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ABSTRACT

We point out that if independent component analysis
or blind source separation is performed in high dimen-
sions with an insufficient sample size, this may lead
to generation of artefactual source signals due to over-
learning (or overfitting). Such artefactual source sig-
nals are practically zero almost everywhere, expect at
the point of a single spike or bump. The existence of
strong time-correlations in the data increases the prob-
ability of the occurence of the artefacts. These results
are essentially independent of the particular algorithm
used for ICA.

1. INTRODUCTION

Indendent component analysis (ICA) [4, 8] is a statis-
tical model where the observed data is expressed as a
linear transformation of source signals (or independent
components) that are nongaussian and mutually inde-
pendent. We may express the model as

x(t) = As(t) (1)
where x(t) = (z1(t), z2(t), ---, T (t)) is the vector of ob-
served random variables, s(t) = (s1(t), s2(t), .-, sn(t))
is the vector of the independent components, and A is
an unknown constant matrix, called the mixing matrix.
Exact conditions for the identifiability of the model
were given in [4].

Several methods for estimation of the ICA model
have been proposed in the literature [1, 2, 3, 4, 7, §].
The performance of the algorithms is usually analyzed
in terms of consistency, or classical finite-sample prop-
erties like asymptotic MSE [3, 6] and robustness [6].
The purpose of this paper is to point out that in the
case of insufficient sample sizes, all the ordinary ICA
methods tend to produce results that are characterized
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by estimates of the source signals (independent com-
ponents) that have a single spike or bump, and are
practically zero everywhere else. This is because the
criteria in the ICA algorithms can be interpreted as
measures of nongaussianity, and in the space of source
signals of unit variance (and possibly with some con-
staints on frequency content as well), nongaussianity is
usually maximized by such spike/bump signals. Thus
this is a form of overlearning or overfitting typical of
ICA methods. Such overlearning can sometimes be re-
duced by appropriate dimension reduction.

2. SPIKES AS SPARSITY MAXIMIZING
SIGNALS

The phenomenon under consideration become easily
comprehensible if we consider the extreme case where
the sample size IV equals the dimension of the data m,
and these are both equal to the number of independent
components n. Let us collect the realizations x(¢) of x
as the columns of the matrix X, and denote by S the
corresponding matrix of the realizations of s(t). Then
(1) is of the form

X = AS. (2)
Note that all the matrices in (2) are square. This means
that by changing the values of A, we can give any val-
ues whatsoever to the elements of S. This is a case of se-
rious overlearning not unlike the classical case of regres-
sion with equal numbers of data points and parameters.
Thus it is clear that the estimate of S that is obtained
by ICA estimation depends little on the observed data.
For example, assume that we constrain the estimates of
the source signals to be uncorrelated and of unit vari-
ance [7], and assume that the densities of the source
signals are known to be supergaussian (i.e. positively
kurtotic [7]). Then the (constrained) ML estimation



of A consists of finding a W = (wy,...,w,)T = A1
that maximizes a measure of the supergaussianities (or
sparsities) of the estimates of the source signals. For
example, with Laplace distributions we obtain:

W = arg mV%XZ Z —|wTlx(t)|. (3)

where W is constrained to give uncorrelated source sig-
nals of unit variance. It is easy to prove that this
is minimized by a W that gives as S a permutation
(and sign change) matrix, i.e. source signals that are
zero at all points except one, and those points are not
overlapping. In unconstrained maximum likelihood es-
timation, the constraint is replaced by a penalty term
of the form log|det W|, which means that the maxi-
mizing W is slightly different, but still characterized
by spiky source signals.

Thus we have shown that ICA estimation with an
insufficient sample size leads to a form of overlearn-
ing that gives artefactual source signals. Such source
signals are characterized by large spikes.

An important fact shown in the experiments section
is that a similar phenomenon is much more likely to oc-
cur if the source signals are not i.i.d. in time, but have
strong time-dependencies. In such cases the sample size
needed to get rid of overlearning is much larger, and
the source signals are better characterized by bumps,
i.e. low-pass filtered versions of spikes. An intuitive
way of explaining this phenomenon is to consider such
signal as being constant on N/k blocks of k consecutive
sample points. This means that the data can be con-
sidered as having really only N/k sample points; each
sample point has simply been repeated & times. Thus,
in the case of overlearning, the estimation procedure
gives ’spikes’ that have a width of k£ time points, i.e.
bumps.

In some cases, overlearning can be reduced by ap-
propriate dimension reduction by, for example, prin-
cipal component analysis (PCA). If projections that
contain noise ( i.e. unnecessary information) are omit-
ted as a preprocessing step, the data length/dimension
ratio is improved, and artefactual estimates may be
avoided.

3. EXPERIMENTAL RESULTS

Two sets of experiments were designed in order to il-
lustrate the results presented above. In the first set,
shown in Fig. 1, we used artifially generated signals to
illustrate the basic phenomenon, as well as the effects
of the choice of compression rate and filtering. The sec-
ond set of experiments is presented in Figs. 2 through 4,
dealing with real life medical applications.
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All the experiments were made using MATLAB code,
using either the fixed-point algorithm [7, 5] as imple-
mented in the FastICA package, or the gradient descent
algorithm for maximum likelihood (or infomax) estima-
tion [1, 2, 3], as implemented in the package by Tony
Bell. Both are available on the World Wide Web. The
results were qualitatively similar for both packages.

3.1. Artificial data

Three positively kurtotic signals, with 500 sample points
each, were used in these simulations, and are depicted
in Fig. 1 a). 500 noisy mixtures were produced, where
normally distributed i.i.d. noise was added to each
weighted mixture separately. The variance of the added
noise was 1/10000 of the variance of the signals.

As an example of a perfect ICA decomposition,
Fig. 1 b) shows the result of applying the fixed-point
and gradient descent algorithms to the mixed signals.
In both approaches, the preprocessing (whitening) stage
included a compression of the data into the first 3 prin-
cipal components. It is evident that both algorithms
are able to extract all the initial signals.

When the whitening is made with very small dimen-
sion reduction (we took up to 400 whitened vectors),
we see the appearance of Dirac-like solutions, which is
an extreme case of kurtosis maximization (Fig. 1 c)).
The algorithm used in FastICA was of a deflationary
type, from which we plot the first 5 components ex-
tracted. As for the gradient descent, which was of a
symmetric type, we show 5 representative solutions to
the 400 extracted.

Figure 1 d) presents an intermediate stage of com-
pression (from the original 500 mixtures we took 50
whitened vectors). It is clear that most of the desired
independent components are revealed by both meth-
ods, even though each resulting vector is noisier than
the ones showed in b).

For the final example, in Fig. 1 e), we low-pass fil-
tered the mixed signals, prior to the independent com-
ponent analysis, using a 10 tap-delay MA filter. Taking
the same amount of compression as in d), we can see
that we loose all the original sources: the decompo-
sitions show a bumpy structure corresponding to the
low-pass filtering of the Dirac-delta outputs presented
in ¢). Through low-pass filtering, we have reduced the
information contained in the data, and so the estima-
tion is rendered impossible even with this, not very
weak, compression rate.

3.2. EEG and MEG data

In earlier work, we have shown that FastICA is well
suited for artefact removal from electro- and magne-
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Figure 1: Illustration of the importance of the choice of compression rate and filtering in artificially generated data, using a
fized point algorithm [7, 5] (the FastICA MATLAB package) and a gradient descent algorithm [1, 2, 8] (MATLAB code by
Tony Bell). a) Original positively kurtotic signals . b) ICA decomposition in which the preprocessing includes a compression
to the first 8 principal components. ¢) Poor, i.e. too low compression rate situation. d) Decomposition using an intermediate
compression rate (50 components retained). e) Same results as in d) but using low-pass filtered miztures
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Figure 3: Same study as in Fig. 2, in which the whitening
stage was made without compression.

independent components found from the

MEG data. For each component the left, back and right
views of the field patterns generated by these components

are shown — full line stands for magnetic flux coming out
from the head, and dotted line the fluz inwards (from [10]).
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Figure 4: Independent component decomposition of audi-
tory evoked fields using a reasonable compression rate (a)
[11], and no compression at all (b).
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toencephalographic recordings (EEG and MEG, respec-
tively) [9, 10]. In addition, we have presented a study

on ICA wave decomposition of auditory evoked fields [11].

In this section we will see how the present study affects
the results reported on those papers.

During the extraction of artefacts from MEG data,
reported in [10], we have used a reasonable compression
rate, obtaining the results reproduced in Fig. 2. The
field patterns are the regressions of each component on
the original data, and can be seen as the columns of the
estimated A matrix. These patterns help interpreting
and localizing the sources of the independent signals
(e.g. IC1 and IC2 clearly represent activity of two dif-
ferent sets of muscles, in the right temporal area). A
closer look into the field patterns of the bumpy sig-
nals IC6 and IC7 confirms the artefactual (overlearned)
structure of the estimates, since the corresponding field
patters are not physiologically meaningful. As a matter
of fact, we can increase the number of solutions of that
type by reducing the compression rate at the whiten-
ing stage. Figure 3 is an example where no compression
was performed. Even though we can still see a couple
of artefacts, most of the solutions obtained (120 out of
122) are meaningless bumps.

Finally, a clear illustration of the dangers of a poor
choice of compression rate is depicted in Fig. 4. Fig-
ure 4 a) shows the decomposition of auditory evoked

fields into independent components, as presented in [11].

In these components we can see the contra- and ipsi-
lateral responses from the brain, to a train of auditory
stimuli. When there is no compression in the data, the
resulting decomposition is shown in Fig. 4 b). Note
that the picture shown correspond to the extreme case
of no compression. As seen in the previous example,
the coexistence of good solutions with bumps is possi-
ble in an intermediate compression condition. Then, it
may be difficult to distinguish between the independent
components corresponding to meaningful solutions and
the artefactual estimates shown in Fig. 4 b).

4. CONCLUSION

We showed a typical effect of overlearning (overfitting)
by ICA algorithms. This consists of producing esti-
mates of the source signals that are zero everywhere
except for a single spike or bump. Reducing the di-
mension of the data by PCA is one way of reducing
such overlearning. Of course, the best way to avoid
overlearning would be to use a larger data set. Over-
learning is especially probable to produce in the case
of strongly time-dependent signals. We showed the rel-
evancy of the results to separation of EEG and MEG
signals, where artefactual bumps may be erroneously
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interpreted as meaningful signals.
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