
that give the same distribution.

Here we define two variants of our model: One is theacyclic model, using LiNGAM. In contrast
to original LiNGAM, our target is (linear) latent variables, but not observed ones. The ordering of
latent variables is not meaningful, because the rows of filter matrixW can be arbitrarily permuted.
The acyclic constraint thus can be simplified into a lower-triangular constraint onH. Another one is
thesymmetric model, which uses a special case of cyclic SEM, i.e. those with a symmetric constraint
onH. Such constraint would be relatively new to the context of SEM, although it is a well-known
setting in the ICA literature (e.g. [5]). The SEM is then identifiable using only the first- and second-
order statistics, based on the relationsh0 = VE[y] andV := I − H = Cov[y]−

1
2 [5], provided

thatV is positive definite2. This implies the non-Gaussianity is not essential for identifiability, in
contrast that the acyclic model is not identifiable without non-Gaussianity [27]. The above relations
also suggest moment-based estimators ofh0 andV, which can be used either as the final estimates
or as the initial conditions in the maximum likelihood algorithm below.

3.4 Maximum likelihood

Let ψ(s) := lnϕ(|s|) for notational simplicity, and denoteψ′(s) := sign(s)(lnϕ)′(|s|) as a con-
vention, e.g.(ln |s|)′ := 1/s. Also, following the basic theory of ICA, we assume the disturbances
have a joint probability density function (pdf)pr(r) =

∏
i ρ(ri) with a common fixed marginal pdf

ρ. Then, we have the following pdf ofs without any approximation (see Appendix for derivation):

ps(s) =
1

2d
|detV|

d∏
i=1

ρ(v⊤
i ψ(s)− hi0)|ψ′(si)|. (8)

2Underthe dynamical system interpretation, the matrixH should have absolute eigenvalues smaller than
one for stability [18], whereV = I−H is naturally positive definite because the eigenvalues are all positive.
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Figure 1: Estimation performance of mixing matrix measured by the “Amari Index” [1] (non-
negative, and zero denotes perfect estimation up to unavoidable indeterminacies) versus sample
size, shown in log-log scales. Each panel corresponds to a particular value ofα, which determined
the relative connection strength between sources. The solid lines denotes the median of ten runs.

wherevi is i-th transposed row vector ofV (= I − H). The pdf ofx is given bypx(x) =
| detW|ps(Wx), and the corresponding loss function,l = − ln px(x) + const., is given by

l(x,W,V,h0) = f̄(Vψ(Wx)− h0) + ḡ(Wx)− ln | detW| − ln |detV|, (9)

wheref̄(r) =
∑

i f(ri), f(ri) = − ln ρ(ri), ḡ(s) =
∑

i g(si), andg(si) = − ln |ψ′(si)|.
Note that the loss function above is closely related to the ones in previous studies, such as of energy-
based models [23, 17]. Our model is less flexible to these models, since it is limited to the case that
A is square, but the exact likelihood is available. It is also interesting to see that the loss function
above includes an additional second term that has not appeared in previous models, due to the formal
derivation of pdf by the argument of transformation of random variables.

To obtain the maximum likelihood estimates ofW, V, andh0, we minimize the negative log-
likelihood (i.e. empirical average of the losses) by the projected gradient method (for the unit-norm
constraints,∥wi∥22 = 1). The required first derivatives are given by

∂l

∂h0
= −f ′(r), ∂l

∂V
= f ′(Vy − h0)y

⊤ −V−⊤, (10a)

∂l

∂W
=

{
diag(ψ′(Wx))V⊤f ′(Vy − h0) + g′(Wx)

}
x⊤ −W−⊤. (10b)

In both acyclic and symmetric cases, only the lower-triangular elements inV are free parameters.
If acyclic, the upper-triangular elements are fixed at zero; if symmetric, they are dependent of the
lower-triangular elements, and thus∂l/∂vij (i > j) should be replaced with∂l/∂vij + ∂l/∂vji.

4 Simulations

To demonstrate the applicability of our method, we conducted the following simulation experiments.
In all experiments below, we setϕ(|s|) = |s|, andρ(r) = (1/2)sech(πr/2) corresponding to
the standardtanh nonlinearity in ICA:f ′(r) = (π/2) tanh((π/2)r). In our projected gradient
algorithm, the matrixW was first initialized by FastICA [9]; the SEM parameters,H andh0, were
initialized by the moment-based estimator described above (symmetric model) or by the LiNGAM
algorithm [27] (acyclic model). The algorithm was terminated when the decrease of objective value
was smaller than10−6; the learning rate was adjusted in each step by simply multiplying it by the
factor0.9 until the new point did not increase the objective value.

4.1 Synthetic dataset

First, we examined how the energy-dependence learned in the SEM affects the estimation of linear
filters. We artificially sampled the dataset withd = 10 from our generative model by setting the
matrix V to be tridiagonal, where all the main and the first diagonals were set at10 and 10α,
respectively. Figure 1 shows the “Amari Index” [1] of estimatedW by three methods, at several
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Figure2: Connection weights versus pairwise differences of four properties of linear basis functions,
estimated by fitting 2D Gabor functions. The curves were fit by local Gaussian smoothing.

factorsα and sample sizes, with ten runs for every condition. In each run, the true mixing matrix
was given by invertingW randomly generated from standard Gaussian and then row-normalized to
have unit norms. The three methods were: 1) FastICA3 with thetanh nonlinearity, 2) Our method
(symmetric model) without energy-dependence (NoDep) initialized by FastICA, and 3) Our full
method (symmetric model) initialized by NoDep. NoDep was the same as the full method except
that the off-diagonal elements ofH was kept zero. Note that our two algorithms used exactly the
same criterion for termination of algorithm, while FastICA used a different one. This could cause
the relatively poor performance of FastICA in this figure. The comparison between the full method
and NoDep showed that energy-dependence learned in the SEM could improve the estimation of
filter matrix, especially when the dependence was relatively strong.

4.2 Natural images

The dataset consisted of50, 000 image patches of16 × 16 pixels randomly taken from the original
gray-scale pictures of natural scenes4. As a preprocessing, the sample mean was subtracted and
the dimensionality was reduced to160 by the principal component analysis (PCA) where99% of
the variance was retained. We constrained the SEM to be symmetric. Both of the obtained basis
functions and filters were qualitatively very similar to those reported in many previous studies, and
given in the Supplementary Material.

Figure 2 shows the values of connection weightshij (after a row-wise re-scaling ofV to set any
hii = 1− vii to be zero, as a standard convention in SEM [18]) for everyd(d− 1) pairs, compared
with the pairwise difference of four properties of learned features (i.e. basis functions), estimated by
fitting 2D Gabor functions: spatial positions, frequencies, orientations and phases. As is clearly seen,
the connection weights tended to be large if the features were similar to each other, except for their
phases; the phases were not strongly correlated with the weights as suggested by the fitted curve,
while they exhibited a weak tendency to be the same or the opposite (shifted±π) to each other. We
can also see a weak tendency for the negative weights to have large magnitudes when the pairs have
near-orthogonal directions or different frequencies. Figure 3 illustrates how the learned features are
associated with the other ones, using iconified representations. We can see: 1) associations with
positive weights between features were quite spatially-localized and occur particularly with similar
orientations, and 2) those with negative weights especially occur from cross-oriented features to a
target, which were sometimes non-localized and overlapped to the target feature. Notice that in the
DN transform (7), these positive weights learned in the SEM perform as inhibitory and will suppress
the energies of the filters having similar properties.

4.3 Magnetoencephalography (MEG)

Brain activity was recorded in a single healthy subject who received alternating visual, auditory, and
tactile stimulation interspersed with rest periods [25]. The original signals were measured in204
channels (sensors) for several minutes with sampling rate (75Hz); the total number of measurements,
i.e. sample size, wasN = 73, 760. As a preprocessing, we applied a band-pass filter (8-30Hz) and
remove some outliers. Also, we subtracted the sample mean and then reduced the dimensionality by
PCA tod = 24, with 90% of variance still retained.

3Matlabpackage is available at http://research.ics.tkk.fi/ica/fastica/. We used the following options: g=tanh,
approach=symm, epsilon=10−6, MaxNumIterations=104, finetune=tanh.

4Available in Imageica Toolbox by Patrik Hoyer, at http://www.cs.helsinki.fi/u/phoyer/software.html
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Figure3: Depiction of connection properties between learned basis functions in a similar manner
to that has used in e.g. [6]. In each small panel, the black bar depicts the position, orientation and
length of a single Gabor-like basis function obtained by our method; the red (resp. blue) pattern
of superimposed bars is a linear combination of the bars of the other basis functions according to
the absolute values of positive (resp. negative) connection weights to the target one. The intensities
of red and blue colors were adjusted separately from each other in each panel; the ratio of the
maximum positive and negative connection strengths is depicted at the bottom of each small panel
by the relative length of horizontal color bars.

Figure 4: Estimated interaction graph (DAG) for MEG data. The red and blue edges respec-
tively denotes the positive and negative connections. Only the edges with strong connections are
drawn, where the absolute threshold value was the same for positive and negative weights. The two
manually-inserted contours denote possible clusters of sources (see text).
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Figure4 shows an interaction graph under the DAG constraint. One cluster of components, high-
lighted in the figure by the manually inserted yellow contour, seems to consist of components related
to auditory processing. The components are located in the temporal cortex, and all but one in the
left hemisphere. The direction of influence, which we can estimate in the acyclic model, seems to
be from the anterior areas to posterior ones. This may be related to top-down influence, since the
primary auditory cortex seems to be included in the posterior areas on the left hemisphere; at the
end of the chain, the signal goes to the right hemisphere. Such temporal components are typically
quite difficult to find because the modulation of their energies is quite weak. Our method may help
in grouping such components together by analyzing the energy correlations.

Another cluster of components consists of low-level visual areas, highlighted by the green contour.
It is more difficult to interpret these interactions because the areas corresponding to the components
are very close to each other. It seems, however, that here the influences are mainly from the primary
visual areas to the higher-order visual areas.

5 Conclusion

We proposed a new statistical model that uses SEM to model energy-dependencies of latent variables
in a standard linear generative model. In particular, with a simplified form of scale-mixture model,
the likelihood function was derived without any approximation. The SEM has both acyclic and
cyclic variants. In the acyclic case, non-Gaussianity is essential for identifiability, while in the cyclic
case we introduces the constraint of symmetricity which also guarantees identifiability. We also
provided a new generative interpretation of DN transform based on a nonlinear SEM. Our method
exhibited a high applicability in three simulations each with synthetic dataset, natural images, and
brain signals.

Appendix: Derivation of Eq. (8)

From the uniformity of signs, we haveps(s) = ps(Ds) for any D = diag(±1, . . . ,±1); par-
ticularly, letDk correspond to the signs ofk-th orthantSk of Rd, andS1 = (0,∞)d. Then, the
relation

∫
S1
dσ pσ(σ) =

∑K
k=1

∫
Sk
ds ps(s) =

∑K
k=1

∫
S1
dσ ps(Dkσ) = 2d

∫
S1
dσ ps(σ) im-

plies ps(s) = (1/2d)pσ(s) for anys ∈ S1; thusps(s) = (1/2d)pσ(|s|) for anys ∈ Rd. Now,
y = lnϕ(σ) (for every component) and thuspσ(σ) = py(y)

∏
i |(lnϕ)′(σi)|, where we assume

ϕ is differentiable. Letψ(s) := lnϕ(|s|) andψ′(s) := sign(s)(lnϕ)′(|s|). Then it follows that
ps(s) = (1/2d)py(ψ(s))

∏
i |ψ′(si)|, whereψ(s) performs component-wise. Sincey maps lin-

early tor with the absolute Jacobian| detV|, we havepy(y) = | detV|
∏

i ρ(ri); combining it
with ps above, we obtain Eq. (8).
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