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Abstract

Unsupervised analysis of the dynamics (non-stationarity) of functional brain connec-
tivity during rest has recently received a lot of attention in both the neuroimaging
and neuroengineering communities. Most studies have used functional magnetic reso-
nance imaging (fMRI), but electroencephalography (EEG) and magnetoencephalogra-
phy (MEG) also hold great promise for analyzing non-stationary functional connectiv-
ity with high temporal resolution. However, previous EEG/MEG analyses divided the
problem into two consecutive stages: first, the separation of neural sources, and second,
the connectivity analysis of the separated sources. Such non-optimal division into two
stages may bias the result because of the different prior assumptions made about the
data in the two stages. Here, we propose a unified method for separating EEG/MEG
sources and learning their functional connectivity (coactivation) patterns. We combine
blind source separation (BSS) with unsupervised clustering of the activity levels of the
sources in a single probabilistic model. A BSS is performed on the Hilbert transforms
of band-limited EEG/MEG signals, and coactivation patterns are learned by a mixture
model of source envelopes. Simulation studies show that the unified approach often
outperforms conventional two-stage methods, further indicating the benefit of using
Hilbert transforms to deal with oscillatory sources. Experiments on resting-state EEG
data, acquired in conjunction with a cued motor imagery/non-imagery task, also show
that the states (clusters) obtained by the proposed method often correlate better with
physiologically meaningful quantities than those obtained by a two-stage method.



1 Introduction
Unsupervised machine learning techniques play a fundamental role in the analysis of
spontaneous (resting-state) neuroimaging signals by exploring the intrinsic statistical
structures of such signals without relying on extrinsic covariates about tasks or stim-
ulation protocols. The structures or features obtained can then be examined based on
neurophysiological knowledge often using the features in a group comparison, or possi-
bly by finding similar structures in other signals already associated with tasks or stimuli.

In recent years, there has been growing interest in exploring the patterns and dy-
namics of resting-state functional brain connectivity (Friston, 1994) based on unsu-
pervised signal analyses. To find patterns in non-stationary functional connectivity,
most studies have relied on such standard techniques as independent component anal-
ysis (ICA) (Brookes et al., 2011; Smith et al., 2012), principal component analysis
(PCA) (Leonardi et al., 2013), and K-means clustering (Liu et al., 2013; Allen et al.,
2014). New unsupervised analysis methods have also been actively developed (e.g.,
Haufe et al., 2010; Zhang and Hyvärinen, 2010; Hyvärinen et al., 2010b; Hirayama and
Hyvärinen, 2012; Ramkumar et al., 2012, 2014; Dähne et al., 2014) to incorporate the
specific nature of neuroimaging signals.

Such methods for analyzing functional brain connectivity, primarily based on sig-
nals’ own statistics, are potentially very useful not only for neuroscientific investiga-
tions but also for neuroengineering applications. For example, a key challenge in an
emerging new direction in brain-computer interface (BCI) research is to covertly ac-
quire user’s unobserved states during everyday life behaviors (Zander and Kothe, 2011;
Lance et al., 2012). Since brain activity cannot be very well controlled in everyday
life situations, no reliable class labels are available for discriminating the unobservable
states of users. Such difficult data could be tackled if unsupervised analysis discovered
connectivity patterns reflecting the user’s cognitive states. Unsupervised connectivity
analysis might also shed light on the neurophysiological basis of the BCI paradigms
commonly used so far, such as those based on motor imagery, i.e., imagining body
movements (Grosse-Wentrup, 2009, 2011).

Motivated by such potential applications, in this paper we focus on developing
an unsupervised analysis method for finding connectivity-related signal features from
electroencephalography (EEG); our method may also be readily applied to magnetoen-
cephalography (MEG) because of its fundamental similarity. EEG/MEG’s high tempo-
ral resolution is particularly useful for analyzing non-stationary connectivity, as com-
pared to functional magnetic resonance imaging (fMRI), which is used in most connec-
tivity studies.

The analysis of functional connectivity patterns in EEG/MEG, however, is not straight-
forward because the neural sources are mixed by volume conduction (and/or field spread)
into sensor signals. Two-stage analysis has been conventionally performed by first sep-
arating the neural sources from the given sensor signals and analyzing the connectivity
patterns based on those separated sources. In neuroimaging literature, electromagnetic
inverse problems are often solved to separate (estimate) the activity of dipolar sources
on the cortical grid, with an additional effort of physical forward modeling. On the other
hand, in exploratory signal analysis related to BCI, blind source separation (BSS) meth-
ods (including ICA) are especially useful, since they greatly simplify the interpretation
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of the results by decomposing the data into components, and the inverse problem can be
solved to localize the obtained components afterwards (Hironaga and Ioannides, 2007;
Doesburg and Ward, 2009). Note that these components are actually called “sources”
in BSS literature, and a component can be an integration of multiple correlated dipolar
sources.

The problem is that conventional two-stage analysis, i.e., first source separation and
then connectivity analysis, is “neither a principled nor an optimal solution to the over-
all problem” (Makeig et al., 2012). Source separation methods rely on specific prior
assumptions about the sources, which are not necessarily consistent with what the con-
nectivity analysis assumes about them; such inconsistency between prior assumptions
might bias the results. A more desirable unified treatment would be obtained by extend-
ing the conventional generative (forward) model used for source separation by including
prior assumptions about the sources that are consistent with the connectivity analysis.
Typically, connectivity analysis can be formulated as learning of a specific paramet-
ric model of the sources, and both layers of the model may be learned simultaneously,
unified by the principle of statistical parameter estimation.

Here, we present a unified method for analyzing functional connectivity patterns in
EEG/MEG sources with a jointly solved BSS, based on a novel two-layer extension of
the conventional BSS/ICA generative model. In line with previous resting-state MEG
studies (de Pasquale et al., 2010; Brookes et al., 2011; Ramkumar et al., 2014), we
are particularly interested in finding coherent (frequently occurring) patterns of activity
levels (coactivations) of oscillatory sources in a frequency band of interest. The con-
nectivities are based on envelopes and ignore phase information, but our model is rather
different from power-to-power coherences.

To properly model the source envelopes, our model uses a complex-valued formu-
lation of BSS based on the Hilbert transform, which is a key departure from related
extensions of ICA based on modeling real-valued data (Hyvärinen and Hoyer, 2000;
Hyvärinen et al., 2001a; Valpola et al., 2004; Karklin and Lewicki, 2005; Kawanabe and
Müller, 2005; Osindero et al., 2006; Köster and Hyvärinen, 2010; Haufe et al., 2010;
Hirayama and Hyvärinen, 2012). Another important novelty here is using a finite mix-
ture model of sources, in which they are assumed to exhibit different coactivation pat-
terns corresponding to a finite number of unobserved “brain states.” This corresponds
to performing unsupervised clustering on the coactivations of the sources, inspired by
the use of K-means clustering in previous resting-state fMRI studies (Liu et al., 2013;
Allen et al., 2014). Due to the simplicity of the mixture model, our two-layer model is
tractable, unlike previous two-layer models that are often difficult to learn. Our entire
model can be readily estimated (optimized) by the maximum likelihood method without
resorting to any approximations.

The rest of this paper is organized as follows. First, we present our proposed method
based on a novel two-layer extension of the generative BSS/ICA model called the latent
coactivity mixture model (LCMM) (Section 2). Then we provide simulation studies
(Section 3) and real EEG data analysis (Section 4) to validate the unified approach.
Finally, we discuss the results and open issues (Section 5). Preliminary results were
presented at the International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC’14) (Hirayama et al., 2014).
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2 Latent coactivity mixture model

2.1 Background: blind source separation
Before introducing our new model, we start by discussing the generative (forward)
model conventionally used for the blind separation of EEG/MEG sources. Let x(t) =
(x1(t), x2(t), . . . , xd(t))

T ∈ Rd be a multivariate EEG/MEG signal, sampled at discrete
time points indexed by t = 1, 2, . . . , N , which is assumed to have already been (band-
pass) filtered so that each xj(t) is limited to a certain frequency band of interest. Sensor
signal vector x(t) is then assumed to follow a linear generative model given by

x(t) = As(t), (1)

where s(t) = (s1(t), s2(t), . . . , sd(t))
T ∈ Rd denotes the vector of the source signals

and A ∈ Rd×d is called the mixing matrix, which is assumed to be non-singular so that
demixing matrix W := A−1 exists. Both s(t) and A are unknown and estimated from
data in the BSS setting.

Note that in Eq. (1), the number of sources is assumed to equal (effective) dimen-
sionality d of the sensor signal, as a fundamental setting in a standard ICA; this greatly
simplifies the mathematical treatment. In practice, d can be selected to be smaller than
the original number of sensor channels, typically by discarding the ineffective dimen-
sions (with too small variances) using PCA. It should also be noted that each source
(or component) sj(t) does not necessarily correspond to any single electrical dipole;
instead, each sj(t) may describe the total effect of multiple correlated dipolar activities.

To solve the BSS problem, we need to make further assumptions about the sta-
tistical properties of the sources based on prior knowledge. Independent component
analysis (ICA) typically assumes that d sources are non-Gaussian and mutually inde-
pendent (Hyvärinen et al., 2001b), which theoretically guarantees the identifiability of
both A and s(t)’s, up to the scaling and permutation of the sources. However, the in-
dependence assumption might lead to a solution that is weakly functionally connected
(i.e., weakly statistically dependent), even when the true sources are strongly depen-
dent, which is not consistent with the goal of connectivity analysis. This motivated us
to develop an appropriate model of functionally connected (dependent) sources.

2.2 Definition of latent coactivity mixture model
Our main interest here is modeling the envelopes (i.e., amplitudes) of narrow-band
source signals (Onton and Makeig, 2009; Zhang and Hyvärinen, 2010; Brookes et al.,
2011) for which the “real-valued” BSS model of Eq. (1) is not convenient. Envelopes
can be modeled more easily with complex analytic signals s̃j(t) (Schreier and Scharf,
2010), defined as

s̃j(t) = sj(t) + iH[sj](t), (2)

whereH[f ] denotes the Hilbert transform of signal f(t) and i is an imaginary unit. The
envelope of sj(t) is given by the modulus of s̃j(t). This simple algebraic dependence
of the envelope on s̃ greatly simplifies the developments below.
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We thus formulate a “complex-valued” BSS with a similar transformation of sensor
signal vector x(t):

x̃(t) = As̃(t), (3)

where complex sensor signal x̃(t) = (x̃1(t), x̃2(t), . . . , x̃d(t))
T ∈ Cd can be directly

computed from the original one by x̃j(t) := xj(t) + iH[xj](t). Here, sources s̃j(t) are
further assumed to be centered (i.e., E[s̃j(t)] = 0) without loss of generality by always
subtracting the (sample) mean from x̃. Both mixing matrix A and complex-valued
source signal s̃(t) = (s̃1(t), s̃2(t), . . . , s̃d(t))

T are again unobserved and estimated from
the data.

Note that mixing matrix A in Eq. (3) is identical to the original one in Eq. (1)
because of the Hilbert transform’s linearity. This ensures that the A columns can be
interpreted directly as defining spatial topographies in the original sensor space. For
simplicity, we constrain A to be real-valued, while a complex-valued A could also be
straightforwardly used, which might be useful to deal with sources synchronized in
different phases (Hyvärinen et al., 2010a).

We next define a coactivation (connectivity) structure between sources s̃j(t). The
fundamental assumption here is that a system generating the data can be in a finite num-
ber of different states, corresponding to different patterns of source amplitudes. Given
the state at time point t, sources s̃j(t) are generated based on a multivariate Student-t
distribution (specified below) which implements the average source amplitudes specific
to that state and generates random phases.

Thus, our model of connectivities is not based on explicitly measuring some form
of correlations between the sources or their envelopes, as is typically done in electro-
physiology. Instead, we characterize the interactions of the sources by dividing their
joint activity into a number of typical patterns of envelopes, which intuitively express
the idea that certain sources tend to be coactivated. Such coactivation does imply cor-
relations of envelopes, i.e., power-to-power coherence, but provides a more detailed
analysis of the coactivation than merely computing correlations.

The proposed latent coactivity mixture model (LCMM) is thus summarized as a
two-layer generative model of complex sensor signal vector x̃(t) as follows:

1. At each time point t, the system generating the data takes one of a finite number of
different states (clusters) indexed by k = 1, 2, . . . , K, according to multinomial
probability distribution with cluster probabilities η1, η2, . . . , ηK , where ηk ≥ 0
and

∑K
k=1 ηk = 1.

2. Given that the system belongs to the k-th state at time t, source vector s̃(t) is
specifically generated by a complex multivariate Student-t distribution (Schreier
and Scharf, 2010) with circular (see below) and mutually uncorrelated sources;
they have state-conditional variances or expected powers (squared amplitudes),
given by

E[|s̃j(t)|2]k =
ν

ν − 2
bjk, j = 1, 2, . . . , d, (4)

where E[·]k denotes the conditional expectation given the k-th state, ν is an integer
called the degrees of freedom, and nonnegative vector bk = (b1k, b2k, . . . , bdk)

T,
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called the coactivation pattern, specifies the expected levels of the source en-
velopes.1

3. Complex sensor signal x̃(t) is given as a linear instantaneous mixture of s̃(t) with
unknown mixing matrix A, as in Eq. (3), common to each state k.

The N Hilbert-transformed sensor signal vectors, x̃(1), x̃(2), . . . , x̃(N), are simply as-
sumed to be independently and identically distributed (i.i.d.), as is commonly done in
many ICA methods. Such a simplification is mainly done for purposes of mathematical
and computational tractability, but it could be relaxed by further modeling the autocor-
relation structures of the sources (in future work).

The circularity of the sources means that the phase of each source is distributed
uniformly and independently of its amplitude. Our method focuses on modeling (ana-
lyzing) an amplitude-to-amplitude type of connectivity (coactivation), ignoring phase-
to-phase or phase-to-amplitude types of connectivity. In the circular case, the probabil-
ity density function (pdf) of complex multivariate Student-t distribution (Schreier and
Scharf, 2010) with scatter matrix Σ and ν (> 0) degrees of freedom is given by

T̃ (s̃; Σ, ν) =
2dΓ(d+ ν

2
)

Γ(ν
2
)(νπ)d|Σ|

(
1 +

2

ν
s̃HΣ−1s̃

)−d− ν
2

, (5)

where ·H denotes the Hermitian transpose and Γ(·) denotes the Gamma function. Source
vector s̃ in LCMM has a state-conditional pdf given by T̃ (s̃; diag(bk), ν). Figs. 1 (a)
and (b) illustrate the conditional pdf for a bivariate case.

The particular choice of the Student-t model is mainly motivated by its robust-
ness to outliers in the estimation of (co)variances (i.e., coactivation patterns), as has
been thoroughly studied in the literature (see e.g., Ollila and Koivunen, 2003; Mahot
et al., 2013).2 Scatter matrix Σ is proportional to the covariance matrix if it exists,
i.e., E[s̃s̃H] = {ν/(ν − 2)}Σ for ν > 2, and maximum likelihood estimate (MLE)
of Σ is often used as a robust alternative of the sample covariance matrix even with
ν ≤ 2. Diagonal scatter matrix diag(bk) in LCMM implies Eq. (4), and the estimate of
bk serves as a robust estimator of the state-conditional variances; note that even if the
variance does not exist when ν ≤ 2, bk can have a finite MLE, giving a more general
scale parameter estimate. Typically, since EEG/MEG signals contain a large amount
of noises or artifacts from outside of the brain, robustness is a desirable property in
practice. On the other hand, our model includes no explicit noise term in the genera-
tive model of Eq. (1), which is mainly for computational simplicity as in standard ICA
methods.

Graphical representations of the dependency structure in LCMM are given in Fig. 2.
The sources in LCMM are not independent of each other (Fig. 2(a); see also Fig. 1

1To be precise, the exact relation between bk and the source variances in Eq. (4) is no longer valid if
ν ≤ 2, since the variance is infinite or undefined. However, even if ν ≤ 2, the estimated bk can still be
interpreted as modeling the variance levels, while small ν implies canceling the effects from the outliers
from the viewpoint of robust estimation (as explained in the text).

2Note that other heavy-tailed distributions in the complex elliptical family (Schreier and Scharf, 2010)
commonly have the robustness property and thus could also be used as the source model in LCMM.
However, the examination of their differences is beyond the scope of this paper.
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(a) s̃1: Real and imaginary parts
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(b) s̃1 and s̃2: given a state
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(c) Mixture density

Figure 1: Illustration of complex multivariate Student-t distribution for two circular
complex sources. (a,b): Bivariate Student-t pdf T̃ ((s̃1, s̃2), diag(b1), ν) with b1 =
(1, .1) and ν = 2; (a) illustrates pairwise marginal density on real and imaginary parts
of single source s̃1, where spherical equiprobability contours imply circularity; the four
types of pairwise marginals between s̃1 (real/imaginary) and s̃2 (real/imaginary) have
the same form illustrated in (b) (black solid lines), where two other examples are also
shown (gray solid lines). (c): Pairwise marginal densities for a mixture of the three
Student-t pdfs given in (b): b1 = (1, .1), b2 = (.1, 1), b3 = (.8, .8), η = (.1, .1, .8), and
ν = 2.

(c)), i.e., p(s̃) 6=
∏d

j=1 p(s̃j), in contrast to standard complex-valued BSS/ICA models.
Unlike the related generalizations of ICA modeling energy correlations, the sources are
even conditionally dependent (Fig. 2(b)), given the higher-order latent variables (here:
state k). This is due to our choice of the Student-t model instead of a Gaussian model.
In the limit of ν →∞ the pdf is reduced to a complex Gaussian and the sources become
conditionally independent (Fig. 2(c)), but they remain dependent over the whole data set
(with state k marginalized out).

(a) State k marginalized (b) With finite ν (c) With ν →∞ (Gaussian)

Figure 2: Graphical representations of dependency structure in LCMM
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2.3 Parameter estimation
According to LCMM’s generative model, we obtain the pdf of complex sensor signal x̃
by the transformation of random variables from s̃ to x̃:

p(x̃; W,B,η, ν) = | det W|2
K∑
k=1

ηkT̃ (Wx̃; diag(bk), ν), (6)

where we explicitly indicate the model parameters in the left-hand side (after the semi-
colon), and B = (b1, . . . , bK) and η = (η1, η2, . . . , ηK)T collect the coactivation pat-
terns and the state probabilities, respectively. Note that in Eq. (6), the determinant is
squared because the same transformation is required for both real and imaginary parts.
The pdf can also be expressed as

p(x̃; A,B,η, ν) =
K∑
k=1

ηkT̃ (x̃; ATdiag(bk)A, ν). (7)

The model is thus a constrained form of the mixture of multivariate Student-t distribu-
tions, in which the state-dependent scatter matrices are tied with common parameter A.
It can be readily seen from Eq. (7) that the probability density does not change if A (or
W) and bk are simultaneously replaced by AD−

1
2 (or D

1
2 W) and Dbk, respectively,

where D is any non-singular diagonal matrix. This is the well-known scaling ambigu-
ity inherent to BSS/ICA; we fix the scale by setting every column of A to have unit
Euclidean norm.

The parameters of interest in LCMM can be easily estimated by the maximum like-
lihood method, i.e., maximizing

∑N
t=1 ln p(x̃(t); W,B,η, ν) with respect to the model

parameters when the latent variables are marginalized out. Importantly, this does not
require any approximation in contrast to other hierarchical BSS models. For simplicity,
we fix degrees of freedom ν to a constant (we set ν = 2 in Sections 3 and 4 below;
this choice leads to an infinite variance and strong robustness) and learn the other pa-
rameters {W,B,η} since ν typically has only a small effect on the final solution (at
least if set relatively small for ensuring robustness). The detailed form of the objective
function and its derivatives are given in Appendix A.

We propose to use a quasi-Newton method3 to efficiently optimize the likelihood
using reparameterization (Salakhutdinov et al., 2003) given by

ηk =
exp(λk)∑K
k′=1 exp(λk′)

, (8)

so that the ηks automatically satisfy constraints ηk ≥ 0 and
∑K

k=1 ηk = 1. On the other
hand, we don’t constrain the scaling of W or B during the optimization, but rescale
them after obtaining the final solution so that every column of A has a unit norm. Any
standard optimization software can be used for solving unconstrained optimization on
new parameter set {W,B,λ}. We found that this quasi-Newton method is more effi-
cient than the well-known expectation-maximization method (simulations not shown).

3We used a Matlab implementation of the limited-memory BFGS by Mark Schmidt, available at
http://www.di.ens.fr/˜mschmidt/Software/minFunc.html
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After estimating the model parameters, the (real-valued) sources are separated by
s(t) = Wx(t) or by taking the real part of s̃(t) = Wx̃(t) for any x(t) or x̃(t). This is
possible because the demixing matrix is the same for both the original and the Hilbert-
transformed data. The states are inferred by computing their posterior probability:

p(k | x̃) =
ηkT̃ (Wx̃; diag(bk), ν)∑K
k′=1 ηk′ T̃ (Wx̃; diag(bk), ν)

. (9)

The maximum a posteriori (MAP) estimate of the state is given by taking the state that
maximizes this posterior, which gives the final result of the model-based clustering of
the source coactivations.

2.4 Choosing the number of states by BIC
Another important issue in learning mixture models is the choice of the number K of
states or clusters. We use the Bayesian information criterion (BIC) to select the best K
minimizing

BIC(K) := −2 ln L̂+M lnN, (10)

where L̂ denotes the maximum of the likelihood obtained numerically as explained
above and the number of free parameters M in LCMM is given by M = K − 1 +
d2 + Kd − d. The use of BIC for the model order selection in mixture models has
been extensively studied in statistics. There are theoretical results regarding statistical
consistency (Keribin, 2000), and BIC often exhibits state-of-the-art performance, as
shown empirically (Steele and Raftery, 2010).

2.5 Relation to previous two-layer extensions of BSS/ICA
Many previous attempts have been made to extend BSS/ICA based on Eq. (1), par-
ticularly to deal with the residual dependency structures between power s2j or magni-
tudes |sj| of the sources often observed in ICA results (Hyvärinen and Hoyer, 2000;
Hyvärinen et al., 2001a; Valpola et al., 2004; Karklin and Lewicki, 2005; Kawanabe
and Müller, 2005; Zhang and Hyvärinen, 2010; Hirayama and Hyvärinen, 2012); these
works were not necessarily concerned with EEG/MEG.

Initial developments made fixed prior assumptions about the dependencies of the
sources without estimating any parameters in the source model (Hyvärinen and Hoyer,
2000). However, we are concerned with models in which the parameters in the second
layer (i.e., connectivity patterns) are estimated as well (Karklin and Lewicki, 2005;
Osindero et al., 2006; Köster and Hyvärinen, 2010). Typically, these models are based
on a (generalized) linear model of squared sources s2 := (s21, s

2
2, . . . , s

2
d)

T, as already
proposed by (Hyvärinen et al., 2001a):

E[s2(t) | u(t)] = φ(Bu(t)), (11)

where B and u(t) = (u1(t), u2(t), . . . , uK(t))T are the second-layer mixing matrix
and source vector, and φ is a strictly monotonic function that is applied element-wise.
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Given variance E[s2j | u], each source sj(t) is then usually assumed to follow a certain
probability distribution: either Gaussian (Hyvärinen et al., 2001a; Valpola et al., 2004)
or non-Gaussian (Karklin and Lewicki, 2005). The real-valued linear mixing (Eq. (1))
finally produces observed signals x(t).

The following are the main problem with these previous models for EEG/MEG
connectivity analysis: 1) they do not properly model the envelopes of the oscilla-
tory sources, and 2) the likelihood is often intractable without resorting to approxima-
tions, because the continuous latent variable u(t) needs to be integrated out. A recent
study (Cadieu and Olshausen, 2012) on the statistical modeling of natural movies actu-
ally addressed the first issue without resolving the second one.

In fact, a close connection between LCMM and Eq. (11) is implied by the well-
known fact that Student-t distribution belongs to the Gaussian scale-mixture family (see
e.g., Bishop, 2006, for a real case). We can equivalently re-formulate our model by
assuming that s̃j(t) is a complex (circular) Gaussian conditionally on state k and intro-
ducing a scaling variable uk(t) ≥ 0 that follows an inverse Gamma distribution. The
conditional variance can then be written:

E[|s̃|2(t) | uk(t)]k = uk(t)bk, (12)

where |s̃|2 := (|s̃1|2, |s̃2|2, . . . , |s̃d|2)T denotes the squared envelopes. Now consider a
simplified complex-valued counterpart of the previously used Eq. (11) given by

E[|s̃|2(t) | u(t)] = Bu(t). (13)

The LCMM in Eq. (12) has essentially the same form, if we can constrain it so that only
a single variable uk takes a non-zero value at a time.

Hence, although closely related, LCMM has notable differences from previous
energy-correlation models. First, it models the (squared) envelopes |s̃|2 instead of the
(squared) magnitudes s2, thus properly dealing with oscillatory sources (together with
Hilbert transform). Second, the model is tractable and fast to learn because it has only
one discrete latent variable instead of multiple continuous ones.

2.6 Real-valued variant of LCMM
To separately evaluate the effect of using complex-valued formulation instead of a real-
valued kind, we also examine a real-valued counterpart of LCMM in our simulation
study below. The model can also be seen as a simplification of a previous two-layer
BSS/ICA such that only a single variable uk in Eq. (11) takes a non-zero value at a time,
where nonlinearity φ is set to an identity function, implying that E[s2(t) | uk(t)]k =
uk(t)bk. More specifically, the real-valued LCMM is given as a constrained form of a
mixture of multivariate Student-t distributions and its pdf is given by

p(x; A,B,η, κ) =
K∑
k=1

ηkT (x; ATdiag(bk)A, κ), (14)

where the Student-t pdf for real vector s ∈ Rd is generally given by

T (s; Σ, κ) =
Γ(d+κ

2
)

Γ(κ
2
)(κπ)d/2|Σ|1/2

(
1 +

1

κ
sTΣ−1s

)− d+κ
2

. (15)
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Again, the pdf can be expressed using W = A−1 as

p(x; W,B,η, κ) = | det W|
K∑
k=1

ηkT (Wx; diag(bk), κ), (16)

and the same quasi-Newton optimization is used for estimating {W,B,η} (specifically
with κ = 1 in Sections 3 and 4 below). Finally, the state posterior is also given by

p(k | x) =
ηkT (Wx; diag(bk), κ)∑K
k′=1 ηk′T (Wx; diag(bk), κ)

. (17)

3 Simulations on artificial data
We next quantitatively compare the proposed method with existing approaches for the
analysis of EEG/MEG data. We start with simulated EEG/MEG data so that the ground
truth is known and can be systematically controlled; we provide a real EEG analysis in
Section 4. The goal of the simulation study below is to validate the two key ideas of the
proposed method: the complex-valued formulation and the unified estimation principle
of the two stages of analysis.

3.1 Methods
The simulated EEG/MEG signals were created as follows. First, we applied a band-
pass filter (9.5-10.5 Hz) to ten Gaussian temporally white signals sampled virtually at
75 Hz to simulate the alpha-range activities. Then these oscillatory signals were jointly
amplitude-modulated block-wise in every 2-second window (150 samples) to show the
state-dependent coactivation patterns. For this purpose, we first created vectors bk
whose entries were independently sampled from a standard Gaussian distribution but
set to zero if negative; this was repeated until at least two entries satisfied bjk ≥ 0.05.
Then the j-th oscillatory signal was multiplied by

√
bjk with state k randomly chosen

for each block with uniform probability (k = 1, 2, . . . , 5). The sources with non-zero
bjk’s were actually coactivated, while very small activity levels were avoided with this
procedure.

So that the amplitudes of these coactivated sources have non-zero (positive) corre-
lations within each state, they were further modulated globally by a noisy sinusoidal
signal, generated by sampling from a Gamma distribution Gamma(2ξ(t), 2) 4 with
ξ(t) = 0.9 sin(2πft/75 + φ) + 1 where f = 1 Hz and phase φ was randomly selected.
Then Gaussian white noise was added, where the noise variance was set to have a given
value of a signal-to-noise ratio (SNR), defined as the ratio of the variance. Fig. 3 illus-
trates an example of ten sources before and after adding the noise. Finally, sources sj(t)
were linearly mixed into the same number (i.e., 10) of sensor signals xj(t) with square
mixing matrix A generated randomly from the standard Gaussian distribution.

The clustering and source separation performances on these simulated data were
compared among the following methods: 1) LCMM, 2) LCMM (real), 3) ICA+MixT,

4The pdf is given by p(x) = baxa−1 exp(−bx)/Γ(a) if x ∼ Gamma(a, b).
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Figure 3: Simulated data: Example of simulated sources and states. (a) Ten simulated
sources sj(t) before (black) and after (gray) adding Gaussian noise with signal-to-noise
ratio (SNR) of 0 dB. Clean sources (i.e., before adding noise) exhibit one of five differ-
ent coactivation patterns bk in each block (separated by vertical dotted lines) with their
amplitudes co-modulated within each block (see text for more details). Top horizontal
bars and numbers indicate five states k = 1, 2, . . . , 5, corresponding to five coactivation
patterns. (b) Five coactivation patterns. k-th panel shows values of bjk for ten sources
j = 1, 2, . . . , 10.
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and 4) ICA+Kmeans. The first one, LCMM, is the proposed approach, based on the
joint maximum likelihood estimation of the two layers of the complex-valued LCMM.
The second one, LCMM (real), denotes the real-valued counterpart of LCMM (see
Section 2.6), which can be seen as laying between our proposed method and the pre-
vious two-layer BSS/ICA models. The latter two, ICA+MixT and ICA+Kmeans,
perform two-stage analysis. Both first used the complex-valued FastICA (Bingham
and Hyvärinen, 2000) (with real-valued W) for separating complex sources s̃(t); then
ICA+MixT directly learned the mixture of the Student-t model (as in LCMM) on the
separated sources, while ICA+Kmeans performed standard k-means clustering on log-
amplitudes ln |s̃j(t)|, where the mean log-amplitude over the channels was subtracted
at every t to compensate for the global modulation.

We used the adjusted mutual information (AMI) (Vinh et al., 2010) and the Amari
index (Amari et al., 1996) as specific performance measures for clustering and source
separation, respectively. AMI5 corrects normalized mutual information (NMI) be-
tween true cluster k and estimated cluster k̂ for chance agreements: AMI = (NMI −
NMI)/(1−NMI) where NMI = I(k, k̂)/max{H(k), H(k̂)} (0 ≤ NMI ≤ 1) and NMI
denotes the expectation of NMI under random permutations of the cluster labels where
the numbers of clusters and cluster members are unchanged (I andH denote the sample
mutual information and marginal entropy). AMI is thus expected to be zero under this
random permutation and is upper-bounded by one; the upper bound is achieved only
when the two clusterings are perfectly matched. The Amari index, which is a standard
performance measure for linear BSS problems, is defined by

Amari index =
d∑
j=1

( d∑
j′=1

|χjj′|
maxk |χjk|

− 1

)
+

d∑
j=1

( d∑
j′=1

|χjj′ |
maxk |χkj′ |

− 1

)
, (18)

where χjj′ denotes the (j, j′)-th element of matrix A−1Atrue with estimated and true
mixing matrices A and Atrue, respectively. This index is nonnegative and equals zero
if and only if the true mixing matrix is recovered up to the permutation and scaling of
the columns.

3.2 Results
Figure 4 quantitatively compares the performances of clustering (panels on the left)
and source separation (panels on the right) by the above four methods with different
numbers of clusters estimated by the model, K = 2, 5, 8, while the number of true
states is always 5. Each boxplot displays the result of 50 runs in each of the different
sample sizes N . The SNR of the sources was specifically set to 20 dB in this figure. In
the panels on the right, “ICA” corresponds to both ICA+MixT and ICA+Kmeans.

As is clearly seen in the left three panels, LCMM achieved the highest AMI (me-
dians) in every condition, and LCMM (real) consistently showed a lower AMI. In
contrast, on the right-hand-side panels, these two methods showed very similar Amari
indices. These results imply that the complex-valued formulation of our LCMM is par-
ticularly beneficial for obtaining better clustering without degenerating the source sep-

5We used the matlab code available at https://sites.google.com/site/vinhnguyenx/softwares.
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(c) K = 8

Figure 4: Simulated data (with SNR=20dB): Performances in clustering (left) and
source separation (right) with different settings of number of clusters estimated, (a)
K = 2, (b) K = 5, and (c) K = 8, evaluated respectively by adjusted mutual informa-
tion (AMI) (Vinh et al., 2010) and Amari index (Amari et al., 1996). Actual number of
clusters was always five. AMI is scaled between 0 (completely random) and 1 (perfect
clustering); Amari index becomes zero if estimated A recovers the true mixing matrix
up to the permutation and scaling of the columns. Thus, on the left, high values are
good; on the right, low values are good. Each panel displays boxplots at different sam-
ple sizes N . Each boxplot indicates median, interquartile range, and entire data range
of 50 runs, excluding outliers indicated by ‘x’. See text for legends of methods.
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aration. The two-stage methods, ICA+MixT and ICA+Kmeans, also exhibited lower
(i.e., worse) AMI values than those of LCMM (but not necessarily of LCMM (real)),
while they exhibited higher (i.e., worse) Amari indices. The two-stage methods are less
accurate in both clustering and source separation than the proposed (complex-valued)
LCMM method.

Although we obtained the best performance with K = 5 (true number of clusters),
the relative performance among the four methods was qualitatively similar for different
Ks. That is, the proposed method outperforms other methods even when the number of
clusters K is misspecified.

To further examine how the result changes with different noise levels, we also con-
ducted simulations with different SNRs for generating the source signals. The number
of clusters K in the model was simply set at the true one (K = 5). Fig. 5 shows the
result in the same format as that of Fig. 4. The relative performance of the four meth-
ods was qualitatively similar to Fig. 4 in every SNR setting. This showed that LCMM
improved clustering without degenerating the source separation over the other methods
even when the SNR is relatively low.

Finally, we demonstrated the use of BIC for selecting the number of clusters. Here,
we computed the BIC for K = 2, 3, . . . , 10 and chose the K that minimizes the value.
Note that in the simulation setting here, LCMM does not completely match the true
data-generating model due to the additional Gaussian noise in the sources. The number
of clusters selected thus often exceeded five, as shown in Fig. 6, while higher SNRs
(e.g., 20 or 30 dB) resulted in values closer to five. In practice, since EEG/MEG usually
has a low SNR, these results indicate that the number of clusters will likely be overesti-
mated by BIC. However, spatial topographies aj also learned by LCMM can be used to
identify and discard such irrelevant clusters that only contain noise or artifacts instead
of physiologically meaningful patterns.

4 Experiments on resting-state EEG data
Next, we demonstrate the advantages of using LCMM compared to two-stage methods
in a real EEG data analysis. The target data are resting-state EEGs acquired before and
after a BCI-related task, which we expect to contain task-relevant brain states possibly
due to mental rehearsal or retrieval. We examined the patterns (states) found in the
resting-state EEGs based on the labeled EEG data during task as well as their spatial
topographies on sensor channels.

4.1 EEG data
Five healthy subjects (three males, two females, 28+/-11 years old) participated in
our EEG experiment. We placed a headcap with EEG electrodes on their heads with
electric-conductive gel SIGNAGEL (Parker Laboratories Inc., Fairfield, NJ, USA) to
reduce the impedance of the electrodes. We positioned 64-channel active electrodes
based on the international 10-20 system, and connected them to an ActiveTwo ampli-
fier (BioSemi, Amsterdam, The Netherlands). An experimental protocol of this study
was approved by the ethical committee at ATR.
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Figure 5: Simulated data (with K = 5 (true)): clustering (left) and source separation
(right) performance with different noise levels. See caption of Fig. 4 for details.
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Figure 6: Simulated data: normalized counts of number of clusters K selected by min-
imizing BIC over K = 1, 2, . . . , 10. Rows and columns correspond respectively to
different noise levels (signal-to-noise ratios) of simulated sources and to different sam-
ple sizes N . True number of clusters was five.

The brain activity was measured in each subject during resting states with eyes
open and while the subjects performed a cued motor imagery/non-imagery task. The
experiment consisted of two resting-state (RS) sessions and six task sessions between
the two RS sessions. In each RS session (5 minutes), the subject was instructed to
relax without thinking of anything in particular and without sleeping and to focus on
a fixation point at the screen’s center. In each task session, the subjects performed a
number of task trials in each of which they randomly took one of the following three
actions for three seconds after a visually-cued onset: 1) left: covert imagination of a
left-hand movement, 2) right: covert imagination of a right-hand movement, and 3)
idle: no imagination of hand movements.

The EEG data were acquired at a sampling frequency of 256 Hz, band-pass fil-
tered off-line to 1-50 Hz (fourth-order Butterworth, zero-phase), and re-referenced to
the common average. Part of the RS data and some trials in the task data were rejected
due to gross contamination. Typical ocular, cardiac, and muscular artifacts were also
identified and removed by FastICA (Hyvärinen, 1999) with visual inspection and fre-
quency analysis, which was done separately for each subject and also for the RS and
task data. The data were further band-pass filtered in certain frequency bands of interest
and then Hilbert-transformed. We focused on two frequency bands of interest, 8-12 Hz
(alpha) and 13-30 Hz (beta), in line with previous neurophysiological studies on motor
imagery (e.g., Pfurtscheller and Neuper, 1997) as well as those on resting-state brain
networks (e.g., Brookes et al., 2011).

4.2 Method
All the LCMM parameters were estimated from the RS data alone where the two (pre-
and post-) RS sessions were combined. We emphasize that the task data and labels
were not used for the parameter estimation but only to validate the learned model
in a post-hoc manner. Before the parameter estimation, the RS data were spatially
prewhitened and dimensionality-reduced by PCA, so that 99% of the sample variance
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was kept. Note that the effective dimensionality of the data had already been reduced
above by removing the artifactual dimensions using ICA. As a result, the number of
sources d was selected as 12, 12, 11, 7, and 31 for the five subjects in the alpha band
and 17, 12, 17, 14, and 31 in the beta band. For comparison, we also applied the two-
stage method ICA+MixT, as explained in Section 3.1, to the same data to examine the
effect of unifying the two stages of the analysis by LCMM. In both methods, we ran
the algorithm ten times, each from different initial parameters to converge, for every
preselected number of states K = 10, 20, . . . , 100. The best K in LCMM was chosen
so that the median of the ten BIC values achieved the minimum, and the same number
K was also used in ICA+MixT.

We then evaluated how well each coactivation pattern bk found in the RS data dis-
criminates the two physiologically different brain states corresponding to the motor
imagery (i.e., left and right) and non-imagery (i.e., idle) labeled in the task EEG data.
We used a standard performance criterion for binary discrimination, the area under the
receiver operating characteristic (ROC) curve or AUC and evaluated them as follows.
We used the k-th signal model p(x̃ | k) to detect whether a task trial was in the k-th
state. This state was supposed to be detected if log-likelihood ln p(x̃ | k), averaged over
the imagery/non-imagery period after the cued onset (where the initial 0.5 seconds of
this 3-second period were discarded to avoid the transient effect), was above or below
a certain threshold. The log-likelihood of the k-th state, up to the irrelevant scaling and
additive constants, can be evaluated at each time point by ln(1 +

∑d
j=1 b

−1
jk |s̃j|2), as

derived by setting ν = 2 in Eq. (5) and removing the time-invariant constant terms from
its logarithm. The occurrence of the k-th state may be associated arbitrarily with mo-
tor imagery or with non-imagery for each case of which the ROC curve was drawn by
plotting the true positive rate against the false positive rate at many different threshold
values. Thus we had two AUC values (computed by a trapezoidal rule) for each state
from which the greater one was simply chosen; the AUC becomes close to one if the
state occurrence discriminates well between motor imagery and non-imagery, and it is
close to 0.5 if the occurrence does not discriminate it at all. Note that this AUC does not
distinguish between left and right because that seemed too difficult in these data based
on our preliminary analysis (not shown here).

To compare these states that exhibited high AUC values, we further examined the
time courses of their log-likelihood and the sensor-level topographies corresponding to
them. The topographies were drawn by evaluating how the occurrence of each state
changed the power in the frequency band of interest at each site of the electrodes. We
first obtained a robust estimate of the state-conditional variance (power) for each sensor
channel by σ2

ck ∝
∑

j bjka
2
cj (c = 1, 2, . . . , 64), where acj denotes the estimated mixing

coefficient from the j-th source to the c-th sensor channel and total variance
∑

c σ
2
ck

was simply normalized to one because it was undefined due to the choice of ν = 2.
The topographies were then plotted by spatially interpolating the percentage deviations
100 × (σ2

ck − σ2
c )/σ

2
c from the “grand variance” σ2

c over 64 electrodes (see Fig. 7 for
the layout and channel names). Grand variance σ2

c was set to the expectation of state-
conditional variances σ2

ck during the task period, i.e., σ2
c =

∑
k ηkσ

2
ck, where ηk was re-

estimated by the posterior state probabilities during the imagery/non-imagery periods
of the task trials.
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Figure 7: Real EEG analysis: Channel names and spatial layout of 64 electrodes. Lay-
out corresponds to spatial topographies on scalp shown in Figs. 9 and 10.

4.3 Results
The discriminability of each state between the motor imagery and idling trials was ex-
amined in terms of the sample distribution of their AUC values. Fig. 8 shows the nor-
malized histograms of the AUC collected from the ten different runs of the parameter
estimation, where each panel shows the two normalized histograms by LCMM (“uni-
fied”) and ICA+MixT (“2-stage”) for a particular subject and frequency band. The
number of samples (AUC values) summarized in each panel was thus 10 × K, where
number of states K was selected by BIC as K = 70, 70, 90, 20 and 90 for the five sub-
jects in the alpha band, and K = 30, 10, 20, 10 and 70 in the beta band. The figure
shows that in most cases, the unified method exhibited greater variation in AUC than
the two-stage method. For example, the range of AUC clearly expanded to both sides
of the distribution in Subjects 1 (beta), 3 (beta), and 5 (alpha), while mostly to the right
(greater) side in Subjects 3 (alpha), 4 (alpha, beta) and 5 (beta). The greater variation
in the AUC distribution, even if it was both-sided, implies that it has a greater chance to
contain brain states that exhibit higher AUC values. The two vertical lines in each panel
further indicate the upper quartiles of AUC for the unified (solid line) and two-stage
methods (dashed line), showing consistent increases of the upper quartiles by LCMM
from those by ICA+MixT. In other words, the lower bound of the top 25% of the AUC
values consistently shifted to the right as a consequence of unifying the two stages of
analysis.

To get insights into the difference of these high-AUC states between the unified
and two-stage methods, we further analyzed the average dynamics of the states that
exhibited the best (highest) AUC in each subject and frequency band. Figs. 9 and 10
display the trial-averaged time courses of the log-likelihood of those states obtained
for the alpha and the beta bands, respectively, around the 3-second period of motor
imagery/non-imagery. For the alpha band (Fig. 9), the dynamics clearly differ between
the motor imagery (left and right) and the non-imagery (idle) conditions in LCMM
(left column), especially in Subjects 1, 2, and 5, with smaller differences among them
in ICA+MixT (right column). For the beta band (Fig. 10), the dynamics again exhibited
similar differences between the imagery and non-imagery conditions in every subject.
The results by LCMM (left column) and ICA+MixT (right column) are very similar in
Subjects 2, 3, and 4, but in Subjects 1 and 5 the dynamics again clearly differ between
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Figure 8: Real EEG analysis: Distributional difference of AUC values evaluated for
each obtained state between unified and two-stage methods. Each panel shows two
histograms corresponding to LCMM (unified) and ICA+MixT (2-stage) for particular
subjects and frequency bands, as indicated on left and right sides of figure, respectively.
In each panel, two normalized histograms are superimposed with their overlap shown
by transparency. Vertical axis is scaled in each panel, and horizontal axis denotes AUC.
Two vertical lines indicate upper quartiles for two methods: LCMM (solid line) and
ICA+MixT (dashed line).
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the imagery and non-imagery conditions in LCMM with fewer differences among them
in ICA+MixT.

The corresponding spatial topographies of the power deviations, given in Figs. 9
and 10, provide further neurophysiological insights in conjunction with those of the
averaged dynamics. For example, Fig. 9 (left column) suggests that the best-AUC states
of Subjects 1 and 2 are both associated with the event-related decrease of frontal alpha
power in the idle condition but not in the two motor imagery conditions. This is readily
seen in the decrease of the log-likelihood during the idle condition (green line) from
the baseline level and with those topographies that exhibit positive values on the central
areas. The figure also suggests that the best-AUC state of Subject 5 is associated with
the event-related decrease of the alpha powers during the left and right conditions at
the bilateral Rolandic (central) areas, which are the major regions of interest related
to motor imagery (Pfurtscheller and Neuper, 1997). This is seen in the log-likelihood
increase during motor imagery in conjunction with the negative deviations in the alpha
power around those areas, as indicated by the topographies. The topographies obtained
for the beta band (Fig. 9) seem more difficult to interpret. Further neurophysiological
interpretation is beyond the scope of this paper.

These topographic changes in power, seen at the sensor level, are actually caused by
different coactivation patterns at the level of the underlying sources. Fig. 11 shows an
example of the coactivation patterns (bk) and the topographies (aj and their element-
wise squares) corresponding to each source obtained by LCMM. The top row shows
the coactivation pattern of the twelve sources, obtained for Subject 2 in the alpha band,
which corresponds to the best-AUC state shown in Fig. 9 (left column, Subject 2). Here
in this state, sources 3 and 10 have the largest powers, followed by 5, 6, and 7, and the
rest have relatively small powers. With the coactivation patterns for other states, perhaps
these high-AUC states can be characterized by the relative deactivation of sources 1 and
2 or the relative activation of sources 5, 6, and 7, for example. Even though we omit the
details, the topographies given at the bottom will be useful for further interpretation.

5 Discussion
We presented a novel unsupervised method for non-stationary functional connectivity
analysis of EEG/MEG sources. Our simulation studies confirmed that the proposed uni-
fied method often outperformed the conventional two-stage method, in terms of both
source separation and clustering performances. Real EEG data analysis also showed
that the unified method finds coactivity patterns that discriminate well between mo-
tor imagery and idling states with a higher probability than the two-stage method. In
addition, the proposed method performs clustering in the source space to give further
neurophysiological insights beyond sensor-space clustering (e.g., Britz et al., 2010; Shi
and Lu, 2008), as demonstrated in Section 4.3.

Our real EEG data analysis suggested that the log-likelihood values of the states,
obtained by our unsupervised analysis, may provide better higher-order signal features
relevant to BCI (e.g., for the onset detection of motor imagery) than those by conven-
tional methods. However, as seen in Section 4.3, LCMM often did not consistently
improve the discriminability (AUC) of every state but rather strengthened their con-
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Figure 9: Real EEG analysis: Temporal dynamics of log-likelihood of states that ex-
hibited best (highest) AUC in Fig. 8 for alpha band (8-12 Hz). Each panel displays time
courses of log-likelihood, trial-averaged in each of three task conditions, left (blue),
right (red), and idle (green), for a particular subject and by either LCMM (unified)
or ICA+MixT (2-stage), as indicated on left and top of figure. Solid lines indicate
moving-averages using time windows of 0.5 seconds, where shaded intervals indicate
standard deviation in each moving window. Corresponding scalp topographies shows
percentage deviations in frequency-band power at each electrode (Fig. 7 for channel
names) interpolated spatially, which represents how the occurrence of state changes the
power from the grand mean at the sensor level.
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Figure 10: Real EEG analysis: Temporal dynamics of log-likelihood of states that ex-
hibited best (highest) AUC in Fig. 8 for beta band (13-30 Hz). See Fig. 9 for more
details. Moving-average was taken by time windows of 0.25 seconds.

23



Figure 11: Real EEG analysis: Examples of coactivation patterns bk of sources and
spatial topographies corresponding to each source obtained by LCMM (Subject 2, alpha
band). The ten barplots display coactivations associated with ten different states k. Five
from top are those of highest AUC values, and the rest are lowest AUC values, as
indicated at right of each row. Vertical length of the j-th bar (from left) in the k-th
row represents relative value of bjk with vertical axis scaled separately in each row.
Scalp topographies at bottom show values of mixing coefficients acj (lower) and its
squared a2cj (upper), where blue and red colors correspond to negative and positive
signs, respectively. Note that the signs of coefficients acj may be arbitrarily flipped for
each j due to indeterminacy inherent to LCMM (or ICA). Numbers j at bottom indicate
twelve sources.
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trasts: the states obtained by LCMM may contain both more discriminative (higher
AUC) and more indiscriminative (lower AUC) ones than those by the two-stage meth-
ods. Hence, we must carefully select the discriminative features (states) while avoiding
the indiscriminative ones to successfully apply our method to BCI. Such a feature selec-
tion could be done, e.g., based on neurophysiological interpretations or using additional
task-based experimental calibration. This remains open for future investigation.

Some recent studies have combined BSS with effective (directional) connectivity
analysis to analyze the causality between neural activities, for example, autoregressive
(AR) models (Gómez-Herrero et al., 2008; Haufe et al., 2010, see also Fukushima et al.
(2015) to solve the inverse problem rather than BSS), generalized autoregressive con-
ditional heteroscedasticity (GARCH) models (Zhang and Hyvärinen, 2010), or a struc-
tural equation model (SEM) (Hirayama and Hyvärinen, 2012). Our idea of unifying
BSS and EEG/MEG connectivity analysis in a hierarchical statistical model is thus not
completely novel, but in the present study, we focused on a different type of statistical
connectivity: functional connectivity based on envelope correlations. More importantly,
we focused on analyzing non-stationary functional connectivity in terms of underlying
patterns/states and their dynamics. This is a conceptually crucial difference from pre-
vious studies that were concerned with static connectivity, i.e., those unchanging over
time.

The LCMM proposed here was shown to be a reasonable statistical model to per-
form our specific analysis on resting-state EEG/MEG signals, but obviously it has some
limitations from the perspective of generative signal modeling. First, each LCMM state
can describe only the positive correlations in the source envelopes, as is readily seen
from the interpretation of Eq. (12), where latent factor uk(t) and coefficients bk are
both positive. The states themselves are, on the other hand, correlated negatively since
they do not occur simultaneously due to the assumption of the finite mixture model.
Hence, our method cannot analyze any brain states characterized by negative envelope
correlations or states that are positively correlated with each other. Second, the i.i.d. as-
sumption is too simplistic since brain activity is obviously not independent over time.
More general models corresponding to Eq. (13), possibly with nonlinearly φ in Eq. (11)
as well as some temporal dynamics model on latent variables, will make the model
more realistic. However, the model complexity must be carefully controlled to achieve
good predictability and to maintain the model’s tractability.

Another practical limitation of our method is that it can currently handle only a sin-
gle frequency band of interest. Although it is very typical to limit an EEG/MEG analy-
sis to a certain frequency band, cross-frequency interactions are sometimes of particular
interest. Some recent studies have actually combined a complex-valued ICA with time-
frequency decomposition for spontaneous EEG/MEG analysis with more flexibility on
the spectral nature (e.g., Hyvärinen et al., 2010a; Ramkumar et al., 2012). A similar
technique can probably be used to extend our method to analyze the data in multiple
frequency bands.
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A Maximum likelihood estimation of LCMM
In our LCMM, the maximum likelihood estimates of parameters of interest {W,B,η}
are given by the minimizer of the negative (average) log-likelihoodL := (1/N)

∑N
t=1 L(t),

where t-th term, L(t) := − ln p(x̃(t); W,B,η) + const., is given by

L(t) = − ln
K∑
k=1

ηk exp

[
−G

(
d∑
j=1

|wT
j x̃(t)|2

bjk

)
−

d∑
j=1

ln bjk

]
− 2 ln | det W|, (19)

where G(u) = (d + ν
2
) ln (1 + 2u/ν), according to Eqs. (5) and (6). We minimize L

by a quasi-Newton method with respect to W, B, and λ using the reparametrization of
Eq. (8). This requires the first derivatives of L(t), given by

∂L(t)

∂bik
= qk(t)

{
1

bik
− g
( d∑
j=1

|s̃j(t)|2

bjk

)
|s̃i(t)|2

b2ik

}
, (20)

∂L(t)

∂wij
=

{
K∑
k=1

qk(t)

bik
g

( d∑
j=1

|s̃j(t)|2

bjk

)}
(s̃i(t)x̃

∗
j(t) + s̃∗i (t)x̃j(t))− 2W−T

ij , (21)

∂L(t)

∂λk
= qk(t)− ηk, (22)

where g(u) := G′(u) = (ν + 2d)/ (ν + 2u), asterisk ·∗ denotes a complex conjugate,
W−T

ij denotes the (i, j)-element of the transposed inverse matrix of W. qk(t) denotes
the posterior probability of the k-th state, given by

qk(t) ∝ ηk exp

(
−G
( d∑
j=1

|s̃j(t)|2

bjk

)
−

d∑
j=1

ln bjk

)
, (23)

where ∝ means that the left-hand side is proportional to the right-hand side up to a
constant factor independent of k. Notice that Eq. (23) is equivalent to Eq. (9). To obtain
Eq. (21) above, we used the relation given by

∂|s̃i|2

∂wij
=

∂

∂wij

{
Re[wT

i x̃]2 + Im[wT
i x̃]2

}
(24)

= 2(wT
i Re[x̃]) Re[x̃j] + 2(wT

i Im[x̃]) Im[x̃j] (25)
= 2 Re[s̃i] Re[x̃j] + 2 Im[s̃i] Im[x̃j] (26)
= s̃ix̃

∗
j + s̃∗i x̃j, (27)

where Re[z] and Im[z] denote the real and imaginary parts of complex number z, re-
spectively.
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