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Abstract
We present a novel probabilistic framework for
a hierarchical extension of independent compo-
nent analysis (ICA), with a particular motiva-
tion in neuroscientific data analysis and model-
ing. The framework incorporates a general sub-
space pooling with linear ICA-like layers stacked
recursively. Unlike related previous models, our
generative model is fully tractable: both the like-
lihood and the posterior estimates of latent vari-
ables can readily be computed with analytically
simple formulae. The model is particularly sim-
ple in the case of complex-valued data since
the pooling can be reduced to taking the modu-
lus of complex numbers. Experiments on elec-
troencephalography (EEG) and natural images
demonstrate the validity of the method.

1. Introduction
Linear component analysis and pooling are two funda-
mental concepts of unsupervised representation or feature
learning on continuous-valued data. The basic method for
linear decomposition is independent component analysis
(ICA) (Hyvärinen et al., 2001b) or sparse coding. Pooling
originates from computational models of “complex cells”
in the visual cortex (Hubel & Wiesel, 1962; Adelson &
Bergen, 1985), which typically takes the sum of squares
of components or neuronal outputs (L2-pooling) to achieve
invariances in higher features. The combination of the two
concepts have so far found many applications, including
advanced image recognition by deep neural networks.

In the present study, we focus on applications of great
current interest related to neuroscience/engineering, such
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as electro- or magneto-encephalography (EEG/MEG) sig-
nal analysis and natural image statistics (Hyvärinen et al.,
2009). Related previous studies have longly attempted to
combine together linear component analysis and pooling
and further built them up to hierarchical probabilistic mod-
els (Hyvärinen & Hoyer, 2000; Hyvärinen et al., 2001a;
Valpola et al., 2004; Karklin & Lewicki, 2005; Shan et al.,
2006; Onton & Makeig, 2009; Cadieu & Olshausen, 2012;
Hirayama et al., 2015; Hosoya & Hyvärinen, 2015), among
which one of the earliest combination of ICA with pool-
ing was independent subspace analysis (ISA) (Hyvärinen
& Hoyer, 2000). A more general energy-based modeling
(EBM) framework (e.g., Osindero et al., 2006; Salakhut-
dinov & Hinton, 2009; Köster & Hyvärinen, 2010; Ngiam
et al., 2011) has also been popularly used. These devel-
opments were somewhat parallel with the rise of general
unsupervised deep learning techniques (see, e.g., Bengio
et al., 2013, for review), while those neuroscientific appli-
cations specifically seek simple explanations and interpre-
tations of data, and even two- or three-layer architectures
have been of practical relevance.

However, related previous models were highly intractable,
and they necessarily resorted to approximative or non-
conventional methods, e.g., for learning and inference.
Such a lack of theoretical transparency, as well as the com-
putational difficulties associated, has hindered their exten-
sive applications and further developments. Specifically,
hierarchical generative models usually need approxima-
tions or numerical methods to evaluate the posterior esti-
mates on latent variables or the likelihood (Bengio et al.,
2013); EBM may avoid approximate posterior computa-
tion, while being still hampered by an intractable parti-
tion function (normalizing constant) to compute the likeli-
hood. Conventional maximum likelihood (ML) estimation
is thus not easily applicable in both types of models. In
practice, simply stacking together ICA/ISA models trained
layerwise, or with fixed lower layers, has often been used
as an alternative (e.g., Shan et al., 2006; Onton & Makeig,
2009; Le et al., 2011; Cadieu & Olshausen, 2012; Hosoya
& Hyvärinen, 2015) although its theoretical underpinning
is rather unclear.

Here, we present a simple, fully tractable statistical frame-
work for a hierarchical extension of ICA with an intrin-
sic pooling mechanism. We will refer to the framework as
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SPLICE, abbreviating stacked pooling and linear compo-
nents estimation. By fully tractable, we mean that both the
posterior estimates on latent variables and the likelihood
function associated are given by simple (computable) ana-
lytical formula without resorting to any approximations. In
this sense, both general hierarchical generative models and
EBMs have only a limited tractability.

Our SPLICE extends ISA so that the subspaces may be de-
pendent of each other via higher layers’ latent variables;
the layers can in principle be stacked recursively without
violating the full tractability of the model. In the present
study, we specifically introduce the basic framework and
a practical learning scheme which combines a layerwise
ICA pretraining with an unsupervised finetuning of the en-
tire layers by non-approximate ML. As a proof of concept,
we also demonstrate the method with EEG and natural im-
ages, as commonly targeted in related previous studies. The
method turns out to have interesting connections to neural
networks, which we also briefly discuss below.

2. Proposed Method
2.1. First-Layer Model

We begin with formulating the generative model for our
SPLICE. Denote by xt observed data vectors (t =
1, 2, . . . , n), either real- or complex-valued, consisting of
d entries xit. Each of the d entries is given by a linear
combination of the same number of unknown (first-layer)
components or sources, collectively denoted as source vec-
tor st. Here, we consider the fundamental case where xt

and st are independently and identically distributed (i.i.d.).
Omitting sample index t for notational simplicity, we write

x = As, (1)

where the coefficient matrix A, called mixing matrix, is
square and assumed to be invertible; the inverse W :=
A−1 is called demixing matrix. For convenience, we as-
sume without loss of generality that x and s are zero-mean,
by subtracting the sample mean from original data vectors.

Like ISA, we divide the d first-layer sources into m groups
without overlapping, and denote by s[j] the vector consist-
ing of the dj sources in the j-th group (d =

∑m
j=1 dj).

Hence s[j] represents a dj-dimensional subspace in the
original data space, spanned by the corresponding columns
in A. Unlike ISA, however, the m source vectors s[j] may
be dependent of each other in our generative model.

2.2. Second-Layer Model

To extend the model to multiple layers by modeling the
dependencies between the subspaces, we introduce an ad-
ditional (second) layer on the top of the above ISA-like first
layer model. Note that we don’t count the pooling as a sep-

(a) General model (b) Special case

Figure 1: Generative model of SPLICE: (a) A higher layer
directly gives the squared L2-norms of lower sources s
within each subspace. (b) An important special case having
one complex source s per subspace.

arate layer, so what we call the second layer is called the
third layer in some previous work.

Specifically, we assume that source vectors s[j] may be de-
pendent of each other in their “powers” or “energies,” as
typically quantified by their (squared) L2-norms ‖s[j]‖2.
We model the dependency using a linear mixing of addi-
tional (second-layer) sources with pointwise nonlinearities:

‖s[j]‖2 = F−1j ([A′s′]j), j = 1, 2, . . . ,m, (2)

where a monotonic link function Fj : [0,∞) → R maps
(nonnegative) squared norms into real values, with its in-
verse denoted by F−1j ; A′ and s′ are invertible mixing ma-
trix and source vector (and W′ := A′−1 is demixing ma-
trix) of second layer, and [·]j denotes j-th entry of a vector.
For later convenience, we denote by x′ := A′s′ (with en-
tries x′j) the “observed” data vector for the second layer.

To fully specify the generative model, in the present study,
we simply put a sphericality assumption on every s[j]; i.e.,
we assume that the corresponding normalized vector

u[j] := s[j]/‖s[j]‖, (3)

for every j, is uniformly distributed on the unit hyper-
sphere, independently of any other random variables.

2.3. Third Layer and Beyond, and a Special Case

An intriguing fact with our model is that it can in princi-
ple be extended with any number of layers (Fig. 1(a)), up
to the limit of subspace partitioning. This can be done by
recursively stacking a higher layer (2) to generate the lower
layer’s subspace norms, with the lower layer appropriately
partitioned into subspaces. Note that in the second and fur-
ther layers, complex-valued variables may not be useful at
least in our current i.i.d. setting. At the top layer, we sim-
ply assume that the sources are mutually independent and
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non-Gaussian; throughout our experiments in Section 4, we
used a typical prior, p(s) = (1/2)sech((π/2)s), which cor-
responds to the conventional tanh nonlinearity in ICA.

On the other hand, if one’s goal is primarily to give a sim-
ple explanation of data, adding extra layers might over-
complicate the model. In fact, a simplified special case
of our model (Fig. 1(b)), having only two layers with
one complex-valued source per subspace (i.e., |sj |2 =
F−1j ([A′s′]j)), may already have a high practical relevance
in the context of neuroscientific data analysis and model-
ing (e.g., Onton & Makeig, 2009; Cadieu & Olshausen,
2012; Hirayama et al., 2015). Then the squares |sj |2 and
arguments arg sj specifically represent the power (squared
amplitude) and phase of an oscillatory source signal, where
the sphericality assumption reduces to the circularity of sj ,
i.e., the phase is uniform, and is independent of the power.

2.4. Choice of Intermediate Nonlinearity Fj

The true forms of Fj in (2) are usually unknown and ideally
they would be learned from the data by either parametric or
nonparametric methods. However, in practice, it is presum-
ably sufficient that they are fixed, as a first approximation,
so that the computational costs can be reduced.

Logarithm Conventionally, one typical option is the log-
arithm (e.g., Valpola et al., 2004; Karklin & Lewicki, 2005;
Cadieu & Olshausen, 2012), i.e.,

Fj(q) = ln(λjq), (4)

where λj is a nonnegative scale parameter. The scale pa-
rameter λj can in fact be arbitrarily chosen, because one
cannot determine the true scales of the sources due to the
inherent scaling ambiguity as in ICA. To avoid this ambi-
guity, we specifically set λj so that

Fj(1) = 0. (5)

Gaussianization Another popular choice in the literature
is (radial) Gaussianization (Chen & Gopinath, 2001; Shan
et al., 2006; Lyu & Simoncelli, 2009), generally given by

Fj(q) = Φ−1(Ψj(λjq)), (6)

where Φ and Ψj denote the cumulative distribution func-
tion (cdf) of standard Gaussian distribution and that of a
certain distribution over [0,∞), respectively. Gaussianiza-
tion originally had no generative interpretation but we may
use the principle as an intuitive “adversarial” definition of
Fj , i.e., any non-Gaussianity in the data comes from the
non-Gaussianity of the second-layer sources s′k; one may
simply set the cdf Ψj(λj(·)) of qj = ‖s[j]‖2 as chi-squared
with an appropriate degrees of freedom, so that s[j] is Gaus-
sian when the second layer x′j is (standard) Gaussian. The

scale parameter λj can be fixed in the same manner as
above. Figure 2 illustrates the forms of this type of F and
F−1 for complex sources when dj = 1.
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Figure 2: Forms of Gaussianization-based nonlinearity F
(left panel) and its inverse F−1 (right) for s[j] ∈ C, dj = 1.

2.5. Properties of the Model

Now we will show that the hierarchical probabilistic model
formulated above is in fact fully tractable. To ease exposi-
tion, we will give the result only for the two-layer case, but
the generalization with more layers is straightforward.

2.5.1. THE PDF IS ANALYTICALLY NORMALIZED

First, we show that the probability density function (pdf) of
observed data vector x, associated with our model, is ana-
lytically normalized, i.e., the density has a unit sum without
any intractable normalizing constant. Thus, the likelihood
of our model can easily be evaluated without approximative
or numerical techniques. The lack of this desirable prop-
erty has long been an obstacle in hierarchical generative or
energy-based modeling combined with pooling.

To derive the pdf, first observe that the linear map s 7→ x
implies that p(x) = ps(Wx)|det W|c, where ps(·) de-
notes the pdf of first-layer source vector s and c = 1 and
2 for real- and complex cases, respectively (c.f. Adali &
Haykin, 2010, sec. 1). Then, the following theorem explic-
itly relates ps(·) to the second layer’s pdf of ‖s[j]‖2:

Theorem 1. Denote by q the vector having qj := ‖s[j]‖2
in the j-th entry. Assume that 1) q has the pdf given by
pq(q1, . . . , qm) and 2) unit vectors uj := s[j]/‖s[j]‖ are in-
dependent of q and uniformly distributed in (the Cartesian
products of) the corresponding unit hyperspheres. Then,

ps(s) = pq(‖s[1]‖2, . . . , ‖s[m]‖2)
∏
j

κj(‖s[j]‖2), (7)

where κj(qj) = q
1−dj/2
j Γ(dj/2)π−dj/2 (if s is real) or

q
1−dj

j Γ(dj)π
−dj (if complex).

The proof is given in Supplementary Material A. Theo-
rem 1 is a generalization of the result on single spherically-
symmetric random vector (e.g., Ollila et al., 2012).

The formula (7) in fact holds for any probabilistic model
pq(·) of the second layer. Our SPLICE specifically in-
troduces the model (2) which resembles “post-nonlinear”
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ICA (Taleb & Jutten, 1999), implying that

pq(q) =

d∏
k=1

exp
(
−Hk(w′k · F (q))

) d∏
j=1

|fj(qj)||det W′|,

where Hk(s′k) = − ln p(s′k) are fixed functions that corre-
spond to any typical choice of non-Gaussian prior such that
p(s′) =

∏
k p(s

′
k). We denote the entrywise mapping Fj

collectively by F : Rd
+ → Rd and the first derivatives of

Fj by fj . We also denote by w′k the k-th transposed row of
W′ and by a dot operator the standard inner product.

Taken together, we eventually obtain the pdf of x, which is
analytically normalized:

p(x) =

d∏
k=1

exp
(
−Hk(

∑
j

w′kjFj(‖W[j]x‖2))
)
|det W′|

×
d∏

j=1

exp(−Gj(‖W[j]x‖2))|det W|c, (8)

where W[j] consists of only the dj rows in W so that s[j] =
W[j]x, and Gj(q) := − ln |fj(q)| − lnκj(q).

2.5.2. EXACT POSTERIOR ESTIMATE VIA POOLING

Second, we see that our model also allows a simple analyt-
ical estimate on latent variables, which was in fact already
implied by the above development. The inverse process can
readily be obtained for the two linear layers by s = Wx
and s′ = W′x′, since we assumed that both A and A′ are
invertible. The remaining part that links the first layer s and
the second layer x′ is also readily given from Eq. (2) as

x′j = Fj(‖s[j]‖2) = Fj(
∑
i∈Sj

|si|2), (9)

for every j, where Sj denotes the index set for the sources
belonging to the j-the subspace. Hence the overall transfor-
mation from observed x to the top-level representation s′ is
given by an analytically very simple form. Although this
consequence is almost obvious from the definition of our
model, this is still remarkable since previous hierarchical
generative models usually did not possess such a tractabil-
ity which in fact partly led to the invention of EBM.

Note that the relation (9) essentially implements an L2-
pooling operation. Interestingly, the two demixing lay-
ers, interleaved by the pooling layer, constitute a simpli-
fied multilayer neural network with linear neurons. Thus,
one may also view SPLICE as a principled framework for
unsupervised learning of a multilayer neural network with
pooling layers.

We remark that the framework of SPLICE can even be ex-
tended with other ingredients of neural networks without

violating the full analytical tractability, which will be an
interesting open topic for future study. For example, non-
linear activation functions (e.g., leaky rectified linear unit)
and other types of pooling (e.g., Lp-pooling, by introducing
s 7→ |s|

p
2 sign(s)) can readily be incorporated at least if the

extra nonlinearity is bijective by itself and the associated
Jacobian determinant is analytically tractable.

2.6. Learning by Maximum Likelihood (SPLICE-ML)

Next we develop the method for parameter estimation
(learning) in our generative model. The analytically sim-
ple form of the pdf (8) makes conventional maximum like-
lihood (ML) estimation readily applicable, which theoret-
ically has a number of desirable properties. To obtain an
ML estimate, we simply minimize the sample average of
the corresponding loss function, L := − ln p(x) + const.,
given for the two-layer case by

L =

m∑
k=1

Hk

(∑
j

w′kjFj(‖W[j]x‖2)
)
− ln |det W′|

+

m∑
j=1

Gj

(
‖W[j]x‖2

)
− c ln |det W|. (10)

From the neural network or EBM viewpoint, Eq. (10) is in-
teresting since the loss is associated with not only the out-
put (the top) but also the intermediate (lower) layers. Such
a layer-specific loss has seldom been used in the literature.

In practice, the log-determinant terms in (10) may lead to
a computational difficulty due to the costly matrix inver-
sion when evaluating the gradient. Fortunately, the popular
(stochastic) natural gradient method (Amari et al., 1996) is
readily applicable for our model just like ICA, which can
eliminate the need for matrix inversion. In our experiment
(Section 4), however, we actually used the limited-memory
BFGS quasi-Newton method (Schmidt, 2005) with an ex-
plicit matrix inversion, as it converged empirically faster in
our setting (results not shown).

Since the objective function is not convex, the optimiza-
tion needs to start with a good initial estimate not to stack
with poor local optima. We use the following two-step ap-
proach that resembles a typical pretraining-finetuning strat-
egy in the deep learning literature. That is, we first perform
a layerwise learning developed below (SPLICE-LW) and
then optimize the likelihood of the entire layers (SPLICE-
ML) by starting from the layerwise solution. Note that both
steps are unsupervised, in contrast to typical finetuning
strategies in deep neural networks which are supervised.

2.7. Practical Layerwise Learning (SPLICE-LW)

Our unsupervised layerwise learning scheme combines
ICA with an adaptive subspace partitioning for pool-
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ing. A similar approach has previously been studied for
ISA (Szabó et al., 2012, see also Hosoya & Hyvärinen,
2016). Specifically, we first perform an ICA to estimate the
sources sit up to their permutation, and then solve a simple
optimization problem (see below) to assign the sources into
a preset number of subspaces (except for the special case of
dj ≡ 1), which adaptively partition the data space into sub-
spaces. The input to the upper layer can then be computed
by (9), for which ICA is applied again. For a general num-
ber of layers, the procedure is recursively applied.

The idea of the adaptive subspace partitioning scheme is
that our model implies that the sources’ correlation-in-
squares ωij := corr(|si|2, |sj |2) (i 6= j) are constant γkl
if si ∈ Sk and sj ∈ Sl because of the L2-sphericality
within each subspace; matrix Ω = (ωij) thus has a block
structure after an appropriate permutation of rows and
columns. This observation leads to a simple objective func-
tion ‖Ω − ZTΓZ‖2 (with Frobenius norm) to be mini-
mized with respect to Z = (zki) and Γ = (γkl), where
Z ∈ {0, 1}m×d is a subspace assignment matrix such that
zki = 1 if and only if source i belongs to subspace k.

The problem further reduces to an equivalent maximization

of ‖Z̃ΩZ̃
T
‖2 with respect to Z̃ := (ZZT)−1/2Z (Supple-

mentary Material B), where Z̃ is necessarily nonnegative

and Z̃Z̃
T

= I. We thus borrow the idea of orthogonal re-
laxation from spectral clustering (Yu & Shi, 2003, see also
Ding et al., 2006), and alternatively solve

max
V
‖VΩVT‖2 s.t. VVT = I, V ∈ Rm×d

+ , (11)

which previously appeared in a rather different context (Hi-
rayama et al., 2016). Due to the joint orthogonality and
nonnegativity, solution V has at most one nonzero entry in
each column, which readily gives the subspace assignment.
In our experiment below, we used an alternating projected
gradient algorithm to solve (11), which empirically worked
very well for natural images (Section 4.3).

3. Related Work
3.1. Natural Image Statistics and EEG/MEG Analysis

Our primary motivation for the development of a simple
and tractable hierarchical probabilistic model is in data
analysis and modeling related to neuroscience/engineering.
In fact, many preceding studies on natural image statistics
and EEG/MEG data analysis developed hierarchical exten-
sions of ICA, while their intractability has hindered exten-
sive applications or further developments.

A conventional approach was to make the second layer
explain the dependency in variances of first-layer sources
(Hyvärinen & Hoyer, 2000; Hyvärinen et al., 2001a;
Valpola et al., 2004; Karklin & Lewicki, 2005; Zhang

& Hyvärinen, 2010; Hirayama et al., 2015), e.g., sj ∼
N(0, F−1j (

∑
k a
′
jks
′
k)) under a conditional Gaussianity as-

sumption. However, this approach usually leads to in-
tractability in learning and inference except for restricted
special cases (Hyvärinen & Hoyer, 2000; Hirayama et al.,
2015). Alternatively, two recent studies modeled |sj |2
rather than the variance (Cadieu & Olshausen, 2012; Hi-
rayama & Hyvärinen, 2012), but neither of them imple-
mented subspace pooling with a full tractability.

In practice, many previous studies have rather preferred the
layerwise learning strategy, which stacks together ICA/ISA
models trained layerwise, or apply ICA upon fixed lower
layers (Shan et al., 2006; Onton & Makeig, 2009; Cadieu &
Olshausen, 2012; Hosoya & Hyvärinen, 2015); the stacked
ISA strategy has also been developed in other application
field (Le et al., 2011). Our new development may give a
theoretical basis for the previous layerwise approach and
also provides a principled unsupervised finetuning method.

3.2. Energy-Based Modeling (EBM)

Another line of research on natural image statistics have
used the energy-based modeling (EBM) strategy (e.g.,
Osindero et al., 2006; Salakhutdinov & Hinton, 2009;
Köster & Hyvärinen, 2010; Ngiam et al., 2011) instead of
the hierarchical generative approach. However, EBM suf-
fers from computational difficulties related to an intractable
partition function, as well as limited interpretability since
there are no independent latent variables.

To compare our model with EBM in Section 4, we intro-
duce an EBM with deterministic hidden units that corre-
sponds to our SPLICE in the two-layer setting. The associ-
ated loss function, i.e., the negative log-pdf up to irrelevant
additive terms, is given by

LEBM =
∑
k

Hk

(∑
j

w′kjFj

(
‖W[j]x‖2

))
+ lnZ, (12)

where Z(W,W′) is the partition function to ensure∫
p(x)dx = 1. We emphasize that partition function Z

in the EBM is intractable while it is simple and tractable
in SPLICE. Moreover, the Hk now lacks the connection to
the prior pdf p(s′k) of independent sources; hence, s′k :=∑

j w
′
kjFj

(
‖W[j]x‖2

)
are generally not independent in

EBM, which is a clear distinction from SPLICE.

3.3. Nonlinear ICA and Deep Generative Models

From a more general perspective, another important type
of hierarchical extension of ICA is nonlinear ICA using
multilayer neural networks (Almeida, 2003; Dinh et al.,
2014; Hyvärinen & Morioka, 2017b). The difference from
SPLICE (or other related models) is that the theory of
nonlinear ICA basically assumes a bijectivity between ob-
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servations and (nonlinear) independent components. Fur-
thermore, the general nonlinear ICA model is not identifi-
able (Hyvärinen & Pajunen, 1999) (for an alternative ap-
proach, see Hyvärinen & Morioka, 2017b;a). In contrast,
simulations below indicate that our model is identifiable,
although we don’t have a formal proof.

In a related context, some authors (Deco & Brauer, 1995;
Dinh et al., 2014) have pointed out and addressed the com-
putational difficulty associated with the Jacobian determi-
nant of the multilayer neural network. Fortunately, SPLICE
explicitly decomposes the Jacobian determinant into ana-
lytically tractable terms (Eq. (8)), and the popular natural
gradient technique for ICA can further simplify the com-
putation (Section 2.6).

Recently, several new techniques have been made avail-
able for learning and inference in general-purpose hierar-
chical (deep) generative models on continuous data, such as
variational/autoencoder methods and non-classical learn-
ing principles (e.g., Kingma & Welling, 2014; Kingma
et al., 2014; Goodfellow et al., 2014; Rezende & Mohamed,
2015; Hyvärinen & Morioka, 2017b;a). These develop-
ments mainly seek a computational tractability of learning
and inference, maintaining the complexity (representation
capability) of the model. In contrast, our SPLICE rather
reduces the complexity (while keeping the essence) of the
model to achieve the analytical tractability as well as the
interpretability, with a particular emphasis on the tractable
pooling. The motivations, as well as the target applications,
are therefore quite distinct between the two approaches.

4. Experimental Results
In this section, we demonstrate our SPLICE in a simulation
study and with two motivating real datasets.

4.1. Synthetic Data

First, we examined the important special case of SPLICE
(Fig. 1(b)) with a synthetic dataset, and further with a real
EEG dataset (Section 4.2). The goal was to demonstrate the
validity of the basic concept of SPLICE (i.e., combining
pooling and linear layers in a fully tractable manner) as
well as its practical relevance in exploratory signal analysis.

The two-layer model assumes that both observed x and
first-layer source vectors s are complex-valued, where the
pooling operation reduces to taking the squared modulus
of each scalar source variable; the adaptive subspace parti-
tioning (Section 2.7) was not necessary in this basic case.
SPLICE-LW consecutively performed real and complex-
valued versions of FastICA (Hyvärinen, 1999; Bingham
& Hyvärinen, 2000). SPLICE-ML used the SPLICE-LW
solution as the initial estimate. For comparison, we also
trained the EBM (12) by noise-contrastive estimation (Gut-
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Figure 3: Synthetic Data: performance index (Amari et al.,
1996) (top; smaller is better) and mean absolute correla-
tions of true and estimated sources (bottom; larger is bet-
ter) in each of the two layers (left: Layer 1; right: Layer 2).
The plot shows the mean and standard deviation of 24 runs.

mann & Hyvärinen, 2012) (EBM-NCE) using SPLICE-LW
as the initial estimate. We generated the reference (noise)
dataset for NCE from multivariate Gaussian of the same
mean and covariance as the original, having ten times larger
sample size. All methods used Gaussianization-based Fj

(Fig. 2), specifically with Ψ(q) = 1 − exp(−λq) (i.e., the
cdf of Exponential distribution) and λ = − ln(1− Φ(0)).

A simple simulation was performed to compare the basic
performance of the three methods for blind source sep-
aration in each layer (Fig. 3). The dataset consisted of
30-dimensional complex-valued vectors xt which we syn-
thesized by our generative model. We generated the top-
layer sources s′k from t-distribution of the three degrees of
freedom and every entry in A′ and (the real and complex
parts of) A uniformly in [−1, 1]. For simplicity, we used
the same Gaussianization-based F−1 to generate the data.
As seen in the figure, both SPLICE-LW and SPLICE-ML
clearly outperformed EBM in Layer 2, which well corre-
sponds to the lack of prior independence in EBM (Sec-
tion 3.2). In Layer 1, all the methods seem to have correctly
recovered the first-layer sources, as indicated by the high
mean absolute correlations, while the two SPLICE meth-
ods exhibited improvements in accuracy particularly with
smaller sample sizes. The consistent improvements (or
non-degradation) by SPLICE-ML over SPLICE-LW also
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demonstrated the effect of unsupervised finetuning.

4.2. EEG Data

To further demonstrate the applicability to exploratory
analysis of neuroimaging signals, we applied the same
methods to a publicly available EEG datasets: Datasets
1 (Blankertz et al., 2007) from the BCI competition IV
(http://www.bbci.de/competition/iv/). The data were mea-
sured in four human subjects during a number of tri-
als of a two-class cued motor imagery task; see Supple-
mentary Material C for the details of data preprocessing.
We eventually obtained the complex-valued data vectors
xt ∈ C1845 by concatenating 41 sensor channels’ com-
plex time-frequency spectra (45 points within 8-30Hz; typ-
ical α and β bands) at every time points indexed by t =
1, 2, . . . , 4000. As a preprocessing, PCA reduced the di-
mensionality with the 99% of total variance kept.

The idea for the analysis was that the amplitude |sj | of os-
cillatory EEG sources might couple together to represent
higher-order information, in particular, that associated with
the ongoing task states (i.e., imagery of two different mo-
tor modalities like left and right hands). To verify this, we
evaluated individual second-layer sources s′k, obtained in
the unsupervised manner by each of the three methods, in
terms of their relevance to discriminating the task states.

Specifically, we calculated AUC (area under the ROC
curve) as the relevance measure, by regarding the within-
trial average of every s′k as a single discriminant score
(Fig. 4). We also evaluated the similar score on another
dataset (provided originally for the evaluation purpose in
the competition) by transferring the same model with-
out modification (Supplementary Material C). For both
datasets, the increase of the fraction of high-AUC com-
ponents s′k by the two SPLICE methods is evident by the
heavier upper tails as well as the Q-Q plots above the
straight lines; the effect of finetuning was unclear in this
result. The result implies that SPLICE may effectively
discover task-related functional couplings of source ampli-
tudes, which will be practically useful to enhance further
explorations of data or help consolidating new hypotheses.

4.3. Natural Images

Finally, we demonstrate the validity of our general SPLICE
model (Fig. 1(a)), using (real-valued) natural images ob-
tained from ImageNet10K (Deng et al., 2010). We fol-
lowed (Hosoya & Hyvärinen, 2015) for basic preprocess-
ing. Image patches were of 32 × 32 pixels, with the pixel
values in each patch normalized to have zero mean and unit
variance. The dimensionality was then reduced to d = 200
by PCA. The logarithmic nonlinearity F was commonly
used in both SPLICE and EBM.
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Figure 4: EEG Data: relevance of individual second-layer
components s′k to the task state. Left: distributions of AUC
scores by the three methods (‘×’: median, ‘+’: 1st & 3rd
quartiles, ‘�’: 90-percentile) for original and transfer data.
Right: quantile-quantile (Q-Q) plots between SPLICE-LW
and EBM-NCE (yellow line connects 1st and 3rd quartiles,
extended by red dashed line; ‘�’: 90-percentile).

We first quantitatively compared two-layer SPLICE and
EBM (as well as a single-layer ICA) by their test log-
likelihood evaluated with 10-fold cross-validation (CV),
for two different sample sizes n (Table 1). The number
of second-layer sources was commonly set as m = 50.
SPLICE-LW initialized the model parameters and subspace
partitioning in both SPLICE-ML and EBM-NCE. The like-
lihood of EBM was numerically evaluated with hybrid an-
nealed importance sampling (AIS) (Ngiam et al., 2011;
Sohl-Dickstein & Culpepper, 2012) 1. For a reference, we
also give another result of SPLICE when its partition func-
tion (= 1) was evaluated numerically by AIS. The table
indicates a superior performance of SPLICE-ML, followed
by SPLICE-LW, as compared to ICA or EBM-NCE. The
AIS was very accurate in this result. The low performance
of EBM could be attributed to either the model difference
or the relative inefficiency (in sample size) of NCE as com-
pared to the (quasi-)ML estimators of SPLICE-ML/LW.

The two-layer SPLICE model can be considered a tractable
and generative counterpart to existing models in natural im-
age statistics (e.g., Gutmann & Hyvärinen, 2013; Hosoya &
Hyvärinen, 2015). Note that our second layer actually cor-
responds to their third layer as we do not count the inter-
mediate pooling layer. In fact, our model qualitatively re-
produced local spatial pooling of first-layer linear features
(Fig. 5(a)) as well as various types of excitatory/inhibitory

1We obtained the Matlab code from https://github.com/Sohl-
Dickstein/Hamiltonian-Annealed-Importance-Sampling. We set
the number of intermediate distributions as 107.
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Figure 5: Natural Images: visualizations and the effect of increasing layers. (a) Examples of first layer’s feature pooling
learned by two-layer SPLICE-ML (n = 200, 000; one pool per row, randomly selected out of 50). In each row, the left-most
panel superimposes oriented bars that “iconify” (Gutmann & Hyvärinen, 2012) the pooled Gabor-like feature detectors w
illustrated on its right. (b) All the 50 second-layer feature detectors w′k. Each panel visualizes a weighted superposition
(using weights w′kj , separately within positive and negative signs) of the 50 binarized iconified images of pooled first-layer
features (i.e., the left-most panels in (a)). Red and blue corresponds to positive and negative signs and their thickness to
absolute values (normalized in each sign to span the color ranges). The global sign of each w′k (originally indefinite) was
chosen so that its maximum absolute entry was positive. (c) Test average log-likelihood computed for both SPLICE-LW
and ML with the numbers of layers 2, 3 and 4. The mean and standard deviations by 10-fold cross validation are shown.

Table 1: Natural Images: comparison with ICA and EBM.
Test average log-likelihood evaluated by 10-fold cross val-
idation (mean±SD) for different sample sizes n.

Test Avg. Log-Likelihood (10-fold CV)
Method n = 100, 000 n = 200, 000

ICA - 270.09 ± 0.96 - 271.63 ± 1.40
SPLICE-LW - 222.21 ± 1.04 -221.18 ± 0.86
SPLICE-ML - 200.77 ± 6.53 -199.67 ± 6.46
SPLICE-ML∗ -200.76 ± 6.54 -199.68 ± 6.47
EBM-NCE∗ -342.12 ± 17.36 -330.04 ± 20.02

(∗: with a numerically estimated partition function)

patterns on pooled first-layer features (Fig. 5(b)) which the-
oretically models the properties of cortical neurons in the
visual area V2 (Hosoya & Hyvärinen, 2015).

Finally, we examined the effect of increasing the number of
layers (Fig. 5(c), n = 200, 000). The three-layer SPLICE
model included an additional pooling layer reducing from
50 to 10 inputs to the third-layer ICA; the four-layer model
further added the pooling and ICA layers which reduces
the dimensionality from 10 to 2. A remarkable increase
of test likelihood by adding the layers is seen in SPLICE-
LW; a weak increase was seen but not completely evident
in SPLICE-ML. We therefore conclude that adding layers
was effective to compensate errors in the pretrained lower
layers, while only two layers (but not one layer; see ICA
in Table 1) may be almost sufficient to represent the data
when combined with finetuning. This result could be ac-
counted for by either misspecification of third- and fourth-
layer models (e.g., the type of nonlinearity F or the number

of subspaces) or limited statistical regularities that can be
present in small image patches.

5. Conclusion
We introduced SPLICE, a novel hierarchical extension of
ICA with an intrinsic pooling mechanism. The striking fea-
ture of SPLICE is that the model is fully tractable, i.e., both
the posterior estimates on latent variables and the associ-
ated pdf or likelihood can be computed with simple ana-
lytical formulae. The conceptual simplicity of SPLICE, as
well as its approximation-free nature, will be particularly
useful in exploratory data analysis and modeling, for ex-
ample, in neuroscientific contexts. As a proof-of-concept,
we demonstrated the applicability of the method with EEG
and natural image patches.

So far, the development of hierarchical or deep generative
models has been hampered by intractability and the ensu-
ing computational difficulties. Intriguingly, SPLICE relies
only on conventional principles for statistical modeling and
estimation, and it can easily be extended with an arbitrary
number of layers as well as other typical ingredients of
multilayer neural networks. We hope our developments
will open up new avenues for applications of hierarchical
probabilistic models in unsupervised representation learn-
ing of continuous-valued data.
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Supplementary Material

A Proof of Theorem 1
First, consider any real vector s ∈ Rd and denote its radius and corresponding unit vector by r := ‖s‖ and
u := s/‖s‖. Then it is well-known that an integral of a density function f(s) over Rd satisfies∫

Rd

f(s) ds =
∫ ∞

0

∫
Ud−1

f(ru)rd−1 drdu, (1)

where the integral about u is over the unit hypersphere Ud−1 := {u ∈ Rd | ‖u‖ = 1}. Notice that rd−1drdu
is the infinitesimal volume element at s = ru, which depends on the radius r. The factor rd−1 came from
the fact that the surface area of hypersphere of radius r equals 2πd/2rd−1/Γ(d/2).

By generalizing this fact to our setting which involves multiple vectors s[j], we can readily obtain

ps({s[j]})
∏

j

ds[j] = p({rj}, {u[j]})
∏

j

drjduj , (2)

where the pdf in the right-hand side is given by

p({rj}, {u[j]}) = ps({rju[j]})
∏

j

r
dj−1
j . (3)

Now denote by αd := 2πd/2/Γ(d/2) the surface area of unit hypersphere Ud−1, where Γ denote the Gamma
function, and let pr(·) be the joint pdf of the m radius variables rj . Then, by the assumption of independence
and uniformity, the left-hand side of (3) reads pr({rj})

∏
j α
−1
dj

. Combining this with (3) and substituting
rj = ‖s[j]‖ and uj = s[j]/‖s[j]‖, we obtain

ps({s[j]}) = pr({‖s[j]‖})
∏

j

α−1
dj
‖s[j]‖1−dj . (4)

Finally, using the relation pr({rj}) = pq({r2
j})

∏
j(2rj), we obtain the formula for the real-valued case:

ps({s[j]}) = pq({‖s[j]‖2})
∏

j

‖s[j]‖2−dj Γ(dj/2)π−dj/2. (5)

For complex vector s, the isomorphism between Cd and R2d implies that we only need to replace every dj in
the real-valued case with 2dj , which straightforwardly gives the desirable result.

B Adaptive Subspace Partitioning
First, observe that

‖Ω− ZTΓZ‖2 = −2tr[ΓTZΩZT] + tr[DΓTDΓ] + const., (6)

where D := diag(d1, d2, . . . , dm) = ZZT. As readily seen, Γ = D−1ZΩZTD−1 minimizes (6) for any given Z.
Substituting this, we eventually obtain −‖D−1/2ZΩZTD−1/2‖2 + const. to be minimized with respect to Z.
This is equivalent that we maximize ‖Z̃ΩZ̃

T
‖ with respect to Z̃ := D−1/2Z, as desired.

1



C Details of EEG analysis
The EEG data were measured during the subjects were performing two-class cued motor imagery task (Blankertz
et al., 2007). The two classes were possibly different for each subject, selected out of left hand, right hand
or foot. The data were already downsampled at 100Hz. As a common preprocessing, we first re-referenced
all the sensor channels to the common average and slightly reduced the number of channels from 59 to 41
to reduce computation (see below for channel names and layout). Then we applied standard Morlet wavelet
filter in each channel to convert the data into complex time-frequency domain, with the center frequencies
at every 0.5Hz in the range of 8-30Hz and at the reduced sampling rate of 10Hz. Finally, we vectorized the
spectra (45 discrete frequencies) and concatenated them in all the 41 channels, resulting in 1845-dimensional
complex data vectors xt.

AF3 AF4

F5 F3 F1 Fz F2 F4 F6 

FC5 FC3 FC1 FCz FC2 FC4 FC6

T7 C5 C3 C1 Cz C2 C4 C6 T8 

CP5 CP3 CP1 CPz CP2 CP4 CP6

P5 P3 P1 Pz P2 P4 P6 

O1 O2 

Figure S1: Layout of 41 EEG channels

The database provided two types of data, namely, the “calibration” and “evaluation” datasets, originally
used for training and testing the classifiers, respectively. In our analysis, we used only the “calibration” data
for unsupervised learning. The “calibration” data contained 200 trial epochs (the half for one class). To
avoid transient or cue-related effects, we extracted only the last 2s (out of the duration of 4s) of each trial
epoch. Thus, we eventually obtained the dataset {xt} of sample size 4000 (i.e., 20 time points per trial), for
which we trained the model by each of the three methods: EBM-NCE, SPLICE-LW and SPLICE-ML.

After learning, every second-layer components s′k was averaged within each trial, and then regarded as a
discriminant score for the two classes. Note that the sign of each discriminant score was actually arbitrary
due to the indeterminacy of sign in ICA. Thus, we computed the AUC score by first computing the two
scores by flipping the sign and taking the greater one (Fig. 4).

To investigate the generalization ability of the model, we further evaluated the same AUC scores by
transferring the model to the other “evaluation” data. In this EEG data, the duration of task trials are
irregular (1.5-8s). Instead of averaging the second-layer components s′k within each trial of varying length,
we thus computed the average value within each of the sliding time windows of 2s. The window was sampled
only within the task periods except for the initial 1s after the cue. Thus, every time point except for the
initial 1s in each trial was given a single discriminant score per second-layer component. The AUC scores
were then computed for every component.

References
Blankertz, B., Dornhege, G., Krauledat, M., Müller, K.-R., and Curio, G. The non-invasive Berlin brain-
computer interface: Fast acquisition of effective performance in untrained subjects. NeuroImage, 37(2):
539–550, 2007.

2


