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Abstract

Principal component analysis (PCA) and independent component ana-
lysis (ICA) are both based on a linear model of multivariate data. They
are often seen as complementary tools, PCA providing dimension reduc-
tion and ICA separating underlying components or sources. In practice,
a two-stage approach is often followed, where first PCA and then ICA is
applied. Here, we show how PCA and ICA can be seen as special cases
of the same probabilistic generative model. In contrast to conventional
ICA theory, we model the variances of the components as further para-
meters. Such variance parameters can be integrated out in a Bayesian
framework, or estimated in a more classic framework. In both cases, we
find a simple objective function whose maximization enables estimation
of PCA and ICA. Specifically, maximization of the objective under Gaus-
sian assumption performs PCA, while its maximization for whitened data,
under assumption of non-Gaussianity, performs ICA.

Keywords: Independent component analysis; Principal component analysis;
Multivariate statistics; Blind source separation; Bayesian analysis.

1 Introduction

Principal component analysis (PCA) and independent component analysis (ICA)
are two fundamental methods for unsupervised learning. In the machine learn-
ing and neural networks literature, they has a relatively long history. Neural
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learning for PCA started by Oja’s Rule [3] and its extensions [5]. An early con-
nection between PCA and ICA was given by nonlinear versions of PCA criteria
[4]. The general theory ICA is explained in [1].

Let us consider a linear generative model

n
xi:Zaijst:l,...,n (1)
j=1

where the x; are observed random variables, the s; are latent random variables
(components) which are assumed mutually independent, and the a;; are para-
meters. Depending on further assumptions, this framework can implement ICA
or PCA. In particular, if we assume that the s; are non-Gaussian, we obtain
the basic version of ICA. The typical goal of ICA is to “separate sources” in the
sense that we want to recover the original s;.

On the other hand, if we assume that the components s; are Gaussian and
have different variances, we obtain a model which may be related to PCA,
depending on what further assumptions, such as the orthogonality of the matrix
A which collects the coefficients a;;, are made. This approach to PCA is slightly
unconventional, but we will see below that it is equivalent to the classic one.
The goal in PCA is not so much to recover (all) the original s; but to find the
subspace spanned by a limited number of the s; (and the corresponding columns
of the matrix A) which explains the largest amount of variance of the data.

In this paper, our purpose is to develop a probabilistic model based on (1)
which unifies PCA and ICA in the sense maximization of the likelihood performs
either PCA or ICA depending on the specific constraints and the data. The basic
idea in our model is to modify the ICA assumptions so that we explicitly model
the variances of the components, and then integrate them out in a Bayesian
framework.

Using such a variant of the linear generative model, we show the following.
First, if the components are assumed Gaussian in the model, and we constrain
A to be orthogonal, maximization of the likelihood performs PCA. Second, if
the components are assumed non-Gaussian in the model, maximization of the
likelihood separates original non-Gaussian components, i.e. recovers the mix-
ing matrix up to trivial indeterminacies like ICA, again assuming that A is
constrained orthogonal, and further that the data is prewhitened.

2 Variance of components as separate parameter

2.1 Definition of new model

It is well-known that in the linear model (1), the variances of the components
cannot be recovered. This is because we can always rescale a component s; as
7,85, redefine the mixing coefficients as a;;/7v;, and the model is equivalent in
the sense that the observed data has the same distribution.

The conventional approach to ICA is to define that the variances of the
components are equal to one. This approach simplifies the problem, but it



seems to have the drawback that the connection to PCA is lost, because PCA
is dependent on the principal components having distinct variances.

We propose here to consider the variances of the components as separate
parameters. Further, we propose to integrate those parameters out in a Bayesian
approach.

Thus, define 0]2 to be the variance of the j-th independent component. De-
note the vector collecting the o; as o, and denote W = (w1, wa,...,w,)T =
A~1. Then, we have, using the well-known derivation of the ICA likelihood [1]:
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where p; denotes the pdf of the s; when it is standardized to unit variance.

In order to be able to integrate out the o; in closed form, we have to restrict
ourselves to a special form of the p;. We consider the generalized Laplacian
distribution, also called the generalized Gaussian distribution. The pdf is given
by

1 o

pisloy) = s (3| Cloy) (3)
where « is the parameter controlling the shape of the density. For a = 2,
we obtain the Gaussian density, for o < 2, we obtain (highly) peaked, super-
gaussian densities, and for a > 2, flat, sub-gaussian densities. The constants Z
and C are needed to normalize the pdf and to make its variance equal to one,
and they are well-known (although different conventions of parameterization
exist), but irrelevant for our purposes.

2.2 Integrating out the variance parameter

To handle the variances in a Bayesian framework, we first need to define a prior
for the o;. We choose to use the non-informative (Jeffreys’) prior:
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where obviously o; are constrained positive.

Consider an i.i.d. sample of x, denoted individually as x(t),t = 1,...,7T and
as a whole in matrix form as X = (x(1),...,x(T)). We have
p(X,o|A, a) = p(X|A, o, a)p( Hp 1A, o, )
T 1
= |det W|" ] T (a7 exp(— Claj))  (5)
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To integrate out o, make the following change of variables:
wlix(t)
:ZI%\“JC(%) (6)
of
&0 = Z W (8)] 5 C o))y (7)
Z [w ()] Gy )]s (8)
which enables the integration out as

p(X|A,a) = /p(X,0'|A,a)d0'
- / |detW|THm[Z [w ()] C )] =T T exp(—u)
1 t

X—Z|W x(t)]% C(a )]1/0(]“71/04] du
=|de tW|TH Z\w x(t)]|“] T/O‘J/ u; 1 exp(—u;)du;

— | det W7 H ZZT)T"[Z [wlx(t)] ]~/ (T/ay) (9)

where I' denotes the conventional gamma function. Note that the integrals here
are in the positive quadrant since u; as well as o; are by definition positive.
Thus, we have the following log-likelihood:

1 1 v
T log p(X|A, o) = log | det W| — Z - log [Z \Wij(t)|°‘J + f(a;,T) (10)
i 7 t

where f denotes a function depending on o; and T' alone:

e T) = I8 T (T/ey) — 108 Clay) ~ log Z(ay) ()

2.3 Alternative approach maximizing joint likelihood

An alternative, non-Bayesian approach is possible by considering the joint like-
lihood of A and o, directly given in (2) when evaluated for the whole sample.
Again, define the p; as in (3). Thus, we have the joint log-likelihood

1 1 wix(t)
Tlog(X|A,a) = log|detW|+sz:zt:_|T| 1C(a;)—logoj—log Z (o)

(12)



Now, for a fixed W, we can find the maxima of this likelihood with respect to
o in closed form as

Gj(w;) =

1/
a;C(a;) N
T Z [w'x(t)] ] (13)

and we can plug this in the joint likelihood to obtain after some manipulations

7 102(XIA, (W) = log | det W] =3 o [Z wIx(0)% | + flay, T)
(14)
e Fa;,T) = ~—llog — — 1] — —log C(a) — log Z(ay) (15)
Qj Qj Q;

We see that (14) is equal to (10) expect for the additive functions f and f,
which do not depend on the sample or W, although they do depend on the
parameters a;. Simple numerical simulations show that in fact f and f are
practically equal for any reasonable o and T > 100.

2.4 Comparison with conventional likelihood

The likelihood in (10) is formally rather similar to the conventional log-likelihood
of ICA, which in the case of the generalized gaussian density can be written as

1 1 -
T log p(X|A, o) = log | det W| — T ;; |wfx(t)|ajC(aj) + f(ey,T) (16)

where the function f is defined as

flaj,T) = —log Z(a;) (17)

Thus, we see the interesting phenomenon that our new likelihood in (10) contain
the logarithmic function between the two summations. If the o; are fixed, this
logarithm is the main difference between the two likelihoods, in addition to the
different “weighting” factors C'(a;) and 1/a;.

The new likelihood in (10) has the interesting property that it is homogen-
eous with respect to the rows norms of W. That is, if we multiply the rows of W
by any scalar factors, the likelihood is constant. This seems to be an interesting
reflection of the fact that the scales of the rows of W cannot be determined in
the generative model.

To recapitulate, we have derived an alternative likelihood, given in (10), for
the linear generative model in (1). The likelihood was obtained in closed form
for the case of the generalized gaussian density with parameters «; controlling
the shape of the densities.



3 Analysis of maximum likelihood estimation

Next we show how maximization of the new likelihood in (10) can perform PCA
or ICA in special circumstances.

3.1 Constraint on separating matrix

Since the objective function is constant with respect to the norms of the rows
w;, we can constrain them, purely for reasons of numerical stability, to be equal
to unity. In fact, we decide to constrain the matrix W to be orthogonal in what
follows:

WwT =1. (18)
This is justified to the extent that such a constraint is often used in PCA and
in ICA, assuming whitened data in ICA. Furthermore, the constraint allows for
stronger theoretical results below. The constraint is equivalent to constraining
A to be orthogonal.

3.2 Estimation for data modelled as Gaussian

First we show that if the data is modelled as (or assumed to be) Gaussian,
maximization of the new likelihood in (10) performs PCA. This is given in the
following theorem:

Theorem 1 Fizx a; = 2 for all j, which means modelling the latent compon-
ents as Gaussian. Assume that the eigenvalues of the data (sample) covariance
matriz are distinct. When the likelihood in (10) is mazimized under the con-
straint of orthogonality of A, the global mazimum is attained when A contains
the eigenvectors of the covariance matriz of the data X as its columns.

Proof: Denote by C the covariance matrix of the sample. Ignoring the additive
constant f for notational simplicity, The log-likelihood in (10) then becomes

1
L= 3 Z log[w] Cw;] (19)
j

since the log-determinant of W is zero. Denote by C = Udiag()\;)U7 the eigen-
value decomposition of the covariance matrix, and make the change of variables
Q = WU. Then, we have

=—= Zlog T diag(\ Zlog qu Zlog Z bij il

(20)
where we denote b;; = qu. Due to orthogonality of W and U, the matrix B is
doubly stochastic, which means its rows and columns have sum equal to one.
Let us write f(u) = —3log(u), so we have

= Zf(z bijAi) (21)



The function f is strictly convex. For any strictly convex function f, for any j,
and for any set of distinct A;, we have

FO bighi) <D bigf (M) (22)
with equality if and only if exactly one of the b;; is non-zero. Thus, we have

L(B) <3 D bigfh) = f(N) (23)

with equality in the < only if the b;; has exactly one non-zero element for
each j, which implies that B is a permutation matrix. Thus, we see that L is
maximized when B is a permutation matrix. This corresponds to Q being a
signed permutation matrix, and A = W7 = UQ thus contains the eigenvectors
in U as its columns, and the Theorem is proven.

Note that the Theorem does not apply to the conventional ICA likelihood
in (16), because in that case we would have the log-likelihood without the ad-
ditional logarithm as

L(W) = — EJ: %(WJ.TCWJ-) = —%tr(WCWT) = —%tr(C) (24)
Thus, the conventional likelihood is constant under the assumption of Gaus-
sianity and the constraint of orthogonality, as is well-known.

Further note that for the Theorem to hold, we do not need to assume that
the data actually is Gaussian, we only need to assume that we model the data
as Gaussian in the sense of setting o; = 2 in the estimation procedure. Of
course, if the a; are estimated from the data instead of being fixed a priori, the
assumption could presumably be replaced by assuming that the data actually
is Gaussian.

3.3 Estimation for data assumed to be non-Gaussian

Next, we analyse the behaviour of the new likelihood when the data follows the
conventional ICA model, with non-Gaussian components; this is equivalent to
our model with non-Gaussian components. Furthermore, we assume that in the
estimation, we use a non-Gaussian version of the likelihood, i.e. a; # 2.

Importantly, we assume the data is whitened in contrast to the preceding
section. Like in the preceding section, we constrain W to be orthogonal. For
simplicity, we consider the case where the a; (non-Gaussianity models) are fixed
a priori, although the result is unlikely to change essentially if we estimate the
Q.

A complication in the analysis is that our log-likelihood is not smooth, while
most related analysis [4, 2] assumes smooth functions. We restrict ourselves here
to an approximative analysis, where we apply the existing smoothness-based
analysis to our method, essentially assuming that we use a smooth approxima-
tion of our new likelihood.



Using such a smoothness approximation, the consistency of our new like-
lihood can be easily shown. Consider each summand in the log-likelihood, of
the form log [}, \w]Tx(t)P‘i]. This is a logarithm of an objective of the form
>, G(wTx(t)). Such an objective (without logarithm) was analysed, for ex-
ample, in [2], where it was shown that it reaches the maximum at the independ-
ent components, assuming the data is white, the norm of w; is constrained to
unity, and crucially, that a certain “non-polynomial cumulant” is positive. The
non-polynomial cumulant is positive if the model of non-Gaussianity is reason-
able for the data; in our case, the generalized Laplacian distribution with the
given o must be a reasonable approximation of the distribution of the compon-
ent. Typically, this is not very restrictive: If the data is sparse (super-Gaussian),
taking a < 2 usually makes this condition hold.

Assuming that the condition on the reasonable non-Gaussianity model holds,
we can easily see that our likelihood enables estimation of the model. The
likelihood is simply a sum of logarithms of functions which are each maximized
at the independent components. The situation only differs from the ordinary
case of the ordinary ICA likelihood in the existence of the logarithm. Since
logarithm is a monotonic function, the maxima are the same, and we have thus
shown that maximization of the new likelihood estimates the ICA model (under
the reservations and approximations given above).

4 Conclusion

We proposed to consider the variances of components in a linear mixing model
as independent parameters. This enabled a unification of PCA and ICA in the
form of the likelihood in (10). In fact, it is intuitively clear that the conventional
assumption of unit variance of the components in ICA makes it impossible to
analyse the variances of the components. As we have shown here, the conven-
tional assumption can be removed by considering the variances as additional
parameters to be estimated, and eventually integrated out.

The unified model is primarily proposed here as an interesting theoretical
framework. Future research is needed to see if it is useful in practice. The
two-stage approach of first doing PCA and then ICA has been quite successful
in practice, so it remains to be seen if a unified approach could be better any
practical applications.
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