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A Hierarchical Statistical Model of Natural Images Explains
Tuning Properties in V2

Haruo Hosoya1,2 and Aapo Hyvärinen3

1Computational Neuroscience Laboratories, ATR International, Keihanna, Kyoto 619-0288, Japan, 2Japan Science and Technology Agency, Presto,
Kawaguchi, Saitama 332-0012, Japan, and 3Department of Computer Science and Helsinki Institute for Information Technology, University of Helsinki,
00560 Helsinki, Finland

Previous theoretical and experimental studies have demonstrated tight relationships between natural image statistics and neural repre-
sentations in V1. In particular, receptive field properties similar to simple and complex cells have been shown to be inferable from sparse
coding of natural images. However, whether such a relationship exists in higher areas has not been clarified. To address this question for
V2, we trained a sparse coding model that took as input the output of a fixed V1-like model, which was in its turn fed a large variety of
natural image patches as input. After the training, the model exhibited response properties that were qualitatively and quantitatively
compatible with three major neurophysiological results on macaque V2, as follows: (1) homogeneous and heterogeneous integration of
local orientations (Anzai et al., 2007); (2) a wide range of angle selectivities with biased sensitivities to one component orientation (Ito and
Komatsu, 2004); and (3) exclusive length and width suppression (Schmid et al., 2014). The reproducibility was stable across variations in
several model parameters. Further, a formal classification of the internal representations of the model units offered detailed interpreta-
tions of the experimental data, emphasizing that a novel type of model cell that could detect a combination of local orientations converg-
ing toward a single spatial point (potentially related to corner-like features) played an important role in reproducing tuning properties
compatible with V2. These results are consistent with the idea that V2 uses a sparse code of natural images.
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Introduction
The visual cortex encodes external inputs of tremendously high
dimensionality with only a limited amount of neural resources.
In light of this constraint, the statistical structure in natural in-

puts is likely to be exploited for achieving efficient encoding (Bar-
low, 1961). Sparse coding theory offers a candidate for such an
encoding strategy, in which a network is adapted so that inputs
are represented by a small number of neural activities. Indeed, it
was demonstrated that such a model trained with appropriate
naturalistic inputs exhibited Gabor filter representations similar
to those of V1 simple cells (Olshausen and Field, 1996), as well as
other V1 properties related to color, stereopsis, and motion (van
Hateren and van der Schaaf, 1998; Hoyer and Hyvärinen, 2000);
and extended models also explained contrast normalization
(Schwartz and Simoncelli, 2001) and complex cell properties
(Hyvärinen and Hoyer, 2000, 2001; Karklin and Lewicki, 2009).
On the experimental side, some evidence of visual coding
adapted to natural stimuli has been observed in monkey and
ferret V1 (Vinje and Gallant, 2000; Berkes et al., 2011). Thus,
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Significance Statement

Sparse coding theory has successfully explained a number of receptive field properties in V1; but how about in V2? This question
has recently become important since a variety of properties distinct from V1 have been discovered in V2, and thus a more
integrative understanding is called for. Our study shows that a hierarchical sparse coding model of natural images explains three
major response properties known in the macaque V2. We further provide a detailed analysis revealing the roles of different kinds
of model cells in explaining the V2-specific properties. Our results thus offer the first sparse coding account for receptive field
properties in V2 that has extensive biological relevance.
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representation in V1 seems tightly related to sparse coding of
natural images. However, beyond V1, whether such a relation-
ship exists or not is still unclear, despite a few preliminary studies
(Lee et al., 2008; Hosoya, 2012; Gutmann and Hyvärinen, 2013).

Here, we present a theoretical investigation connecting sparse
coding and neural representations in V2. The specific questions
are twofold. First, if V2 is assumed to perform sparse coding of
the output of V1, what are the emerging representations? Second,
which tuning properties in V2 can such a model explain? These
questions are important in particular because it is only relatively
recently that several response properties distinct from V1 have
been discovered in V2, and the precise nature of representations
is much less well understood compared with V1. In such a situa-
tion, theoretical predictions would provide valuable insight into
the actual neural representation.

To address the above questions, we trained a sparse coding
model that took as input the output of a fixed V1-like model,
which was in its turn fed a large variety of natural image patches as
input. We then compared the response properties in the model
and in actual macaque V2 with respect to the following three
experimental protocols used in past macaque neurophysiological

studies: (1) local orientation integration (Anzai et al., 2007); (2)
angle selectivities (Ito and Komatsu, 2004); and (3) length and
width suppression (Schmid et al., 2014). To gain further insight,
we introduced a new analysis technique to classify the model V2
units according to their excitatory and inhibitory organization of
local orientations and related these to the response properties.

We show that our model reproduced the aforementioned
three major experimental results qualitatively, quantitatively,
and robustly across various model variations. In addition, we
provide detailed interpretations of the experimental data based
on the modeling results, emphasizing the crucial role of a novel
type of model cell exhibiting “orientation-convergent excitation
with end inhibition” (potentially related to corner detection) in
reproducing tuning properties compatible with V2.

Materials and Methods
Model architecture. We used a three-layer feedforward network model
with the following architecture (Fig. 1A).

Layer 1 (“V1 simple”) was a Gabor filter bank receiving a grayscale
input image patch of size 32 � 32 pixels. The bank was pre-fixed and had
all combinations of grid-arranged 6 � 6 center locations (at intervals of 4

Figure 1. A, A three-layered network architecture consisting of Layer 1 representing model V1 simple cells, Layer 2 representing model V1 complex cells, and Layer 3 representing model V2 cells
(see Materials and Methods). B, Visualization scheme. A Layer 2 unit is drawn as an ellipse with the orientation and the size proportional to the orientation and the inverse of frequency of the
underlying Gabor filters, respectively. A Layer 3 unit is drawn as a set of ellipses corresponding to the Layer 2 units, with the colors indicating the normalized weight values (see the color bar). Only
the maximum positive and minimum negative weights are shown at each position. C, Illustration of five types of model units, overlaid with some parameters in the descriptive functions (see
Materials and Methods).
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pixels), 12 local orientations (at 15° intervals), three frequencies (0.25,
0.17, and 0.13 cycles/pixel, or, equivalently, 8.0, 5.3, and 4.0 cycles per 32
pixel patch width), and two phases (0° and 90°). Each Gabor filter with
frequency f had Gaussian width and length both equal to 0.4/f (thus 1.6,
2.4, and 3.2 pixels for the three frequencies) and Euclidean norm equal to
f 1.15 (thus, 0.20, 0.13, and 0.09 corresponding to the above three frequen-
cies) in accordance with 1/f spectrum of natural images. The latter en-
sured the variances of the outputs of Layer 2 units (below) to be equal
across frequencies. (Note that a Gabor pyramid could achieve a similar
effect by its denser layout for higher-frequency units. However, we ad-
opted the current design since this allowed for a precise adjustment of
signal variance, which was crucial for appropriate learning. Also, visual-
ization was clearer and formal analysis of learned representations was
easier with the current design.) For computational efficiency, each filter
was trimmed to its central 12 � 12 pixels (where the loss in norm was
�1.2%). Each Layer 1 unit computed, as output, the inner product of its
associated Gabor filter and the input vector. This layer had a total of 2592
units.

Layer 2 (“V1 complex”) formed a bank of standard energy models of
phase-invariant V1 complex cells. The units in this layer were arranged in
parallel to Layer 1, and had all combinations of the same 6 � 6 center
locations, 12 local orientations, and three frequencies. Each unit first
computed the Euclidian norm of the outputs of two Layer 1 units of the
same center location, orientation, and frequency, but of different phases.
Then, the mean of the outputs of all units was subtracted from each
output. The last operation could be seen as a simplified implementation
of contrast normalization. It did not qualitatively change the overall
learned representations, but had an effect of reducing noise in the learned
weights and adjusting the average of the weights to zero, which greatly
simplified later formal classification. This layer had a total of 1296 units.

Layer 3 (“V2”) performed sparse coding of Layer 2 outputs and had
800 units. Layers 2 and 3 were fully connected with weights of real value,
and each Layer 3 unit computed the half-rectified value of the inner
product of the associated weight vector and the output vector from Layer
2. The weight matrix W of size 800 � 1296 was subject to learning from
natural image patches, as described below.

Learning method. For training Layer 3, we used ImageNet10K (Deng et
al., 2010), a publicly available dataset of natural images containing
�9,000,000 images of 10,000 categories. Since our training method was
unsupervised, the category labels associated with those images were un-
used. Each image was translated to grayscale, and resized so that a land-
scape image had a height of 128 pixels and a portrait image had a width of
128 pixels; the images with an original size smaller than 128 � 128 pixels
were discarded. Then, each image was normalized to zero mean and unit
variance.

During training, an image patch of size 32 � 32 pixels was repeatedly
extracted at a random position from a randomly selected image. Low-
contrast patches were discarded (variance, �0.32; acceptance rate, 97%)
for numerical stability. Each extracted patch was again normalized to
zero mean and unit variance. Then, the patch was fed to the network
input layer, and the outputs of units in each layer were computed in a
bottom-up manner.

The weight matrix W between Layers 2 and 3 was adapted to the
statistics of Layer 2 outputs using a sparse coding principle. We used a
particular sparse coding method based on independent component anal-
ysis (ICA; Hyvärinen et al., 2001) since ICA is known to be mathemati-
cally equivalent to the classic sparse coding model in certain conditions
(Olshausen and Field, 1997), and since ICA generally offers estimation
algorithms that are computationally efficient and fit well with a feedfor-
ward architecture. Among various ICA estimation methods, we adopted
the score-matching method for overcomplete ICA (Hyvärinen, 2005),
which can estimate more independent components than the input di-
mensionality, but with two important modifications. First, we chose to
work on a huge number of image patches and therefore used a stochastic
gradient method for score matching. Second, before applying ICA, we
performed a strong dimension reduction on the Layer 2 outputs from
1296 to 100 dimensions (�13 times reduction) by principal component
analysis (PCA). Although such an operation was rather unusual, the
dimensions corresponding to low eigenvalues represented fine-grained

structures in the input, and rejecting such dimensions had an effect of
spatial pooling of subunits with similar orientation and frequency selec-
tivities. Indeed, if a weaker dimension reduction was used, the pooling
effect was diminished and the estimated features became smaller while
their shapes remained similar. We chose to use 100 dimensions since this
yielded the ratio of the average receptive field size of Layer 3 units to that
of Layer 2 units comparable to physiology, whereas the ratio was much
lower in the case of a larger number of dimensions (see Results). Here,
the receptive field size was the diameter of the minimum circular region
that covered all locations evoking 10% of the maximum response when
presented with 3 � 3 pixel noise stimuli.

The details of the learning method were as follows. (1) The inputs
(Layer 2 outputs) were centered and whitened with dimension reduction
using a standard PCA algorithm. The PCA estimation was performed for
240,000 image patches. One hundred principal components correspond-
ing to the largest eigenvalues were used for performing reduction of the
original dimensionality of 1296. The variances of the remaining principal
components were normalized to one, which amounts to whitening the
dimension-reduced data. (2) A total of 800 independent components
were estimated from the dimension-reduced, whitened inputs using a
stochastic gradient algorithm for score matching (using log cosh nonlin-
earity) that worked over minibatches. Since 800 independent compo-
nents were estimated from 100 input dimensions, the resulting
representation was eight times overcomplete. The estimation was per-
formed for 4,000,000 patches with a minibatch size of 500, and with an
update rate started with 0.02 and halved after every 800,000 patches.

Putting these together, if we write E for the matrix of 100 (normalized)
row eigenvectors (step 1), D for the diagonal matrix of the corresponding
eigenvalues (step 1), and B for the matrix of 800 (normalized) row filter
vectors estimated by overcomplete ICA on the dimension-reduced, whit-
ened inputs (step 2), then the matrix W of row weight vectors between
Layers 2 and 3 can be written as W � BD � 1/2 E.

Visualization of the model units. After network training, properties of
the learned model V2 (Layer 3) units were investigated by a series of
analyses. The first was to visualize their internal representations. We
consider here two formats of internal representations, a filter vector and
a basis vector. The filter vector of ith unit is the ith row vector of the
weight matrix W. The corresponding basis vector is the ith column vector
of the basis matrix A � ET D 1/2 BT. The latter matrix is essentially the
inverse of the filter weight matrix W. (More precisely, the matrix A is an
approximation of the pseudo-inverse W # � ET D 1/2 B # of the generally
nonsquare weight matrix W, assuming that the column vectors of B are
nearly orthonormal, which was always the case for our results.) Note that
the difference between the two matrices is precisely the exponent to D,
which results in emphasizing coarser-grained structures in the basis vec-
tor (since principal components of Layer 2 outputs for higher eigenvalues
are more amplified in the basis matrix A). This is why their structures are
similar overall, albeit different in details (Fig. 2; see Fig. 5). Alternatively,
A can be obtained by multiplying WT with the covariance matrix (equal
to ET DE) from the left, which means that A can be seen as a smoothed
version of WT. This issue is rather classic in the theory of ICA, and a more
detailed discussion can be found in the book by Hyvärinen et al. (2009).

The two formats are suitable for different purposes. On the one hand,
the filter format provides a bottom-up view of the model, where the role
of each unit is to measure the contribution of a certain local orientation
pattern in a given natural image. On the other hand, the basis format
gives a top-down view of the model, where the meaning of each unit is to
generate local orientation features such that the sum of the features gen-
erated by all units constitutes a natural image. The filter format is more
closely related to the details of the computation performed in the net-
work, while the basis format gives a more intuitive interpretation in the
space of natural image stimuli. Therefore, in the sequel, we work with
the basis format whenever we informally explain and formally classify the
model units; we often refer to the filter format when we describe the
detailed response properties of the model units and compare them with
experimental data.

To visualize a filter or basis vector, recall that each vector has 1296
dimensions, which correspond to the model V1 complex (Layer 2) units
representing the combinations of 6 � 6 center locations, 12 local orien-
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tations, and three frequencies. Thus, each vector is drawn as a set of
ellipses, where the position, orientation, and size of each ellipse indicate
the center location (in the visual field coordinates), orientation, and
inverse of the frequency, respectively, of the corresponding model V1
complex unit; the color indicates the weight value normalized by the
maximal absolute weight value (Fig. 1B). For readability, we show only
the ellipses corresponding to the maximal positive (excitatory) weight
and the minimal negative (inhibitory) weight at each location. Although
this might appear to hide potentially important details, our visual inspec-
tion indicated that, for most units, the local weight pattern had only one
positive peak and one negative peak at each position and frequency, and
that the structure of orientation integration was very similar across fre-
quencies. Therefore, our visualization method does not lose much infor-
mation, while it allows us to display many units in a compact manner so
that the tendency over the population can be exposed.

Unit classification. The learned model V2 units were classified accord-
ing to the excitatory and inhibitory patterns of their basis vectors. In
preliminary inspection, we identified the following five types: (1) iso-
oriented excitation with broad inhibition; (2) iso-oriented excitation
with side inhibition; (3) iso-oriented excitation with cross inhibition; (4)
iso-oriented excitation with end inhibition; and (5) orientation-
convergent excitation with end inhibition (Fig. 1C; see Results). To for-
mally classify the model units according to these types, below we first define
four descriptive functions corresponding to the four inhibition types (Fig.

1C). Here, we use Gaussian function ��a; �, �� � exp��
�a � ��2

2�2 �with

height 1, mean u, and standard deviation �, and von Mises function

��a; �, �� � exp�cos 2�a � �� � 1

� � (cyclic in orientation, with pe-

riod 180°) of height 1, mean u, and width �. (Note that the free param-
eters in these functions and those defined below are written after a
semicolon.)

Type I is iso-oriented excitation with broad inhibition (Fig. 1C,a),
which is described as follows:

Fbroad�x, y, �, f; x0, y0, �0, f0, �u, �v, ��, �f, A, b�

� A � ��u; 0, �u���v; 0, �v����; �0, ����� f; f0, �f� 	 b

where the shifted and rotated position (u, v) is defined as u � �x � x0�
cos �0 	 �y � y0�sin �0 and v � � �x � x0�sin �0 	 �y � y0�cos �0

(where u is along the envelope and v is orthogonal to it). The function
Fbroad thus expresses an excitatory subfield as a Gaussian envelope ori-
ented at �0 with length �u and width �v around position (x0, y0). The
envelope embeds, at each position, local orientations peaked at �0 with
width �� and frequencies peaked at f0 with width �f. The baseline b,
which is assumed to be a small negative value, describes a broad, nonspe-
cific inhibitory pattern.

Type II is iso-oriented excitation with side inhibition (Fig. 1C,b),
which is described as follows:

Fside�x, y, �, f; x0, y0, �0, f0, �u, �v, ��, �f, d, A�
� A � ��u; 0, �u���v; 0, �v����; �0, �����f; f0, �f�
� A � ��u; 0, �u���v; d, �v����; �0, �����f; f0, �f�

where u and v are defined in the same way as Type I. The function Fside

has an excitatory pattern that is similar to the function Fbroad but has an
additional inhibitory pattern with an identical shape to the excitatory
pattern except that the center is shifted by distance d orthogonally to the
envelope.

Type III is iso-oriented excitation with cross inhibition (Fig. 1C,c),
which is described as follows:

Fcross�x, y, �, f; x0, y0, �1, �2, f0, �u, �v, ��, �f , A�
� A � ��u1; 0, �u���v1; 0, �v����; �1, �����f; f0, �f�
� A � ��u2; 0, �u���v2; 0, �v����; �2, �����f; f0, �f�

where ui � �x � x0�cos �i 	 �y � y0�sin �i and vi � � �x � x0�
sin �i 	 �y � y0�cos �i for i � 1,2. The function Fcross has excitatory
and inhibitory patterns that have identical shapes except for the orienta-

tions �1 and �2. (Note that the two orientations are not necessarily
orthogonal.)

Type IV is iso-oriented or orientation-convergent excitation with end
inhibition (Fig. 1C,d,e), which is described as follows:

Fend�x, y, �, f; x0, y0, �0, f0, �u, �v, ��, �f, d, 
, A�
� A � ��u; 0, �u���v; 0, �v����; �0 	 �1, ����� f; f0, �f�
� A � ��u; d, �u���v; 0, �v����; �0 	 �2, ����� f; f0, �f�

where the orientation changes �1 and �2 are defined as �1 � arctan� v

p � u�
and �2 � arctan� v

� 
 	 d � u�. The excitatory pattern is similar to

the previous cases except that the peak local orientation at any position
(u, v) is always oriented toward the same point (
, 0), thus expressing
convergence of local orientations. As a special case, this leads to iso-
orientation when 
 goes to infinity. We later use the value 
/�v (the
converging distance relative to the envelope width) to classify the excita-
tion pattern into iso-oriented excitation (
/�v 	 10; Fig. 1C,d) or
orientation-convergent excitation (
/�v � 10; Fig. 1C,e). The inhibitory
pattern is mirror symmetric to the excitatory pattern with the center
shifted by distance d along the envelope.

Using these descriptive functions, each unit was classified into the
following steps. (1) The basis vector of the unit was fitted with the above
four functions. To constrain an estimated envelope from overly exceed-
ing the x–y boundaries, additional data points of zero values were padded
right outside the boundaries. (The zero values were used only for the
constraint and thus removed after fitting.) If fitting with the functions of
Type II or IV resulted in the center of the inhibitory pattern exceeding the
boundary, then these functions were not considered. Also, we considered
only the functions that gave a goodness-of-fit satisfying R 2  0.5 (which
ensures statistical significance with p � 10 �100 in F test comparing to
fitting with the constant zero function); if all functions gave a bad fit, then
the unit was discarded. (2) The inhibition type was determined by the
best-fitting function (since the inhibition type was unambiguously de-
fined for each of the four functions). To accomplish this with rigorous
statistical criteria, we used the Akaike information criteria, Ai � 2Pi

N�1 � Ri

2�, where Pi is the number of free parameters in the ith function
(P1 � P2 � P3 � 10 and P4 � 11), N is the number of data points (i.e., Layer
2 units; N � 1296), and Ri

2 is the goodness-of-fit value for the ith function.
Then, we selected the function j that gave a significantly better fit than any

other function in the sense that the relative likelihood exp�Aj � Ai

2 � � 0.05/3

was for all i�j (Bonferroni correction for three comparisons). If no
function satisfied this criterion, then the unit was discarded. (3) The
excitation type was orientation convergent if the best-fitting function was
Type IV and 
/�v � 10. Otherwise, the excitation type was iso oriented.

We call a unit well classified if it was not discarded in step 1 or step 2.
Further analysis was conducted only on such well classified units.

Preferred natural image patches. To investigate what kind of features in
input images could be detected by each unit, we presented a set of 100,000
natural image patches and visualized the most preferred patches. These
input patches were extracted from the image dataset separately from the
training set. The extraction method was similar to the training data ex-
cept that only high-contrast patches were used (variance, 	0.89; accep-
tance rate, 43%) to facilitate visual identification of selected features.

Local orientation organization. The way our model units processed
local orientations was compared with macaque V2 cells, following the
experimental protocol introduced by Anzai et al. (2007). We measured,
for each model unit, the responses to square grating stimuli of size 12 �
12 pixels that were presented at 6 � 6 center locations, 12 orientations,
three frequencies, and four phases, in accordance with the Gabor filters in
Layer 1. The space orientation response profile was obtained by taking
the maximal value at each location and orientation across frequencies
and phases; the profile was normalized by the maximum.

To quantify the orientation organization, the set of peak local orien-
tations for each unit was collected from the space orientation profile as
follows. At each location, if the local orientation tuning curve was fitted
well with a 180° cycled von Mises function (R 2 	 0.5), then the peak of
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this function was taken; otherwise, if the tuning curve was fitted well with
a sum of two von Mises functions (R 2 	 0.5), then both peaks of this
function were taken; if neither fitted well, then this location was unused.
Finally, all of the peaks at a magnitude 	0.5 were pooled. After this, the
maximal difference and the set of all pairwise differences between the
pooled peak orientations were calculated. Comparison of the distribu-
tions of these values across the population of units to the experimental
result (Anzai et al., 2007) is presented in Results. Note that Anzai et al.
(2007), in addition to the experiment using single grating patches, con-
ducted another experiment using double grating patches; a simulation of
the latter experiment is also discussed in Results.

Angle selectivities. The way our model units processed angle features
was also compared with macaque V2 cells, following the method used by
Ito and Komatsu (2004). We used the set of 66 angle stimuli each com-
posed of two line segments of 15 pixels emanating from a given center
location toward one of 12 directions at 30° intervals. We measured, for
each model unit, the responses to these stimuli at 13 � 13 center loca-
tions (at intervals of 2 pixels) and at 0° and 15° rotations. The response
profile at the location and rotation where the mean response to all 66
stimuli was maximal was used for further analysis; the profile was nor-
malized by the maximum. The profile was formatted in the upper half of
a 12 � 12 matrix, where the column or row corresponded to the direction
of one of the two angle components (see Fig. 7D); note that, by definition,
the profile would look mirror symmetric with respect to the diagonal if
the lower half were also shown.

Analysis of the response profile proceeded as follows. First, local max-
ima were obtained from the response profile after smoothing it with a
3 � 3 Gaussian filter and removing the responses below a threshold of
0.8. The top two local maxima (or the unique maximum if only one
existed) were used and the corresponding angles were called peak angles.
(If no peak angle was found, then the unit was discarded.) Then, for each
peak angle, the number of matrix entries in each “elongation” was
counted from the original response profile. There are four types of elon-
gation, as follows: (1) horizontal; (2) vertical; (3) angle; and (4) orienta-
tion elongations (see Fig. 7D). The horizontal elongation includes the
entries above a threshold of 0.6 corresponding to the stimuli sharing one
component of the peak angle. The vertical elongation was similar except
that it was obtained for the stimuli sharing the other component of the
peak angle. The angle elongation included the entries above 0.6 corre-
sponding to the stimuli sharing the same angle width as the peak angle.
The orientation elongations included the entries above 0.6 correspond-
ing to the angle stimuli whose bisecting (half-splitting) orientations were
equal to or 15° clockwise shifted from that of the peak angle. Comparison
of the distribution of peak angle widths and the distributions of the four
types of elongations to the experimental result (Ito and Komatsu, 2004) is
presented in Results.

Length and width tuning. The length and width tuning patterns of our
model units were compared with the data reported for macaque V2 cells
(Schmid et al., 2014). That study adopted the experimental protocol
described by DeAngelis et al. (1994); we thus simulated the same protocol
here. Concretely, we used the set of rectangular patches of grating, with
sizes varying from 6 � 6 to 24 � 24 pixels (at intervals of 2 pixels). We
measured the responses to these stimuli, for each model unit, at 6 � 6
center locations (at intervals of 4 pixels), 12 orientations, three frequen-
cies, and four phases (in accordance with the Layer 1 layout); in the
sequel, we used the mean responses over phases. We determined the
preferred center location, orientation, and frequency as those giving
the maximal average response for the set of rectangular patches of the
smallest size (6 � 6 pixels). The width response profile was defined as the
mean responses to the gratings with the optimal length and varied widths
that were presented at the preferred center location, orientation, and
frequency; the length response profile was defined analogously.

To quantify the tuning patterns, each width or length response profile
was fitted with a half-rectified difference of two error functions (integrals
of Gaussian function). Then, the width or length giving the peak response
(Rpeak) was obtained from the fitting function. The width or length sup-
pression index was defined as (Rpeak � Rlim)/Rpeak, where Rlim was the
response at the largest width or length in the fitting function. Thus, the
suppression index gives the ratio of the maximal response decrease to

the peak response. In the study by Schmid et al. (2014), a response profile
was also fitted with a single error function (representing a nonsuppres-
sive tuning curve) and the better fitting function was chosen according to
a certain statistical criterion. However, we did not adopt this method
since our response data were deterministic and a difference of two error
functions seemed to reasonably represent both suppressive and nonsup-
pressive tuning curves. (This modification makes a difference only in the
case of a very weakly suppressive tuning curve, for which our approach
gives a very small index while the original approach would give zero.)
Comparison of the joint distribution of width and length suppression
indices to the experimental data (Schmid et al., 2014) is presented in
Results. Note that, in addition to responses to rectangular patches of
grating, Schmid et al. (2014) analyzed cell responses in an experiment
using “orientation-discontinuity” stimuli; the latter was not simulated
here since the property that they discovered was not expected to be found
in our model (see Results).

Results
Hierarchical model of natural images
In this study, we hypothesized that V2 may perform sparse cod-
ing of V1 outputs. Accordingly, we constructed a three-layer hi-
erarchical network model, as illustrated in Figure 1A. Layer 1
(model V1 simple cell layer) was a pre-fixed bank of Gabor filters
of all combinations of 6 � 6 center locations, 12 orientations,
three frequencies, and two phases. Layer 2 (model V1 complex
cell layer) implemented standard energy models of complex cells
by integrating the outputs of each pair of Layer 1 units at the same
center location, orientation, and frequency, but with different
phases. Layer 3 (model V2 layer) used sparse coding of Layer 2
outputs with 800 units. Note that, although we followed the gen-
erally accepted view that V1 has two types of cells, phase-sensitive
simple cells and phase-insensitive complex cells, and V2 receives
major projections from V1, the model was certainly a radical
simplification and was not meant to be an accurate descriptive
model. The filter weights between Layers 2 and 3 were subject to
learning with natural image patches (after processing by Layers 1
and 2) using a sparse coding principle. Our specific learning
method was a combination of strong dimension reduction for
spatial pooling and overcomplete ICA for feature extraction.
Natural image patches were extracted from the ImageNet10K
dataset (Deng et al., 2010). The dataset was huge in terms of size
and variety: it contains 9,000,000 images of 10,000 categories,
including natural and urban scenes, natural and artificial objects,
humans, and animals (for details of the model construction, see
Materials and Methods).

To visualize the internal representations of the model V2 units
after learning, we use the following two formats: the filter format
and the basis format. In the filter format, we show the vector
associated with each unit in the filter weight matrix estimated by
the learning method. In the basis format, we show the vector
associated with the unit in the network interpreted as a generative
model (the basis vectors can be obtained essentially by inverting
the filter weight matrix). In both formats, each model V2 unit is
drawn as a set of ellipses each representing a model V1 complex
unit with the indicated center location, orientation, and inverse
of frequency (size), where the color shows the normalized (filter
or basis) weight value between the model V1 complex unit and
the model V2 unit. For concise presentation, we show only the
maximum positive and the minimum negative weights as each
position. (Despite the drastic omission, this visualization does
not lose much information in the internal representation (for
visualization details, see Fig. 1B; also see Materials and Methods.)
Below, we mainly use the basis format for informal illustration
and formal classification since this format exposes the intuitive

10416 • J. Neurosci., July 22, 2015 • 35(29):10412–10428 Hosoya and Hyvärinen • Statistical Model of Natural Images for V2



meaning of each model unit; we later use the filter format when
describing details of the response properties.

Figure 2 shows 40 example units in the basis format, illustrat-
ing the regularity and variety of the model units. All shown units
have localized excitatory subfields and some also have inhibitory
subfields. For many units, each excitatory or inhibitory subfield
integrates rather similar local orientations. However, the detailed
structures of the excitatory and inhibitory subfields seem to re-
flect distinct categories. The units in Figure 2, column a, have an
excitatory subfield with similar local orientations, together with a
weak, broad inhibitory pattern; we call this type of unit “iso-
oriented excitation with broad inhibition.” The units in Figure 2,
columns b– d, also have an iso-oriented excitatory subfield, but
with a symmetric inhibitory subfield appearing on the side (Fig.
2, column b), in a cross-like formation (Fig. 2, column c), and at
the end (Fig. 2, column d); we call these types of unit “iso-
oriented excitation with side, cross, or end inhibition,” respec-
tively. The units in Figure 2, column e, have a localized excitatory
subfield in which the combined local orientations all seemingly
converge to a certain point; a symmetric inhibitory subfield ap-
pears at the end; we call this type of unit “orientation-convergent
excitation with end inhibition.” An additional observation, al-
though not a focus here, is the variety in frequency integration.
For example, some units like those in Figure 2, column a, rows 2
and 5, have prominent frequencies higher than other units like
those in Figure 2, columns a and c, row 1. Also, while many units
integrate similar frequencies uniformly, some units combine
higher frequencies in some parts and lower ones in other parts
(e.g., Figure 2, column b, row 3, and column e, row 1).

We have exemplified in Figure 2 five types of model units,
which were in fact representatives of the entire V2 model. (In
particular, we rarely found a unit with orientation-convergent
excitation in conjunction with broad, side, or cross inhibition.)
To quantify this, we introduced a formal classification method
for the model units. The classification used four algebraic func-
tions for describing basis representations of the four inhibition
types (broad, side, cross, and end inhibition types). Each function
was defined as a four-dimensional Gaussian-like function (x and
y coordinates, orientation, and frequency) or a difference of two
such functions to describe the shapes of the excitatory and inhib-
itory subfields. For the end inhibition type, however, the local
orientations in either excitatory or inhibitory subfield were al-
lowed to converge to a certain point, where the convergence was
steeper if the distance from the subfield center to the converging
point was shorter. Thus, the inhibition type of each unit was
determined by the best-fitting function, and the excitation type
was then determined using the parameters controlling the degree
of convergence (for details, see Materials and Methods; Fig. 1C).

Figure 3 summarizes the result of the formal classification. For
93.7% of the units, one of the four algebraic functions gave a fit
that was good by itself and significantly better than any other
functions (see Materials and Methods). We call such units well
classified; further analysis was conducted only on those units.
Figure 3A shows the distribution of the goodness-of-fit values
(R 2) for the best fitted functions (the filled and the unfilled bars
indicate the well classified and the unclassified units, respec-
tively). The example units shown in Figure 2 were actually ran-
domly selected from each class formally defined in this way. (The
units are sorted by goodness of fit; those in the bottom are there-
fore around the borderlines between different classes.) Among
the five types, the iso-oriented excitation with broad inhibition
type (�30%), the orientation-convergent excitation with end-
inhibition type (�23%), and the iso-oriented excitation with side

inhibition type (�21%) were relatively more frequent, though
the other types were also quite common (Fig. 3B). It is quite
noteworthy that units with such a complex structure as
orientation-convergent excitation emerged so frequently.

To what features in natural images do these excitation and
inhibition patterns of model units correspond? To gain an intu-
itive understanding, we input randomly selected 100,000 natural
image patches to the model and visualized the most preferred
patches of each model unit. Figure 4 shows the seven most pre-
ferred patches of 15 model units given in the top three rows in
Figure 2. The units seen in Figure 4, rows a1–a3, b2, b3, c1– c3,
and d1– d3, clearly preferred patches containing a contour corre-
sponding to the excitatory pattern. In particular, for the units in
Figure 4, rows d1 and d2, with end inhibition, the short contours
in the preferred patches often stopped at the point where the
inhibition started. The units in Figure 4, rows e1– e3, in a similar
way to those in Figure 4, rows d1– d3, preferred patches contain-
ing some feature that stopped correspondingly with the end in-
hibition; the feature was somewhat more complicated than a
simple contour and looked more like an acute or round corner.
The unit in Figure 4, row a2, in fact preferred patches containing
a texture feature reflecting the wider excitatory pattern with mul-
tiple parallel orientations. Such texture-selective units were rela-
tively few but not uncommon; Figure 4 shows two additional
examples with side inhibition (Fig. 4, row x1) and with end inhi-
bition (Fig. 4, row x2). Although showing all units here is impos-
sible, the unit type generally reflected the preferred feature for
units not shown: iso-oriented excitation units preferred contour
or texture features and orientation-convergent excitation units
preferred corner-like features.

While the basis format provides an intuitive view on what each
unit represents, the filter format is important in understanding
how each unit responds to external inputs, as discussed in the
subsequent section. Figure 5 shows the filter representations of
the model units corresponding to the top three rows of Figure 2.
For each unit, the basis and filter vectors look reasonably similar
in the overall excitatory and inhibitory integration pattern of
local orientations, which means that the response properties gen-
erally reflect the structure in the basis representation. However,
details in these formats are different. The differences are related
to the statistical structure in Layer 2 outputs (analogous to the 1/f
spectrum in natural image statistics), where finer-grained struc-
tures (e.g., higher frequencies) have lower magnitudes, and, ac-
cordingly, the filters amplify them (see Materials and Methods).
This has the following specific effects: (1) the size of the promi-
nent pattern in the filter is often smaller than in the basis; (2) the
prominent spatial frequency is sometimes higher in the filter; (3)
the filter is somewhat noisier (which would make fitting diffi-
cult); (4) some units with broad inhibition in the basis format
often have weak side inhibition in the filter format; and (5) in the
filter, a strong excitation is often overlaid with a weak orthogonal
inhibition, and a strong inhibition is often overlaid with a weak
orthogonal excitation. The latter two are particularly important
in clarifying some unintuitive details of the response properties
shown below.

Homogeneous and heterogeneous integration of
local orientations
An experimental study (Anzai et al., 2007) suggested that ma-
caque V2 represents both homogeneous and heterogeneous ex-
citatory integration of local orientations. This property may be
explained in our model since it had units of both iso-oriented and
orientation-convergent excitation types.
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To reproduce the experimental result, we followed the method
used by Anzai et al. (2007), probing the sensitivity of each model V2
unit to local orientations by presenting oriented local grating stimuli
at different positions (see Materials and Methods). Figure 6A shows

the obtained space-orientation response profiles for the units shown
in the top three rows in Figure 2, where the local orientation tuning
at each position is plotted in polar coordinates (the responses are
normalized by the maximal value).

Figure 2. Classified examples of model V2 units in the basis format. Each column shows randomly selected eight units of one of five types, as follows: column a, iso-oriented excitation with broad
inhibition; column b, iso-oriented excitation with side inhibition; column c, iso-oriented excitation with cross inhibition; column d, iso-oriented excitation with end inhibition; and column e,
orientation-convergent excitation with end inhibition. The units in each column are sorted by goodness of fit (highest in the top row). See Figure 1B for the visualization format. exc., Excitation; inh.,
inhibition.
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The response profile of each unit generally had parallels with
the excitatory part of the basis representation. Most units in
Figure 6A, columns a– d, which had iso-oriented excitation in
the basis representations, had fairly homogeneous orientation
integration. On the other hand, the units with orientation-
convergent excitation in Figure 6A, column e, had somewhat
heterogeneous integration, with the orientations gradually
changing depending on the position. However, the response pro-
file for the unit in Figure 6A, column b, row 1, was rather dissim-
ilar to its basis representation, where orthogonal excitation could
not be found. This can be understood from the filter representa-
tion shown in Figure 5. In Figure 5, column b, row 1, strong
vertical excitation was accompanied by strong vertical inhibition
on the side, and this inhibition was overlaid with weak horizontal
excitation. The responses to horizontal orientations in the re-
sponse profile were caused by this weak horizontal excitation, but
were somewhat exaggerated since the responses to vertical orien-
tations were suppressed by the strong vertical inhibition close to
the vertical excitation. (Many other side inhibition units in fact
had similar heterogeneous space-orientation maps, which could
be explained in the same manner.) The response profiles shown
in Figure 6A are qualitatively similar to the examples given by
Anzai et al. (2007); our homogeneous units [Fig. 6A, columns a
(rows 1–3), b (rows 2, 3), c (rows 1–3), d (rows 1–3)] were similar
to those in their Figure 1a, our heterogeneous unit [Fig. 6A, col-
umn b (row 1)] was similar to that in their Figure 1b, and our
heterogeneous unit [Fig. 6A, column e (rows 1–3)] was similar to
that in their Figure 1d.

As in the experimental study, we quantified the degree of ori-
entation heterogeneity of each unit by calculating the maximal
difference between the peak orientations at different positions
(see Materials and Methods). Figure 6B shows the distribution of
the maximal orientation differences of the entire population in
the model (bars). Clearly, the distribution has two prominent
peaks around 0° and 90°, which is consistent with the experimen-
tal result (Anzai et al., 2007) with similar peaks (Fig. 6B, magenta
curve). Figure 6B also shows the proportions of the unit classes
within each bin, giving one interpretation to the experimental
data. Note that approximately one-half of the most heteroge-
neous units (75–90°) could be explained by the orientation-
convergent excitation type of units, so that the peak at �90°
would be much less pronounced if these units were not present.

Since such a peak did not exist for V1 according to the same
experimental study, units of orientation-convergent excitation
type might play a key role in producing the V2-specific response
properties.

Note that, if a unit had a completely random orientation or-
ganization, then the maximal orientation difference would be
close to 90°. Figure 6C excludes this possibility. That is, if the
orientation organization were completely random, the distribu-
tion of all pairwise orientation differences (the differences be-
tween all pairs of peak orientations) pooled across the population
of heterogeneous units (maximal orientation differences 	30°)
would be uniform. However, the actual distribution (bars) of all
pairwise orientation differences shows prominent peaks at �0°
and 90°. This result is also consistent with the experimental data
(Anzai et al., 2007; Fig. 6C, magenta curve).

In addition to the above experiment, Anzai et al. (2007) con-
ducted another experiment using a pair of grating stimuli pre-
sented at different locations. This experiment could reveal
orientation interaction at two locations as a modification of the
orientation tuning curve at one location, induced by the orienta-
tion at the other location. We also simulated this experiment in
our model and quantitatively compared the orientation interac-
tions. We considered four types of orientation interactions based
on the tuning similarity index (TSI) that was proposed by Anzai
et al. (2007) for measuring the strength of nonlinearity in the
orientation interaction. The four types were as follows: (1) addi-
tive (vertical shift of tuning curve; TSI 	 0.8); (2) multiplicative
(amplitude reduction; 0.8  TSI 	 0.2); (3) flattening (loss of
tuning; 0.2  TSI 	 0); and (4) inverting (upside-down tuning
curve; TSI � 0). In our model V2, we found units that had inter-
actions of types 1–3, where type 1 was far more frequent than the
other types; we found no unit with interactions of type 4 (data not
shown). This result is not surprising since our model V2 units are
simple linear–nonlinear models taking V1 outputs. In contrast,
in macaque V2, Anzai et al. (2007) found cells with interactions of
all types. In particular, interactions of type 2 were more frequent
than the other types. Also, a relatively small population of inter-
actions of type 4 existed. This suggests that a part of the actual
V2 neurons may involve a strong nonlinear computation be-
yond our simple sparse coding model, and an additional
mechanism must be introduced to account for such behavior
(see Discussion).

Angle selectivities
Macaque V2 is also known to exhibit various angle selectivities (Ito
and Komatsu, 2004). This property also may be explained in our
model since it had units of various orientation heterogeneities.

We simulated, in our model, the protocol used in the experi-
mental study (Ito and Komatsu, 2004) by measuring the re-
sponses of each model V2 unit to a set of 66 angle stimuli, each of
which was composed of two end-adjoined line segments emanat-
ing in two directions (from 12 directions at 30° intervals; see
Materials and Methods). Figure 7A shows the response profiles of
the units given in the top three rows in Figure 2. Each response
profile arranges the angle stimuli in the upper half of a matrix in
such a way that the row or column corresponds to one of the 12
directions composing the angle stimuli (Fig. 7D); the darkness of
each displayed stimulus indicates the normalized responses. Note
that the top edge and the right edge of the matrix are conceptually
continuous; the fourth element on the top row is next to the
fourth element on the right-most column, for example. The red
boxes indicate the peak angle stimuli, where at most two of them
were determined for each unit based on its responses.

Figure 3. Classification of model V2 units. A, The distribution of the goodness-of-fit values
(R 2) for the best-fitting functions. The filled and the unfilled bars indicate the well classified and
the unclassified units, respectively. B, The distribution of five types in the model (only for well
classified units). The colors of the bars show the unit types (see legend). exc., Excitation; inh.,
inhibition.
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Figure 4. Preferred natural image patches of model V2 units. Each row shows the basis vector of a unit (in the left-most panel in the same format as Figure 1B) and its seven most preferred natural
image patches. The units shown here correspond to the top three rows in Figure 2 (using the column and row labels there), in addition to two extra example units (x1 and x2) with wide excitatory
subfields.
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Two observations can be made from these examples. First, the
peak angles for each unit looked approximately similar to the
corresponding basis representation. Since the units in Figure 7A,
columns a– c, had iso-oriented excitatory subfields, many of these
preferred wide angles such as 150° and 180°. However, there were
a few units in these columns that preferred very narrow angles
such as 30° (e.g., units in Figure 7A, columns a and c, row 3). This
happened since those units integrated not only exactly equal ori-
entations but also neighboring orientations. The units in Figure
7A, columns d, e, preferred 30° angles, which is reasonable not
only because the basis representations looked quite like sharp
angles, but also because the end inhibition in those units pre-
vented them from responding strongly to more elongated stim-
uli. Second, the response level tended to be somewhat retained for
stimuli close to the peak stimulus. In particular, many units had
an elongated area around the peak angle, retaining almost the
peak level either in the same row or in the same column [e.g.,
units in Figure 7A, columns a (row 2), c (row 1)], which means
that, of the two components of the peak angle, the unit was more
sensitive to one than the other.

Figure 7B shows the distribution of angle widths for the entire
population in the model (bars). A wide range of selectivities to
angle widths was represented, with prominent peaks at 30° and
180°, which were consistent with the experimental data (Ito and
Komatsu, 2004; Fig. 7B, magenta curve). Figure 7B also shows the
proportions of the unit classes within each bin. In particular, the
units preferring 30° angles included both iso-oriented and
orientation-convergent excitation types, which could mean that
selectivities to sharp angles and flat angles might be difficult to
distinguish by using such simplistic stimuli. A follow-up article
(Ito and Goda, 2011) of the experimental study also indicated a
possible discrepancy between preferences of 30° angles and the
actual representations.

Figure 7C shows the distributions of elongations of angle tun-
ing in the model (bars). Here, elongation is defined as the number
of elements above a certain threshold of activation in the matrix
that share a certain property with the peak angle. There are four

types (Fig. 7D). Primary and secondary elongations correspond
to the horizontal and vertical axes in the matrix and count the
number of elements sharing one of the two components of the
peak angle; primary elongation refers to the larger one. Angle
elongation corresponds to the left-up-to-right-down axis and
counts the number of elements with the same angle width as the
peak angle. Orientation elongation corresponds to the left-down-
to-right-up axis and counts the number of elements where the
bisecting orientation of the angle is similar to the peak angle (see
Materials and Methods). As evident from Figure 7C, the distri-
bution of primary elongations was much broader than the distri-
butions of the other types of elongations, indicating the biased
sensitivity to one component of the peak angle across population,
which, again, is consistent with the experimental data (Ito and
Komatsu, 2004; Fig. 7C, magenta curves).

Length and width suppression
Yet another property known in macaque V2 is suppression of
responses to grating stimuli when they are lengthened or widened
to some extent (Schmid et al., 2014). This property may also be
explained since our model units have a variety of inhibition
patterns.

We simulated the experimental method used by DeAngelis et
al. (1994), which was adopted by Schmid et al. (2014). We thus
presented, to the model, optimally oriented grating stimuli with
rectangular envelopes of varied lengths and width (the orienta-
tion of the envelope and that of the grating were aligned; see
Materials and Methods). Figure 8A shows pairs of the tuning
functions for varied lengths with the optimal width (left) and for
varied widths with the optimal length (right) for each unit given
in the top three rows in Figure 2.

Overall, the tuning functions reflected the inhibition patterns
in the basis representations of these units. For the side inhibition
units in Figure 8A, column b, the response was monotonically
increased when the grating stimulus was lengthened, while sup-
pressed when the stimulus was widened. For the end inhibition
units in Figure 8A, columns d, e, the response was increased when

Figure 5. Example model V2 units in the filter format. The units shown correspond to those in the top three rows in Figure 2. (The column and row labels correspond to those in Figure 2.) See Figure
1B for the visualization format. exc., Excitation; inh., inhibition.
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the stimulus was widened, while suppressed when the stimulus
was lengthened. The broad inhibition units in Figure 8A, column
a, and the cross inhibition units in Figure 8A, column c, generally
had little suppression in either tuning function, except that some
units in Figure 8A, column a, had moderate width suppression
(e.g., Fig. 8A, column a, rows 1, 2), because they in fact had weak
side inhibition in their filters (Fig. 5).

The degree of suppression in each length or width tuning
function was quantified by a suppression index ranging between
0.0 and 1.0, where a larger value indicated a stronger suppression.
[Although a slightly different definition of suppression index
from the experimental study by Schmid et al. (2014) was used due
to the nature of data, it made a difference only for very small
suppression indices (see Materials and Methods).] Figure 8B
plots the joint distribution of the length and width suppression
indices for all units, where the color shows the unit type. The
distribution was clearly bimodal, where the majority of units had
large values for either the length or the width suppression index,
not both, reflecting their inhibition types. That is, most units with
large length suppression indices were of the end inhibition type;

those with large width suppression indices were of the side
inhibition type; those with relatively small values for both sup-
pression indices were of either the broad inhibition or cross-
inhibition type. The medium width suppression indices for most
broad inhibition units were due to weak side inhibition in their
filters. Compare this simulated result with the corresponding ex-
perimental data (Schmid et al., 2014) in Figure 8C. The distribu-
tion from the experiment also had two modes with large values
for, exclusively, either the length or the width suppression index,
which is consistent with the simulation result. The same experi-
mental study showed that the joint distribution for V1 had only
one mode with correlated length and width suppression indices.
Thus, having separate side inhibition and end inhibition units
might be crucial for producing the V2-specific response proper-
ties. (The values of the suppression indices were generally much
larger in the simulated result, which means that the relative
strengths of suppressive fields in the model units were not so
accurate with respect to the actual neural representations.)

In addition to the dissociated length and width suppression
property, Schmid et al. (2014) reported another property that was

Figure 6. Local orientation integration property of model V2 units compared with the macaque V2 data (Anzai et al., 2007). A, The space-orientation response profiles of the units given in the
top three rows in Figure 2 (using the same labeling convention). For each unit, the local orientation tuning at each position is plotted in polar coordinates. B, The distribution of maximal orientation
differences of all model units, with the proportion of each unit class in each bin (bars). The plot is overlaid with the replotted analogous distribution reported for V2 (Anzai et al., 2007) (magenta
curve). C, The distribution of all pairwise orientation differences pooled across all heterogeneous units (whose maximal orientation differences are	30°; bars), overlaid with the replotted analogous
distribution (Anzai et al., 2007) in magenta curve. The replots in B and C combine the bins for both positive and negative orientation differences with the same magnitude in the experimental results
shown in Anzai et al. (2007; their Fig. 2b,f ). exc., Excitation; inh., inhibition.
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revealed in an experiment using “orientation discontinuity”
stimuli (a grid of rectangular regions that are filled with randomly
oriented grating patches). However, we did not simulate this ex-
periment since their data analysis crucially depended on the tim-
ings and the temporal traces of neural responses (while our
model yields only a scalar-valued response), and it did not seem
possible that such complicated nonlinear orientation interac-
tions between two positions as were discovered in the experiment
would emerge in our simple linear–nonlinear model taking V1
outputs, as discussed in the previous section concerning the sim-
ulation of Anzai et al. (2007).

Model variations
To investigate how stable the results shown so far were across
various choices of model parameters, we constructed several vari-

ations of the model and conducted the same series of analyses.
We changed the following three model parameters: (1) the type of
image dataset; (2) the number of Layer 3 units; and (3) the num-
ber of reduced Layer 2 dimensions. The last parameter was rele-
vant to the strong dimension reduction of the outputs of Layer 2
units performed before computing the overcomplete ICA (see
Materials and Methods). In the basic model, these parameters
were set to (1) the whole image dataset in ImageNet10K, (2) 800
units, and (3) 100 dimensions. In the variations, we made the
following three series of modifications to the basic model: (1) the
type of image dataset was changed to a subset of ImageNet10K
(images in human, computer, building, or mountain category);
(2) the number of Layer 3 units was changed to 200, 400, 1200, or
1600; and (3) the number of reduced Layer 2 dimensions was
changed to 200, 400, 600, or 800.

Figure 7. Angle selectivity property of model V2 units compared with the macaque V2 data (Ito and Komatsu, 2004). A, The response profiles for the units in the top three rows in Figure 2 (with
the same labeling convention). Darkness of each stimulus indicates the response. The red boxes show the peak angle stimuli. B, The distribution of preferred angle widths with the proportions of unit
classes in each bin (bars), overlaid with a replot (magenta curve) of the analogous distribution from the study by Ito and Komatsu (2004). C, The distributions of elongations of peak response areas
in primary, secondary, angle, and orientation axes (bars), overlaid with replots (magenta curves) from the study by Ito and Komatsu (2004). D, The matrix format for the 66 angle stimuli composed
of two line segments, overlaid with four elongation types: horizontal (i), vertical (ii), angle (iii), and orientation (iv). exc., Excitation; inh., inhibition.
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Figure 9 summarizes the results from these model variations,
showing the number of well classified units (Fig. 9A), the propor-
tion of each unit type (Fig. 9B), the distribution of maximal ori-
entation differences (Fig. 9C), the distribution of preferred angle
widths (Fig. 9D), and the joint distribution of length and width
suppression indices (Fig. 9E). The population results were overall
similar across the model variations, indicating that the learned
representations generally had little dependence on a particular
choice of the varied model parameters.

The only notable instability was the drop in the number of well
classified units and the increase in the ratio of broad inhibition
units when the number of reduced dimensions was increased.
This was in fact due to the effect of spatial pooling by the strong
dimension reduction (see Materials and Methods). To illustrate
this, Figure 10 shows the basis representations of a randomly
selected 20 units, including ill fitted ones from the models with
100, 200, 400, and 800 reduced dimensions. One can clearly per-
ceive the gradual decrease of the overall sizes of the learned fea-
tures. In particular, in the case of reduced dimensions 400 (Fig.
10C) or 800 (Fig. 10D), a large number of units had almost the
same sizes as a single complex cell. To quantify this observation,
we measured the ratio of the receptive field size of each unit in
Layer 3 to the average receptive field size in Layer 2 (see Materials
and Methods). The mean ratio indeed significantly decreased as
the reduced dimensions increased up to 400, but remained sim-
ilar afterward (Fig. 11). Moreover, the mean ratio was 1.88 in the
case of 100 reduced dimensions, which is comparable to the phys-
iological data (compare Freeman and Simoncelli, 2011, their Fig.
1), thus justifying our choice of the number of reduced dimen-
sions. Figure 10 also shows that the models with 400 and 800
reduced dimensions contained some units whose excitatory and

inhibitory subfields were overlapped in a complicated way. These
units could in fact be interpreted as side inhibition or end inhi-
bition units where the distance between the excitation and the
inhibition was extremely condensed. Our algebraic functions for
unit classification were not designed to accommodate such path-
ological cases and often misclassified those to the broad inhibi-
tion type. However, we did not pursue this issue further since
those models with higher reduced dimensions were already inap-
propriate as a V2 model since their receptive field size ratios were
too small compared with actual V2.

Discussion
In this article, we investigated a hierarchical statistical model that
performed sparse coding of outputs from a standard V1 model.
After training with a wide variety of natural image patches, the
model units represented five types of excitatory and inhibitory
patterns, namely, iso-oriented excitation combined with broad,
side, cross, or end inhibition, as well as orientation-convergent
excitation combined with end inhibition. Furthermore, the
model simultaneously reproduced three kinds of response prop-
erties of macaque V2 neurons that were reported in separate
experimental studies, namely, local orientation integration (An-
zai et al., 2007), angle selectivities (Ito and Komatsu, 2004), and
length and width suppression (Schmid et al., 2014). The repro-
ducibility was qualitative, quantitative, and stable across model
variations. These results are consistent with the idea that neural
representations in V2 use a sparse code of natural images.

We formally classified the model units by fitting their internal
representations with our algebraic functions. Relating the classifica-
tion result with the response properties, we clarified what aspects of
model properties were relevant to the reproduced simulation results,

Figure 8. Length and width suppression property of model V2 units compared with the macaque V2 data (Schmid et al., 2014). A, The pair of tuning functions with respect to the width or length
(horizontal axis) of a grating stimulus for each unit given in the top three rows in Figure 2 (using the same labeling convention). Responses (vertical axis) are normalized by the maximal value in each
tuning function. B, The joint distribution of length and width suppression indices for all units, with colors indicating the unit types. C, Replot of the analogous joint distribution reported by Schmid
et al. (2014). A slightly different definition of suppression index was used (see Materials and Methods). exc., Excitation; inh., inhibition.
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giving an additional insight into the past experimental data. In par-
ticular, the most important type of model unit was orientation-
convergent excitation with end inhibition. This type of unit, despite
its complex form, was surprisingly frequently found in the model
and constituted a majority of all end inhibition units. The reproduc-
tion of the aforementioned V2-like tuning properties crucially relied
on this type of unit. In particular, these units largely contributed to
the population properties with prominent heterogeneities in orien-
tation organization and dissociation of length suppression from
width suppression. Since these properties were observed experimen-
tally in V2 but not in V1 (Anzai et al., 2007; Schmid et al., 2014), our
model seems to be related to the representations specifically found in
V2. (However, it should be noted that precise differences in suppres-
sion properties between V1 and V2 are still a matter of debate; Hal-
lum and Movshon, 2014.)

The use of strong dimension reduction before performing
overcomplete ICA is a novel aspect in our learning method. For
example, in our basic setting, we reduced the dimensions in the

outputs of Layer 2 from 1296 to 100 and thereafter estimated 800
independent components. Although this might appear radical
and even contradictory at first glance, reducing the dimensions
corresponding to low eigenvalues eliminates fine-grained struc-
tures in the inputs and thus has an effect of spatial pooling. In-
deed, we have observed that the more the dimensions were
reduced, the larger the learned features became, while the overall
feature shapes remained similar. In particular, when the retained
dimensionality was 400 or higher, so many of the learned features
became almost identical to a single complex unit that the repre-
sentations might arguably not be suitable to model V2. This result
is related to the fact that the ICA of the result of another ICA
essentially only gives an identity matrix; we have also observed
that this is often approximately the case even if a nonlinearity like
half-rectification is taken in between. Thus, strong dimension
reduction might be a simple but powerful method to learn
completely new aspects of the data. However, we feel that a
deeper and more mathematical understanding of this ap-

Figure 9. The results for model variations. The varied model parameters were the type of image dataset (1), the number of Layer 3 units (2), and the number of reduced dimensions (3). A–E, The
compared properties were the number of well classified units (A), the proportion of each unit type (format similar to Fig. 3B; B), the distribution of maximal orientation differences (format similar
to Fig. 6B; C), the distribution of preferred angle widths (format similar to Fig. 7B; D), and the joint distribution of length and width suppression indices (format similar to that in Fig. 8B except that
only 100 randomly selected units are shown for each model variation for readability; E). The colors of curves and points in the plots in C, D, and E show the model parameter or the corresponding
experimental data (each bottom legend).
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proach is needed beyond the scope of this article, and so it is
left for future work.

Our learned model representations were, to some extent,
qualitatively similar to filter models of V2 cells estimated in data-
driven approaches (Willmore et al., 2010; Tao et al., 2012). In the
study by Willmore et al. (2010), filter models assuming a V1-like
preprocessing stage with 45° intervals of local orientation detec-
tors were estimated from responses to natural images. They
showed that V2 cells often had strong suppression tuned to a
particular orientation either equal to or different from the excit-
atory orientation; they did not particularly report orientation-
convergent excitation, but such features would not be detectable
with 45° intervals of local orientations. In the study by Tao et al.
(2012), filter models were estimated by reverse correlation on
local Fourier transforms of dense noise stimuli. They showed that
some V2 cells had convergent integrations of local excitatory ori-
entations and that many V2 cells had weak suppressions that
were typically orthogonal to the excitation. However, a com-
parison of the latter study with ours should be made with
caution since their method may not estimate filters in the same
way as discussed here. [The adequacy of reverse correlation esti-
mation is theoretically not guaranteed for such asymmetric dis-

Figure 11. The ratios of receptive field sizes of Layer 3 units to the average receptive field
size of Layer 2 units for the models with varied reduced dimensionality. (Each error bar indicates
the standard deviation.)

Figure 10. A–D, The basis representations of randomly selected 20 units from each model with 100 (A), 200 (B), 400 (C), or 800 (D) reduced Layer 2 dimensions. See Figure 1B for the visualization
format.
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tribution of inputs (Paninski, 2003); further potential artifacts
are discussed elsewhere (Nishimoto et al., 2006).]

Although numerous studies have investigated neural repre-
sentation in V1 in relation to natural image statistics, only a few
focused on V2. Early studies built a sparse coding model assum-
ing a fixed V1-like preprocessing layer, similar to our study
(Hoyer and Hyvärinen, 2002; Hyvärinen et al., 2005). However,
the resulting representations were much simpler (only with iso-
oriented excitation and possible end inhibition) probably due to
a lack of spatial pooling mechanisms based on strong dimension
reduction. Later studies pursued hierarchical models with all lay-
ers learned from natural images, where higher layers estimated
variance components (Karklin and Lewicki, 2003; Köster and
Hyvärinen, 2010), covariance components (Karklin and Lewicki,
2009), complex-valued sparse coding (Cadieu and Olshausen,
2012), discrete-valued sparse coding (Lee et al., 2008; Hosoya,
2012), or sparse feedforward models (via “noise contrastive” es-
timation technique; Gutmann and Hyvärinen, 2013). These
demonstrated higher representations with more complicated ex-
citatory patterns (elongated and wide subfields) and inhibitory
patterns (side, cross, and end inhibitions). None explicitly re-
ported orientation-convergent excitation types combined with
end inhibition; in fact, such a structure would be hard to discern
from their visualizations since the lower-layer representations
were also learned and therefore had an irregular layout. A few of
the above studies attempted quantitative comparison with neural
properties specific to V2 (Lee et al., 2008; Hosoya, 2012; Gut-
mann and Hyvärinen, 2013). However, compared with the pres-
ent study, these results were somewhat preliminary in terms of
the number of reproduced experiments, compatibility with the
experimental data, and faithfulness to the experimental protocol.
Further, the size of the model and the variety of data were limited,
and model variation was not considered in these studies, which
leaves the scalability question unanswered. Finally, none of these
studies formally analyzed the internal representation in detail
and quantitatively related it to the neural response properties.

Although our model succeeded in capturing basic receptive
field properties found in V2, it cannot exhibit certain kinds of
reported complex nonlinear behavior as it is a simple half-
rectified linear model taking V1 outputs. In particular, it did not
explain the highly nonlinear interactions between local orienta-
tions at different positions reported by Anzai et al. (2007); the
multiplicative behaviors reported by Ito and Goda (2011) and the
“second-order kernels” reported by Schmid et al. (2014) are also
unlikely to be reproducible. Although a relatively small popula-
tion exhibits such nonlinearities according to these reports, this is
still an important difference from V1 and might have significant
implications in higher visual processing. Such nonlinearities
might be related to nonlinear inference in sparse coding models
(Olshausen and Field, 1996), but might also be related to other
kinds of statistical modeling of natural images based on divisive
normalization (Schwartz and Simoncelli, 2001) or feedback pro-
cessing (Rao and Ballard, 1999; Hosoya, 2012), or to further
highly nonlinear models yet to be developed.

Although we have focused on explaining the neural properties
in V2 that were related to excitatory and inhibitory organization
of local orientations, at least two other classes of tuning proper-
ties seem worth investigating. First, several properties related to
artificial and naturalistic texture features have been studied in V2
(El-Shamayleh and Movshon, 2011; Freeman et al., 2013; Li et al.,
2014). Since texture representations presumably involve not only
orientation organization but also frequency and phase organiza-

tion, detailed analysis of such representations learned from nat-
ural images and comparison to the known neural properties
would be particularly interesting. Second, the responses of some
V2 cells are modulated by stimulus parts that are quite far from
their classic receptive fields; for example, surround suppression
(Shushruth et al., 2009) and border ownership signals (Zhou et
al., 2000). Since such surround effects are usually attributed to
lateral or feedback connections, studying them from the view-
point of natural image statistics might need more sophisticated
models (but see Olshausen and Field, 1997; Schwartz and Simo-
ncelli, 2001).

Finally, how far can we go beyond V2? Although the present
study has demonstrated that a purely bottom-up learning model
can explain well several neuronal properties in V2, it is not clear
whether we can reach all the way to inferotemporal areas with this
approach since these areas contain much more specialized repre-
sentations, such as faces (Tsao et al., 2006), body parts (Pinsk et
al., 2005), and scenes (Kornblith et al., 2013). To explain such
high-level representations, some additional sources of information
may have to be exploited, such as contextual information, attention,
or “genetically” built-in information on evolutionary utility. While it
is possible that only learning in the highest layers needs such mech-
anisms, it could also be that top-down influence sends such infor-
mation down to V1, refining even the most basic representations—a
question to be addressed in our future research.
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