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Abstract

An important task in data analysis is the
discovery of causal relationships between ob-
served variables. For continuous-valued data,
linear acyclic causal models are commonly
used to model the data-generating process,
and the inference of such models is a well-
studied problem. However, existing methods
have significant limitations. Methods based
on conditional independencies (Spirtes et al.
1993; Pearl 2000) cannot distinguish between
independence-equivalent models, whereas ap-
proaches purely based on Independent Com-
ponent Analysis (Shimizu et al. 2006) are
inapplicable to data which is partially Gaus-
sian. In this paper, we generalize and com-
bine the two approaches, to yield a method
able to learn the model structure in many
cases for which the previous methods pro-
vide answers that are either incorrect or are
not as informative as possible. We give ex-
act graphical conditions for when two distinct
models represent the same family of distribu-
tions, and empirically demonstrate the power
of our method through thorough simulations.

1 INTRODUCTION

In much of science, the primary focus is on the discov-
ery of causal relationships between quantities of inter-
est. The randomized controlled experiment is geared
specifically to inferring such relationships. Unfortu-
nately, in many studies it is unethical, technically ex-
tremely difficult, or simply too expensive to conduct
such experiments. In such cases causal discovery must

be based on uncontrolled, purely observational data
combined with prior information and reasonable as-
sumptions.

In cases in which the observed data is continuous-
valued, linear acyclic models (also known as recursive
Structural Equation Models) have been widely used
in a variety of fields such as econometrics, psychology,
sociology, and biology; for some examples, see (Bollen
1989). In much of this work, the structure of the mod-
els has been assumed to be known or, at most, only
a few different models have been compared. During
the past 20 years, however, a number of methods have
been developed to learn the model structure in an un-
supervised way (Spirtes et al. 1993; Pearl 2000; Geiger
and Heckerman 1994; Shimizu et al. 2006). Neverthe-
less, all approaches so far presented have either re-
quired distributional assumptions or have been overly
restricted in the amount of structure they can infer
from the data. In this contribution we show how to
combine the strenghts of existing approaches, yielding
a method capable of inferring the model structure in
many cases where previous methods give incorrect or
uninformative answers.

The paper is structured as follows: Section 2 precisely
defines the models under study, and Section 3 dis-
cusses existing methods for causal discovery of such
models. In Section 4 we formalize the discovery prob-
lem and give exact theoretical results on identifiability.
Then, in Section 5 we introduce and analyze a method
termed PClingam that combines the strenghts of exist-
ing methods and overcomes some of their weaknesses,
and is, in the limit, able to estimate all identifiable
aspects of the underlying model. Section 6 provides
empirical demonstrations of the power of our method.
Finally, Section 7 maps out future work and Section 8
provides a summary of the main points of the paper.



2 LINEAR MODELS

In this paper, we assume that the observed data has
been generated by the following process:

1. The observed variables xi, i = {1 . . . n} can be
arranged in a causal order, such that no later vari-
able causes any earlier variable. We denote such
a causal order by k(i). That is, the generating
process is recursive (Bollen 1989), meaning it can
be represented graphically by a directed acyclic
graph (DAG) (Pearl 2000; Spirtes et al. 1993).

2. The value assigned to each variable xi is a linear
function of the values already assigned to the ear-
lier variables, plus a ‘disturbance’ (noise) term ei,
and plus an optional constant term ci, that is

xi =
∑

k(j)<k(i)

bijxj + ei + ci, (1)

where we only include non-zero coefficients bij in
the equation.

3. The disturbances ei are all continuous random
variables with arbitrary densities pi(ei), and the ei

are independent of each other, i.e. p(e1, . . . , en) =∏
i pi(ei).

This formulation neither requires the disturbances to
be normally distributed nor does it require them to
have non-Gaussian (non-normal) densities. In general,
some of the distributions can be Gaussian and some
not, and we do not a priori know which are which.

We assume that we are able to observe a large num-
ber of data vectors x (which contain the variables xi),
and each data vector is generated according to the
above described process, with the same causal order
k(i), same coefficients bij , same constants ci, and the
disturbances ei sampled independently from the same
distributions. Note that the independence of the dis-
turbances implies that there are no unobserved con-
founders (Pearl 2000). Spirtes et al. (1993) call this
the causally sufficient case.

Finally, we assume that the observed distribution is
faithful to the generating graph (Spirtes et al. 1993),
i.e. the model is stable in the terminology of Pearl
(2000). If the model parameters are in some sense
randomly generated, this is not a strong assumption,
as violations of faithfulness have Lebesgue measure 0
in the space of the linear coefficients.

An example of such a model is given in Figure 1a. Note
that the full model consists of a directed acyclic graph
over the variables, the connection strenghts bij , the
constants ci, and the densities pi(ei). In this example
we have chosen ci = 0 for all i, so these are not shown.
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Figure 1: An example case used to illustrate the con-
cepts described in Sections 2–4. (a) A linear, acyclic
causal model for x, y and z. The data is generated as
x := ex, y := 3x + ey, and z := −2y + ez, with ex and
ey drawn from Gaussian distributions and ez from a
non-Gaussian distribution, and ex, ey and ez are all
mutually independent. Note that we show variables
with Gaussian disturbances using circles whereas vari-
ables with non-Gaussian disturbances are marked by
squares. (b) The three directed acyclic graphs over
x, y and z which all entail the same conditional inde-
pendence relationships as the generating model. (c)
The three DAGs in (b) succintly represented as a d-
separation-equivalence pattern. (d) The distribution-
equivalence pattern of the original model.

3 EXISTING METHODS

Given our set of data vectors x, to what extent can
we estimate the data generating process? Obviously,
if the number N of data vectors is small, estimation
may be quite unreliable. Therefore we will here mainly
focus on the theoretical question: To what extent (and
with what methods) can we identify the true model in
the limit as N →∞?

The most well-known approach to inference of this
type of causal networks is based on (conditional) inde-
pendencies between the variables (Spirtes et al. 1993;
Pearl 2000). When, as in our case, there are assumed
to be no hidden confounding variables and no selection
bias, one can in the large-sample limit identify the set
of networks which represent the same independencies
as the true data generating model. To illustrate, in
Figure 1b we show all three DAGs which imply the
set of independencies produced by the true model.
This set is known as the d-separation-equivalence class,
and is often represented in the form of a d-separation-
equivalence pattern: a partly directed graph in which
undirected edges represent edges for which both direc-
tions are present in the equivalence class (Spirtes et al.
1993), as illustrated in Figure 1c. We want to empha-
size that, using conditional independence information
alone, it is impossible to distinguish between members
inside a d-separation-equivalence class because these
(by definition) represent the same set of conditional



independencies between the observed variables.

Fortunately, in many cases there is additional informa-
tion available that can be used to further distinguish
between different DAGs. In particular, it can be shown
(Shimizu et al. 2006) that if all (or all but one) distri-
butions of the error variables are non-Gaussian, it is
in fact possible to identify the complete causal model,
including all the parameters. This is possible using
a method based on Independent Component Analy-
sis (ICA) (Hyvärinen et al. 2001). Unfortunately,
however, when two or more disturbances are Gaus-
sian the standard method based on ICA will fail. As
an extreme example, when all disturbances are Gaus-
sian, standard ICA-based methods return nonsense
and are not even able to find the correct d-separation-
equivalence class.

These considerations raise the question of whether it
is possible to combine the methods so as to obtain
robustness with respect to Gaussian distributions but
not forgo the possibility of identifying the full model in
favourable circumstances. Indeed, such a combination
is possible and is presented in Section 5. Here, we sim-
ply note that the näıve solution of first running some
test and then selecting one of the two methods, will not
be optimal. Consider, for instance, our example model
in Figure 1a. Because there is more than one Gaus-
sian error variable the standard ICA-based method
(Shimizu et al. 2006) is not applicable, and hence one
would have to settle for the d-separation-equivalence
class (Figure 1c) given by independence-based meth-
ods. However, as we show in the next section, in this
example we can actually reject one of the DAGs in
the equivalence class and hence obtain a smaller set of
possible generating models.

4 DISTRIBUTION-EQUIVALENCE

First, we need to extend a DAG object to include in-
formation on the non-Gaussianity of associated distur-
bance variables.

Definition 1 An ngDAG is a pair (G, ng) where G is a
directed acyclic graph over a set of variables V and ng
is a binary vector of length |V |, each element of which
is associated with one of the variables of V .

Definition 2 We say that a linear acyclic causal
model M instantiates an ngDAG D (alternatively, D
represents M) if and only if the directed acyclic graph
associated with M is equal to that specified in D, and
further if the set of variables with non-Gaussian dis-
turbance variables in M is equal to the set of positive
entries in the binary vector specified in D.

In general, an ngDAG D is instantiated by many dif-
ferent models M which differ in their connection
strengths bij as well as in their distributions pi(ei).
Next, we define the important concept of distribution-
equivalence between ngDAGs, which defines to what ex-
tent it is possible to infer the ngDAG which represents
the true data generating causal model, from observa-
tional data alone.

Definition 3 Two ngDAGs D1 and D2 are
distribution-equivalent if and only if for any lin-
ear acyclic causal model M1 which instantiates D1

there exists an instantiation M2 of D2 which yields
the same joint observed distribution as M1, and vice
versa.

Distribution-equivalence partitions the set of ngDAGs
into distribution-equivalence classes, and these may be
represented using simplified graphs:

Definition 4 An ngDAG pattern representing an
ngDAG D is a mixed graph (consisting of potentially
both directed und undirected edges), obtained in the fol-
lowing way:

1. Derive the d-separation-equivalence pattern corre-
sponding to the DAG in D

2. Orient any unoriented edges which originate from,
or terminate in, a node positively marked in ng of
D, in the orientation given by the DAG in D

3. Finally, orient any edges which follow from the
orientations given in the previous step and d-
separation-equivalence, according to the rules de-
rived by Meek (1995).

We say that a mixed graph is an ngDAG pattern if it
represents some ngDAG.

An ngDAG pattern is similar in many respects to d-
separation-equivalence patterns. For example, we have
the following result:

Lemma 1 An ngDAG pattern is a chain graph.

The proof is given in the Appendix.

Our main result connects ngDAG patterns with
distribution-equivalence in mixed Gaussian and non-
Gaussian models in the same way that d-separation-
equivalence patterns are associated with distribution-
equivalence in purely Gaussian models:

Theorem 1 Two ngDAGs are distribution-equivalent
if and only if they are represented by the same ngDAG

pattern.



The proof of this theorem is provided in the Appendix.
The important point is that we now know exactly
which models are indistinguishable from each other on
the basis of observational data alone.

As a simple illustration, in Figure 1d we show the
ngDAG pattern representing the ngDAG corresponding
to the generating model of Figure 1a. Note that
the ngDAG pattern is more informative than the d-
separation-equivalence pattern of Figure 1c. Never-
theless, there are still two ngDAGs (leftmost two in
Figure 1b) which cannot be distinguished based on
non-experimental data.

Henceforth in the paper we shall use the terms
ngDAG pattern and distribution-equivalence pattern in-
terchangably.

5 PC-LINGAM

Although an important goal in this study was to look
at the theoretical aspects of identifying DAGs in mixed
Gaussian / non-Gaussian acyclic linear causal mod-
els, an equally significant objective is to give a prac-
tical method with which to infer models from a fi-
nite data set. Although there are a number of pos-
sible approaches, we here give a simple combination
of independence-based techniques and the ICA-based
method. The method, termed PClingam, consists of
three steps:

1. Use methods based on conditional independence
tests to estimate the d-separation-equivalence
class within which the generating model lies. In
particular, we advocate using the PC algorithm
(Spirtes et al. 1993) which is computationally ef-
ficient even for a large number of variables. Note
that, for linear models, to obtain the d-separation-
equivalence class it is sufficient to identify the zero
partial correlations in the data, as these depend
only on the linear coefficients and the variances
of the disturbances (and not on non-Gaussianity
aspects of the distributions). However, since the
data may well be signficantly non-Gaussian, non-
parametric tests should optimally be used to find
the zero partial correlations.

2. For each DAG G in the estimated d-separation-
equivalence class:

(a) Estimate the coefficients bij using ordinary
least-squares regression. (Note that this pro-
vides consistent estimates regardless of non-
Gaussianity of the variables.)

(b) Calculate the corresponding residuals ei and
rescale them to zero mean and unit variance
for each i

(c) Calculate the corresponding ICA objective
function

Uf =
∑

i

(E{f(ei)} − k)2 (2)

where k is the expected value of f applied to
a zero-mean, unit variance Gaussian variable,
i.e. k = E{f(g)}, g ∼ N (0, 1). In the ICA
literature, many different choices of f have
been utilized; here we suggest simply taking
the absolute value function f(ei) = |ei|, giv-
ing

U =
∑

i

(
E{|ei|} −

√
2/π

)2

(3)

Of course, since we only have samples we
have to take the sample mean rather than
the expectation.

3. Select the highest-scoring DAG Gopt from Step
2 and apply a statistical test for normality for
each of the corresponding residuals ei. Using Def-
inition 4, compute and return the ngDAG pattern
representing the ngDAG (Gopt, ng) where ng is the
vector indicating those residuals whose normality
was rejected by the normality tests.

The objective function U is commonly used in ICA as
a measure of the non-Gaussianity of a random vari-
able, and it can be shown to give a consistent estima-
tor for finding independent components under weak
conditions (Hyvärinen et al. 2001). ICA estimation
is closely related to choosing the right DAG because
statistical independence of the estimated residuals is a
necessary condition for the correct model: Any DAG
for which the estimated residuals are not independent
violates the assumptions of the model (see Section 2)
and hence cannot be the data-generating DAG. On
the other hand, any DAG which results in statistically
independent residuals represents one valid model that
could have generated the data.

Note that if we could disregard sampling effects,
distribution-equivalent models would attain exactly
the same value of U . However, in the practical case of
a finite sample this is not the case, thus Step 3 in the
PClingam algorithm is required to identify the correct
distribution-equivalence class.

The method as presented above has at least a couple of
shortcomings. One is that, for any given function f(ei)
used, there always exist distributions which are non-
Gaussian yet are not distinguished from the Gaussian
by this measure. This is a well-known issue in ICA
which fortunately tends to have little practical signif-
icance since few such distributions are encountered in
practice. If needed, non-parametric Gaussianity mea-
sures could be used to remedy this potential problem.
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Figure 2: One of the networks used in the simulations. Variables with non-Gaussian disturbances are shown in
squares, while those with Gaussian disturbances are plotted as circles. (a) True data-generating model. (b)
True d-separation-equivalence pattern. (c) True distribution-equivalence pattern. (d) Estimated DAG Gopt.
(e) Estimated distribution-equivalence pattern. See main text for details.

Naturally, in some cases many of the disturbances may
be slightly non-Gaussian yet sufficiently close to Gaus-
sian that the available samples may not be sufficient
to distinguish the two and utilize the information for
determining causal directions in the model. Of course,
this is not a shortcoming of this particular method but
is a more general phenomenon.

Another important limitation is that the ICA objec-
tive function given above will only provide a proper
comparison of different DAGs for which the residuals
ei are linearly uncorrelated. This is guaranteed to be
the case when the search is in the correct d-separation-
equivalence class, but if in Step 1 of the procedure
we select a too simple model (i.e. containing too few
edges) then the estimated disturbances may be lin-
early correlated and the objective function misleading.
Thus, it might be wise to include a term penalizing lin-
ear correlations such as is used in maximum likelihood
estimation of ICA (Hyvärinen et al. 2001). However,
to keep our method as simple as possible, we have
omitted such a penalty term in this paper.

6 SIMULATIONS

In this section we report on simulations used to test
the performance of the PClingam method. First,
we tested the ability of the non-Gaussianity objec-
tive function (3) of Step 2 and the normality tests
of Step 3 of PClingam to identify the correct ngDAG
pattern (distribution-equivalence class) when the true
d-separation-equivalence pattern was known. In other
words, we tested how well the algorithm would func-
tion if Step 1 of the method worked flawlessly. Subse-
quently, we experimented with the full method incor-
porating the necessary estimation of the d-separation-
equivalence class (Step 1).

Figure 2a displays one of the models used to test the
procedure. The disturbance distributions of variables
X1 and X5 were a standard Gaussian the values of
which were squared (but keeping the original sign)

while the disturbance of X4 was produced in a similar
way but instead raising the values to the third power.
The disturbances of X2, X3, and X6 were Gaussian.
The disturbance variables were scaled such that their
variances ranged from 1.0 to 3.0. A sample of 1000
data vectors was generated from the model.

Figure 2b shows the true d-separation-equivalence pat-
tern of the model in (a). The equivalence class consists
of 12 different DAGs. However, the non-Gaussianity
of the disturbances of X1, X4, and X5 means that
there are actually only 2 DAGs which are distribution-
equivalent; these are represented by the distribution-
equivalence pattern of Figure 2c. Figure 2d shows the
DAG Gopt found by Step 2 of PClingam from the data,
when the true d-separation-equivalence class was given
to the algorithm. An Anderson-Darling test for nor-
mality (Anderson and Darling 1954) gave the p-values
0.000, 0.3145, 0.2181, 0.000, 0.000, and 0.0197 for the
corresponding residuals e1 to e6. Inferring a resid-
ual to be non-Gaussian when p < 0.01 in Step 3 of
the method produced the ngDAG pattern of Figure 2e,
which turns out identical to the true ngDAG pattern in
(c).

This basic procedure was repeated 20 times, with the
results summarized in Table 1a. In each simulation,
we randomly generated a linear acyclic causal model
over 6 variables, with each variable randomly cho-
sen to have either a Gaussian or a non-Gaussian dis-
turbance. The non-Gaussian distributions used were
those mentioned above as well as a Student’s t (2 de-
grees of freedom), a bimodal Mixture of Gaussians
(0.5N (−2, 1) + 0.5N (2, 1)), a log-normal distribution
(exponentiated standard normal) and a uniform distri-
bution. The true d-separation-equivalence pattern was
input to the algorithm, to test the functioning of the
PClingam method when the correct pattern is selected
in Step 1. The panel shows how often a specific type of
true edge (in the true distribution-equivalence pattern)
gave rise to a specific type of estimated edge (in the es-
timated distribution-equivalence pattern). Rows cor-



Table 1: Summary of the simulations employing vari-
ous methods for inferring the d-separation-equivalence
class in Step 1 of PClingam. Each table is a confusion
matrix of arcs in the true distribution-equivalence pat-
terns vs arcs in the estimated distribution-equivalence
pattern. See main text for details.
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183 0 1 1
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respond to the true edges, columns to estimated ones.
Optimally all off-diagonal elements would be zero. It
can be seen that the results are close to perfect; the
method misclassifies two undirected edges as directed,
but correctly estimates all others.

These simulations confirm that the PClingam method
works well at least when the d-separation-equivalence
class can reliably be estimated. But in practice, with
finite datasets, there may be significant errors in infer-
ring the d-separation-equivalence class. The degree to
which this affects the algorithm is an important prac-
tical issue.

Thus, in further simulations, we applied several dif-
ferent methods for learning d-separation-equivalence
patterns from the simulated data, as Step 1 in the
PClingam method. The methods we compared were
the PC algorithm (Spirtes et al. 1993), the Conserva-
tive PC algorithm (Ramsey et al. 2006), and the GES
algorithm (Chickering 2002). Panels b-d of Table 1
summarize the results. Although all of the methods
assumed Gaussianity when learning the d-separation-
equivalence pattern, the results are still quite encour-
aging, and a clear majority of edges were correctly
estimated.

7 FUTURE WORK

While the theoretical aspects of identifiability are
solved, at least a couple of important issues regard-
ing the estimation of the model from finite samples
remain.

First and foremost, non-parametric methods for iden-
tifying zero partial correlations in non-Gaussian set-
tings should be used so as to obtain better estimates of
the appropriate d-separation-equivalence class within
which to search. Although the methods developed for
Gaussian variables seem to work relatively well in our
partly non-Gaussian setting, it is likely they will be
outperformed by methods that take into account the
possibility of non-Gaussian distributions.

Another important question is how to make the pro-
cedure scalable to data involving many (tens or even
hundreds of) variables. Although the current approach
relies on a brute-force enumeration of all DAGs in the
d-separation-equivalence class, it would not be diffi-
cult to adapt the method to do a local search among
DAGs in an equivalence class. The extent to which
such a method would be hampered by local maxima is
unknown.

8 SUMMARY

The discovery of linear acyclic causal models is a topic
which has been thoroughly investigated in the last
two decades. Both the Gaussian and the fully non-
Gaussian special cases are well understood, but the
general mixed case has not been previously discussed.
In this paper we have provided a complete characteri-
zation of distribution-equivalence and a practical esti-
mation method in this setting.
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APPENDIX

Proof of Lemma 1: Select any ngDAG D represented
by the ngDAG pattern P in question. Now, for each
variable Xi in D with a non-Gaussian disturbance,
add two auxiliary variables both of which have no par-
ents and both of which have Xi as their only child.
Now, consider what the d-separation-equivalence pat-
tern looks like for this augmented graph. Any edge in
D into such an Xi may be oriented in the d-separation-
equivalence pattern on the basis of the resulting un-
shielded collider at Xi. Furthermore, any edge in D
out of such an Xi may similarly be oriented on the ba-
sis of the lack of an unshielded collider. Thus, all edges
either originating from, or terminating in, a variable
with a non-Gaussian disturbance will be oriented in
the d-separation-equivalence pattern of the augmented
graph. Additionally, any edges whose orientations can
be deduced as a result of knowing the newly oriented
edges are oriented as well. Hence, adding the auxiliary
variables has exactly the same effect as simply orient-
ing any edges connected to a non-Gaussian variable.

Because d-separation-equivalence patterns are al-
ways chain graphs (Andersson et al. 1997), the
d-separation-equivalence pattern for the augmented
graph is a chain graph. Since each of the auxiliary

variables is connected to the rest of the graph only by
a single oriented edge, removing these variables can-
not change the chain graph property of the graph.
Hence, the distribution-equivalence pattern obtained
by orienting any edges originating from, or terminat-
ing in, variables with non-Gaussian variables (and sub-
sequently orienting any edges deduced from these) has
to be a chain graph. This completes the proof.

Proof of Theorem 1: We will first prove that if
two ngDAGs D1 and D2 are distribution-equivalent
then they must share the same ngDAG pattern.
Since distribution-equivalence implies d-separation-
equivalence it is clear they have to share the d-
separation-equivalence pattern. Thus we need to show
that it is always possible to correctly orient any edges
directly connected to any variable with a non-Gaussian
disturbance.

Consider a linear acyclic causal model M1 which in-
stantiates D1. Let us for simplicity of notation assume
that the variables have been named X1, . . . , Xn such
that j < i whenever Xj is an ancestor of Xi. Then it is
possible to collect the linear coefficients bij which rep-
resent the direct causal effects into a lower-triangular
matrix B such that we have x = Bx + e, where x
collects the observed variables X1, . . . , Xn and e de-
notes the disturbance variables. Note that we have for
simplicity of notation and without loss of generality
assumed the constants in (1) are equal to zero. Solv-
ing for x we obtain x = Ae where A = (I − B)−1 is
the reduced-form matrix (representing the total effects
between the variables), which here is lower-triangular
due to the above causal ordering of the variables. By
the assumptions of the model, the components of e
are mutually independent. This means that our gen-
erating model is an ICA model, although several (po-
tentially even all) of the components may be Gaus-
sian. Although it is impossible to completely esti-
mate A when there are two or more Gaussian com-
ponents, it is well known (Hyvärinen et al. 2001) that
the basis vectors (columns of A) corresponding to the
non-Gaussian components are identifiable (except for
the standard indeterminancy of permutation and scal-
ing), as is the covariance matrix of the (generally mul-
tidimensional) Gaussian component which groups all
Gaussian disturbances.

Thus each non-Gaussian disturbance in the generat-
ing model essentially gives us a vector ai containing
the total effects of its corresponding variable Xi on
the other variables. As no variable can affect its non-
descendants, and as we have assumed faithfulness, the
set of non-zero entries of each such vector exactly rep-
resents the union of the correct corresponding variable
and all its descendants. If we could somehow know to
which observed variable Xi each non-Gaussian basis



vector ai should be paired we could easily orient all
edges connecting to that variable as follows: Any ob-
served variable Xj which we know (by d-separation)
to be connected to Xi but which has a zero entry in
ai has to be a parent of Xi. Similarly, any observed
variable Xj which we know (by d-separation) to be
connected to Xi but which has a non-zero entry in ai

has to be a child of Xi.

But is it always possible to identify to which observed
variable a given basis vector should be connected? We
now show that this is indeed so. Consider what hap-
pens if we try to build a model in which a basis vector
ai is paired with a descendant Xj of Xi, rather than
with the correct choice Xi. Because we are restricted
to acyclic models, the new model may be represented
by a reduced-form matrix A′ which is lower-triangular
for the new variable order (but not for the old order,
because in this new model Xi is necessarily a descen-
dant of Xj). Note also that, when the rows are identi-
cally ordered, the column ai must be equal to column
a′j of A′. Now, in the new model, Xi has to be repre-
sented by some disturbance variable, so there must be
a column a′i of A′ which has a non-zero entry in the
row corresponding to Xi. Furthermore, a′i must have
zeros wherever ai has zeros. These properties imply
that a′i cannot be expressed as a linear combination
of the {ak}k 6=i: Since ai cannot be used, one would
have to depend on ak corresponding to Xk which are
ancestors of Xi to properly represent the non-zero en-
try corresponding to Xi in a′i. But among these there
necessarily has to be an ak which corresponds to a
(relative) source Xk whose effect cannot be cancelled
out by the others to lead to a required zero in a′i.
Thus a′i is not in span({ak}k 6=i). This implies that
span({ak}k 6=i) 6= span({a′k}k 6=j) and hence the covari-
ance implied by A′ cannot equal that implied by A
and the two models cannot be distribution-equivalent.
Hence to represent the correct distribution one has to
pair basis vectors corresponding to non-Gaussian com-
ponents to the correct observed variable, allowing the
identification of the orientation of all edges directly
connected to that observed variable.

Next we need to prove that two ngDAGs which share the
same ngDAG pattern are distribution-equivalent. Call
the two ngDAGs D1 and D2. Since they are represented
by the same ngDAG pattern they may only differ in
terms of the orientations of arrows within each chain
component of the chain graph that is the ngDAG pat-
tern. (A chain component is a maximal connected set
of nodes such that there is no oriented edge between
any pair of nodes.) Let Vc stand for the set of variables
(necessarily all with Gaussian disturbances) making
up any given chain component. First, note that we
can focus our attention on only the variables Vc and

any immediate parents of any of these: If we can match
any conditional distribution P (Vc | pa(Vc)) of a model
M1 represented by D1 using a model M2 represented
by D2 then we can always match the full joint distri-
bution over all variables. Next consider the parents of
the chain component. It is clear that each such par-
ent must be connected to all the variables of the chain
component, otherwise some edges in the component
could be oriented using d-separation-equivalence.

Select any parametrization M1 of D1, and call the
resulting reduced-form matrix between the variables
Vc only A1. Because of the old result that d-
separation-equivalence among Gaussian variables im-
plies distribution-equivalence we know that there is a
parametrization M2 of D2 such that the correspond-
ing reduced-form matrix is A2, and we have A1AT

1 =
A2AT

2 . Now consider the effect of a parent. Denot-
ing the weigths of the parent onto the variables Vc, in
model M1, by the vector w1, we have Vc = A1(e+w1p)
where e represents the independent Gaussian distur-
bances of the Vc and p the value of the parent. Thus
the conditional distribution of the Vc given the value p
of the parent is a Gaussian with mean vector A1w1p
and covariance matrix A1AT

1 . For model M2 we sim-
ilarly have a Gaussian with mean A2w2p and covari-
ance matrix A2AT

2 . As noted above, because of d-
separation-equivalence, these covariance matrices can
be made identical with a suitable choice of A2. Then,
selecting w2 = A−1

2 A1w1 yields identical means as
well. (Note that the reduced-form matrices are always
invertible.). Also note that additional parents always
add independently, and the weights can be selected in
the above fashion for each parent separately. Thus, in
summary, for any chain component on which models
D1 and D2 have conflicting edge orientations, for any
parametrization M1 of D1 it is always possible to find
a parametrization M2 of D2 such that the conditional
distribution of the chain component given its parents
is identical. Thus the two models represent the exact
same set of joint distributions over all the variables.
This concludes the proof of the theorem.


