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In visual modeling, invariance properties of visual cells are often ex-
plained by a pooling mechanism, in which outputs of neurons with
similar selectivities to some stimulus parameters are integrated so as
to gain some extent of invariance to other parameters. For example,
the classical energy model of phase-invariant V1 complex cells pools
model simple cells preferring similar orientation but different phases.
Prior studies, such as independent subspace analysis, have shown that
phase-invariance properties of V1 complex cells can be learned from
spatial statistics of natural inputs. However, those previous approaches
assumed a squaring nonlinearity on the neural outputs to capture energy
correlation; such nonlinearity is arguably unnatural from a neurobiolog-
ical viewpoint but hard to change due to its tight integration into their
formalisms. Moreover, they used somewhat complicated objective func-
tions requiring expensive computations for optimization. In this study,
we show that visual spatial pooling can be learned in a much simpler
way using strong dimension reduction based on principal component
analysis. This approach learns to ignore a large part of detailed spatial
structure of the input and thereby estimates a linear pooling matrix. Us-
ing this framework, we demonstrate that pooling of model V1 simple
cells learned in this way, even with nonlinearities other than squaring,
can reproduce standard tuning properties of V1 complex cells. For fur-
ther understanding, we analyze several variants of the pooling model
and argue that a reasonable pooling can generally be obtained from any
kind of linear transformation that retains several of the first principal
components and suppresses the remaining ones. In particular, we show
how the classic Wiener filtering theory leads to one such variant.
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1 Introduction

In visual cortex, individual cells often show invariance properties, where the
cells maintain their responses when the stimulus is varied in certain stim-
ulus parameters. This property is considered to be the neural basis for the
remarkable robustness of our visual system when recognizing objects and
scenes even under significant variation and deformation (DiCarlo & Cox,
2007). In computational studies, invariance properties are often modeled
by a mechanism called pooling. This mechanism assumes a set of under-
lying model units selective to some stimulus parameters (called subunits)
and integrates the outputs of those subunits into a higher-level unit, which
gains some invariance to other stimulus parameters. The notion of pool-
ing had appeared in early physiological work that informally presented a
model of phase-invariant V1 complex cells that pool phase-dependent sim-
ple cells (Hubel & Wiesel, 1962), which was later formalized as the classical
energy model (Adelson & Bergen, 1985). Pooling then became standard in
more sophisticated multilayered vision models, which stipulated repetition
of V1-like computation in each layer, with pooling included for achieving
complicated invariance properities (Fukushima, 1980; Riesenhuber & Pog-
gio, 1999). This idea was refined in state-of-the-art computer vision models
based on deep learning that include pooling in a form similar to energy
models (Le et al., 2012) or in conjunction with convolutional architectures
(Krizhevsky, Sutskever, & Hinton, 2012).

What kind of learning principle could underlie such pooling? Prior stud-
ies showed that certain spatial statistics of subunit outputs leads to a pool-
ing of those subunits that attains phase-invariance properties similar to V1
complex cells (Hyvärinen & Hoyer, 2000, 2001; Karklin & Lewicki, 2003,
2009; Köster & Hyvärinen, 2010; Osindero, Welling, & Hinton, 2006). The
basic idea used in these models (explicitly or implicitly) is to combine sub-
units whose squared outputs are highly correlated (such correlation is often
called energy correlation). However, such squaring nonlinearity is arguably
unnatural from a biological point of view due to its symmetry, while it can-
not easily be changed to a more realistic one, for example, half-rectification
(y = max(0, x)) or half-squaring (y = max(0, x)2), since the nonlinearity is
tightly integrated into the formalisms. Moreover, the previous models re-
quired rather expensive computations for optimizing their objective func-
tions. (See section 4 for more specific discussion, as well as other approaches
using temporal structure: Földiák, 1991; Wiskott & Sejnowski, 2002; Hurri
& Hyvärinen, 2003; Berkes & Wiskott, 2005; Einhäuser, Kayser, König, &
Kording, 2002; Kayser, Kording, & König, 2003.)

In this study, we revisit the learning problem for pooling and propose
a simple alternative using strong dimension reduction based on princi-
pal component analysis (PCA). The idea here is to eliminate fine-grained
spatial statistical structures in the signals from the subunits, which results
in the integration of subunits with correlated outputs, in a manner that
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generalizes over different output nonlinearities. Indeed, we show that when
this approach is used, a model of V1 complex cells can be constructed as
a linear pooling of model V1 simple cells with similar position and ori-
entation preferences and that the resulting model complex cells exhibit
standard tuning properties similar to monkey V1 complex cells, even when
using a half-rectifying nonlinearity on the subunit outputs. For further un-
derstanding, we analyze several variations of the pooling model and argue
that a similar pooling model can generally be obtained from any form of
linear transformation that retains several of the first principal components
and suppresses the remaining ones. In particular, a Wiener-filter-like linear
denoising model, which optimally achieves our principle of eliminating
fine-grained structures, gives a reasonable pooling model.

This study is a follow-up of our previous publication on a model of
V2 (Hosoya & Hyvärinen, 2015), in which we observed that PCA-based
strong dimension reduction performed prior to overcomplete independent
component analysis (ICA) was crucial to obtain model V2 cells with reason-
ably large receptive field sizes. Here, we focus on the pooling model with
strong dimension reduction and present a series of theoretical analyses and
comparisons with experimentally known properties of V1 complex cells.

2 Strong PCA Dimension Reduction

Consider an N-dimensional data set and suppose that we perform PCA
on it. We assume that the eigenvalues of the covariance matrix are sorted
in descending order and the eigenvectors are sorted in accordance with
the eigenvalues. Thus, let ek be the kth (normalized, row) eigenvector. Our
proposal is, for a given smaller dimension K, to construct the following
N × N matrix,

P = ĒᵀĒ, (2.1)

where Ē is the K × N matrix whose rows are top K eigenvectors
e1, e2, . . . , eK. That is, the matrix transforms a given N-dimensional vector
into the reduced K-dimensional eigenspace (space of principal components)
and transforms the result back into the original space, whose dimension-
ality is thus effectively reduced. We are particularly interested in the case
of strong dimension reduction, where K is far smaller than N (e.g., K ∼ N/10).
We call the matrix P pooling matrix and its each row vector a pooling filter.

To show that the strong dimension reduction can give a reasonable pool-
ing model, we constructed a model of V1 complex cells. First, we learned
a set of 192 Gabor filters with various orientations and frequencies by
standard ICA of natural image patches (see appendix A for details). For
later comparison, 49 example filters are shown in Figure 1A. Our model
simple cells (subunits) were defined as the outputs of those filters with a
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Figure 1: Simple cell model and its PCA. (A) The linear filters of 49 example
model simple cells (ICA filters estimated from natural image patches). (B) Top 49
eigenvectors for the outputs of model simple cells. Each eigenvector is drawn
as a set of line segments, where each line segment indicates the orientation,
position, and size of a model simple cell and the color indicates the normalized
value of the element of the eigenvector corresponding to the model simple cell
(color bar). The weights with absolute value smaller than 10% of the maximum
are dropped for readability.

half-rectifying nonlinearity. We then performed PCA on the outputs of the
subunits (with the same inputs of natural image patches), whose top 49
eigenvectors are shown in Figure 1B. Here, each panel shows an eigenvec-
tor by a set of colored line segments, where each line segment indicates the
orientation, position, and size of a model simple cell and the color of the line
segment indicates the value of the element in the eigenvector corresponding
to the model simple cell. As can be seen in the figure, earlier eigenvectors
represented more coarse-grained structures, collecting subunits with sim-
ilar orientation preferences from a broad spatial region. In contrast, later
eigenvectors represented more fine-grained structures, describing a spe-
cific orientation combination at every spatial location.

We then performed strong dimension reduction using only the top 24
eigenvectors (out of 192 in total), ignoring most of the fine-grained struc-
tures; our model complex cells were defined as the pooling filters as given
in formula 2.1. Figure 2A shows 49 pooling filters in the same display for-
mat as the eigenvectors. We can clearly recognize pooling of model simple
cells with similar orientations and nearby positions. Note that since the
pooling matrix does nothing but eliminate fine structures, the ordering of
the input dimensions is preserved: the model simple cells in Figure 1A
and the model complex cells in Figure 2A correspond to each other. For a
closer look, the first seven of the model complex cells are illustrated in more
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Figure 2: Complex cell model. (A) Forty-nine pooling filters (model complex
cells) obtained by strong dimension reduction using the 24 top eigenvectors.
The display format is similar to Figure 1B. (B) The first seven pooling filters
shown in panel A (left), with the seven most strongly connected model simple
cells in each row (middle) and their (unnormalized) connection weights (right).
(C–D) Twenty-one pooling filters in the case of using (C) 48 or (D) 12 top
eigenvectors.

detail in Figure 2B, displaying the seven most strongly connected subunits
to each model complex cell (middle) and their connection weights (right),
which highlights the localization and orientation similarity of the integrated
model simple cells. The strength of dimension reduction controls the spatial
extent of pooling: Figures 2C, 2A, and 2D reveal that model complex cells
had progressively larger shapes as the reduced dimensionality K decreased
(K = 48, 24, 12).

To quantitatively assess the sensitivity of each model cell to the phase,
orientation, and frequency, we followed the standard protocol used in elec-
trophysiology, analyzing the responses to whole-field grating stimuli with
varied phases, orientations, and frequencies (see appendix B for details).
Figures 3A and 3B show the phase tuning curves of the first eight model
simple cells in Figure 1A and the first eight complex cells in Figure 2B,
respectively. The latter were generally more insensitive to the phase. Fig-
ures 3D and 3E show the distributions of F1/F0 ratios (the first Fourier
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Figure 3: Analysis of model simple and complex cells. Each row is one popula-
tion: top row (A,D), half-rectified model simple cells shown in Figure 1A; middle
row (B,E), model complex cells based on half-rectified simple cells shown in Fig-
ure 2A; bottom row (C,F), model complex cells using full-rectified model simple
cells. The quantities computed are (A–C) the phase tuning curves for eight ex-
ample model cells from each population and (D–F) the distributions of F1/F0
values, orientation bandwidths, and frequency bandwidths for each population.
The orientation and frequency bandwidths are determined in half-maximum
full width.

component divided by the DC component) for model simple cells and
for model complex cells. All of the model complex cells were relatively
insensitive to the phase (F1/F0 smaller than 1), although completely phase-
insensitive ones (F1/F0 close to 0) were rare. The same figures show the
distributions of orientation and frequency bandwidths (in half-maximum
full width) for model simple cells and model complex cells. The model
complex cells had somewhat similar sensitivities, albeit slightly weaker, to
orientations and frequencies compared to the model simple cells. Although
not shown in the figures, the phase sensitivities became weaker (broader
pooling, smaller F1/F0 values) when a complex cell model was obtained
by stronger dimension reduction (smaller K), while the orientation and fre-
quency sensitivities were barely affected. For comparison, Figure 4 shows
the analogous distributions for simple and complex cells, respectively, of
monkey V1 replotted from past experimental studies (Skottun et al., 1991;
De Valois, Albrecht, & Thorell, 1982; De Valois, Yund, & Hepler, 1982). The
peaks in the corresponding distributions in Figures 3D and 3E are more or
less similar, while the distributions tend to have larger variances in monkey



Learning Visual Spatial Pooling 1255

Figure 4: Replots of experimental data of F1/F0 values and orientation and
frequency bandwidths of (A) simple cells and (B) complex cells in monkey V1
(Skottun et al., 1991; De Valois, Albrecht et al., 1982; De Valois, Yund et al., 1982).

(in particular, F1/F0 values of simple cells and frequency bandwidths of
simple and complex cells).

In the model, some extent of phase insensitivity was obtained by strong
dimension reduction on half-rectified outputs of model simple cells. Per-
fect phase insensitivity can be attained by changing the nonlinearity from
half rectification to full rectification (y = |x|), capturing energy correlations.
Figure 3C shows the phase tuning curves of examples of the model com-
plex cells constructed in this way; all the model complex cells were in fact
completely phase insensitive in the sense that their F1/F0 values were al-
most zero (see Figure 3F). The orientation and frequency bandwidths were
similar to the case of half-rectifier (see Figure 3F). Although not shown
here, using squaring and half-squaring gave distributions similar to the
case of full rectification and half rectification, respectively, but with nar-
rower orientation and frequency bandwidths due to the stronger nonlinear
effect. Finally, it is essential to have some output nonlinearity; the pooling
effect vanished when the linear output was directly fed to strong dimension
reduction (data not shown).

3 Variations

So far, we have shown that strong dimension reduction using PCA has the
effect of spatial pooling. In this section, we first argue that in general, any
linear transformation that retains a few top eigenvectors and cuts off the
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remainder has a similar effect. We then derive an optimal form of pooling
based on a denoising model.

3.1 General Form of Pooling. We focus on transformations in the fol-
lowing diagonalized form,

P = Eᵀ diag(h)E, (3.1)

where E is the N × N matrix of all row eigenvectors and h is an
N-dimensional vector with nonnegative elements. For example, strong di-
mension reduction using K components as in formula 2.1 can be written in
the above diagonal form using

h = (1, . . . , 1︸ ︷︷ ︸
K

, 0, . . . , 0︸ ︷︷ ︸
N−K

),

which can be read directly as retaining K top eigenvectors and removing
the remaining ones.

A simple variation is the combination of strong dimension reduction and
whitening. Such an operation can be formulated as our diagonalized form,
equation 3.1, with

h = (d−1/2
1 , . . . , d−1/2

K , 0, . . . , 0︸ ︷︷ ︸
N−K

),

where di is the ith eigenvalue. Since this operation also retains a few top
components and eliminates the remaining components, it has a similar
pooling effect. Indeed, model complex cells constructed with this operation
properly gave low phase sensitivities and high orientation sensitivities (see
Figure 5A). The diagonal values hi’s are plotted in Figure 5E (red). Whiten-
ing with strong dimension reduction may be useful when some feature
extraction method is applied after pooling in a hierarchical learning model.
Indeed, in our previously published model of V2, this operation was per-
formed prior to overcomplete ICA (Hosoya & Hyvärinen, 2015) (although
the use was implicit in the sense that the backward transformation Eᵀ was
omitted in that paper).

Note that performing only whitening, that is, h = (d−1/2
1 , . . . , d−1/2

N ), de-
molishes the pooling effect with a high phase sensitivity (see Figure 5B),
since later components are retained (see Figure 5E, yellow). Also, simply
using the covariance, that is, h = (d1, . . . , dN), overly promotes the pooling
effect so that it prevents meaningful orientation or frequency selectivities
(see Figure 5C), since very few top components are retained (see Figure 5E,
violet).
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Figure 5: Variations of the model. (A–D) The distributions of F1/F0 values and
orientation and frequency bandwidths in the case of using (A) whitening and
dimension reduction, (B) whitening, (C) covariance, and (D) optimal pooling
based on denoising model, where σ 2 is set to the 24th eigenvalue. (E) The
diagonal values (normalized by the maximum) in each case, as well as PCA-
based strong dimension reduction (see Figure 3E).
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3.2 Optimal Pooling Based on Denoising Model. We have seen a few
examples where a sensible pooling results from a choice of diagonal values
hi, which can each be seen as an instance of our principle of elimination of
fine-grained structures. Is it possible to derive such diagonal values more
directly from this principle? Indeed, this corresponds to a simple Wiener-
filter-like denoising model formalized below, where fine-grained structures
in the outputs of model simple cells are regarded as noise and the role of
model complex cells is to remove them.

Suppose that model complex cells c attempt to eliminate additive noise
n from outputs of model simple cells s. Thus, we model the simple cell
outputs s as a sum of the complex cell outputs c and independent noise n:

s = c + n. (3.2)

Assume that the noise is white with variance σ 2 and the model complex
cells attempt to denoise this approximately by linear filters P in our diagonal
form, equation 3.1:

ĉ = Ps. (3.3)

Now, we want to minimize the squared error,

F = E[‖c − ĉ‖2], (3.4)

under the nonnegativity constraint hi ≥ 0 (i = 1, . . . , N), which yields the
following solution:

hi =
{

1 − σ 2/di (σ 2 < di)

0 (σ 2 ≥ di)
. (3.5)

The proof is a simple variant of well-known theory (e.g., Doi & Lewicki,
2011), given in appendix C for completeness. The values of hi’s are plotted
in Figure 5E (green). Figure 5D shows the phase, orientation, and frequency
sensitivities of the optimal denoising model cells when σ 2 is set to the
24th eigenvalue. The pooling effect is evident, although the orientation
sensitivities are rather low compared to strong dimension reduction. Note
that a broader pooling can be achieved by a larger assumed noise variance
σ 2 (data not shown).

4 Discussion

In this study, we proposed a simple learning model of spatial pooling of
visual cells based on strong dimension reduction using PCA. This model
learns to ignore fine-grained structures from the signals of subunits and
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thus discovers a linear pooling of highly correlated subunits. We demon-
strated that when this approach was applied to the outputs from V1 simple
cell models, the resulting pooling model exhibited response properties to
oriented grating stimuli that were similar to experimental data of monkey
V1 complex cells. We also showed that, more generally, any kind of lin-
ear operations that retain a few top principal components and reduce the
remaining components can be a sensible pooling model; in particular, a
Wiener-filter-like optimal denoiser model can give one such example.

In our previous publication (Hosoya & Hyvärinen, 2015), we implicitly
used strong dimension reduction as a “preprocessing” of overcomplete ICA
to construct a model of V2 cells. There, we found that this operation was
crucial since otherwise the resulting model V2 cells had overly small re-
ceptive fields that could not be compared with actual V2. However, since
the previous study focused on empirical properties of the V2 model itself,
it did not theoretically clarify why strong dimension reduction gave such
a pooling property. Thus, this study concentrates on strong dimension re-
duction itself, conducting a series of theoretical analyses and simulations,
in particular in the archetypal case of pooling given by V1 complex cells.

While a number of previous studies proposed learning models for pool-
ing from input spatial structure (Hyvärinen & Hoyer, 2000, 2001; Karklin &
Lewicki, 2003, 2009; Köster & Hyvärinen, 2010; Osindero et al., 2006), our
approach differs in that it does not need to use a squaring nonlinearity to
capture energy correlation of subunit outputs. (The squaring nonlinearity
is not explicit in some previous studies—for example, Karklin & Lewicki,
2003, 2009—but their probabilistic formalizations lead to similar compu-
tations.) Taking squares of linear filters has a similar effect to pooling of
half-rectified outputs of the linear filters with opposite phase preferences,
which can achieve perfect phase invariance. However, squaring nonlinear-
ity is generally thought to be rather unnatural from a neurophysiological
point of view; moreover, perfect phase invariance cannot always be found
in actual V1 (see Figure 4B). In particular, squaring is unnatural since a
large negative input produces a large positive output, which is at least not
implementable by a single neuron and would require slightly complicated
circuitry. However, half-squaring could be a plausible nonlinearity (Anzai,
Ohzawa, & Freeman, 1999; Lau, Stanley, & Dan, 2002).

However, if the issue is the choice of nonlinearity, why can’t we simply
modify the nonlinearity used in the previous methods? In fact, the nonlin-
earity there is tightly built into the method so that such modification would
disable proper functioning. For example, independent subspace analysis
(ISA) works by optimizing linear filters so that their sums of squares max-
imize sparsity (Hyvärinen & Hoyer, 2000). However, if we modify this
squaring to half-rectifier, then meaningless linear filters that maximize the
occurrence of negative values (whose half-rectified values are zero) would
be learned since such nonlinearity can no longer measure sparsity correctly.
Therefore, an entirely new development seems to be necessary if types
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of nonlinearity other than squaring are used. Similar arguments can be
applied to other methods as well (Hyvärinen & Hoyer, 2001; Karklin &
Lewicki, 2003, 2009).

How could our PCA-based strong dimension reduction be implemented
in a neural system? Presumably the pooling system could be learned by
a network with two layers, each of which learns using well-known rules
that have some biological plausibility. The first layer could learn PCA by
a number of such neural learning rules (e.g., Oja & Karhunen, 1985). The
second layer should then learn to optimally reconstruct the original data
based on the principal components, the optimal reconstruction being given
by the matrix of the dominant eigenvectors transposed. The second layer
thus essentially implements a heteroassociative memory, such as Kohonen’s
correlation matrix memory (Kohonen, 1972), whose learning is well known
to be achievable by very simple Hebbian schemes (Rojas, 1996, chapter 12).
Whether such network can indeed achieve a pooling behavior as intended
here is left for future research.

An alternative principle for learning invariances is temporal coherence
(Földiák, 1991; Wiskott & Sejnowski, 2002; Hurri & Hyvärinen, 2003), which
extracts most slowly changing features from time series. A few studies have
demonstrated the effectiveness of this approach by reproducing phase in-
variances similar to V1 complex cells (Berkes & Wiskott, 2005; Einhäuser
et al., 2002; Kayser et al., 2003) (although learning only from slowness may
lead to overly global features—Hashimoto, 2003; Lies, Häfner, & Bethge,
2014; Hyvärinen, Hurri, & Hoyer, 2009, section 16.8), as well as viewpoint
invariances as in inferotemporal cortex (Einhäuser, Hipp, Eggert, Körner, &
König, 2005). Temporal coherence has also been supported by an experimen-
tal study that attempts to break invariant object recognition by unnatural
sequences of visual stimuli (Cox, Meier, Oertelt, & DiCarlo, 2005). While
exploiting temporal structure is a fascinating approach, it could be argued
from the viewpoint of Ockham’s razor that purely spatial modeling should
be preferred whenever possible since it is more parsimonious.

Finally, while strong dimension reduction explained properties of V1
complex cells, could it be a general computation principle that might as well
be employed in higher visual areas? This possibility seems quite attractive
since the retinal inputs on the huge receptive fields of higher visual cells are
tremendously high-dimensional, and therefore strong dimension reduction
might help to alleviate the potential computational burden of processing
such inputs. Further, it would be reasonable to think that the role of a higher
visual cell may not be to look at details of a visual input (which lower cells
can do), but rather to find its rough structure on a more abstract level,
ignoring fine details as if they were “noise.”

Appendix A: Simple Cell Model

The simple cell model in section 2 was constructed by a standard method
performing ICA (or sparse coding) on natural image patches (Olshausen &
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Field, 1996; Bell & Sejnowski, 1997; van Hateren & van der Schaaf, 1998).
Concretely, a set of 100,000 natural image patches of 16 × 16 pixels was
randomly extracted from ImageNet (Deng, Berg, Li, & Fei-Fei, 2010), with
the DC component removed from each image. The image data set was then
whitened, with the dimension lightly reduced from 256 to 192 to eliminate
aliasing artifacts (Hyvärinen et al., 2009, section 5.3.3.3). Thereafter, ICA
was applied using FastICA (Hyvärinen, 1999).

Appendix B: Measuring Response Properties

Basic tuning properties were measured from the responses of each model
simple or complex cell to whole-field grating stimuli with various orien-
tations, frequencies, and phases. The pair of optimal orientation and fre-
quency was determined as that giving the maximum of responses averaged
over phases. The orientation tuning function was the responses averaged
over phases at the optimal frequency. The frequency tuning function was
the responses averaged over phases at the optimal orientation. The phase
tuning function was the responses at the optimal orientation and frequency.
The orientation tuning function was fitted with 180◦-cycled von Mises func-
tions, and the frequency tuning function was fitted with gaussian functions.
The orientation and frequency bandwidths were the full width at the half
maximum as determined from the fitted function. The F1/F0 value was cal-
culated as the ratio of the first Fourier component and the DC component
of the phase tuning function.

Appendix C: Deriving the Optimal Denoising Model

Our goal is to minimize the squared error function,

F = E[‖c − ĉ‖2], (C.1)

which can be transformed, using assumptions 3.2 and 3.3, to

F = Tr �c − 2 Tr �cP
ᵀ + Tr P�sP

ᵀ, (C.2)

where �s and �c are the covariance matrices of s and c, respectively. Note
that, from equation 3.2,

�c = �s − σ 2I. (C.3)

Thus, together with the assumptions 3.1 and 3.3, this can be rewritten as

F = Tr Eᵀ [
diag (d) − σ 2I

]
E

− 2 Tr Eᵀ [
diag (d) − σ 2I

]
diag (h)E

+ Tr Eᵀ diag (h) diag (d) diag (h)E,
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where d = (d1, . . . , dN). Since the trace is preserved under transformation
into the eigenspace, this can be transformed to

F =
∑

i

(di − σ 2) − 2(di − σ 2)hi + dih
2
i . (C.4)

Solving the unconstrained minimization by equating the derivatives to zero,

∂F
∂hi

= 2dihi − 2di + 2σ 2 = 0, (C.5)

and taking the the constraint hi ≥ 0 into account, we obtain the solution in
equation 3.5.
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