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Abstract

The problem of linearly decomposing stochastic processes into 'indepen-
dent’ component processes is addressed. In contrast to ordinary indepen-
dent component analysis, the time structure of the components is taken
into account. It is shown that the data model of independent component
analysis is identifiable if the innovation processes of the latent compo-
nents (source signals) are independent. The results show the utility of
performing independent component analysis on the innovation process
instead of the original data.

1 Introduction

Independent component analysis (ICA) [7] is a statistical technique whose main
applications are blind source separation, blind deconvolution, and feature ex-
traction. In the simplest form of ICA [2], one observes m scalar random vari-
ables x1, 3, ..., T, which are assumed to be linear combinations of n unknown
independent components, denoted by si,ss,...,s,. The independent compo-
nents s; are assumed to be mutually statistically independent, and zero-mean.
Arranging the observed variables z; into a vector x = (21, %2, ..., Zs)” and the
component variables s; into a vector s, the linear relationship can be expressed
as

x = As (1)

Here, A is an unknown m x n matrix of full column rank, called the mixing
matrix. The basic problem of ICA is then to estimate both the mixing matrix A
and the realizations of the independent components s; using only observations
of the miztures x;.

In this basic framework of ICA, the independent components are consid-
ered as random variables, with no time structure. Therefore, the assumption
of independence is crucial for the identifiability of the model [2]. In this pa-
per, we try to relax this assumption. We consider time-dependent stochastic
processes instead of random variables, and utilize the notion of innovations.
The innovation process of a stochastic process is roughly the new information
fed to the process at a given time point. We show that it is enough for the



identifiability of a time-dependent version of (1) that the components of the
innovation process are independent. This is a more general condition than the
independence of the components themselves. The mixing matrix A can then
be estimated by applying ordinary ICA on the innovation process. We also
argue that applying ICA on the innovation process makes the estimation more
accurate in many cases.

2 Innovation process

The following developments are based on the concept of an innovation process
of a stochastic process. Given a stochastic process s(t), we define its innovation
process §(t) as the error of the best prediction (i.e. conditional expectation) of
s(t), given its past:

5(t) =s(t) — Es@)[t,s(t — 1),s(t - 2), ...) 2)

The expression ’innovation’ describes the fact that §(¢) contains all the new
information about the process that can be obtained at time ¢. The ¢ as given
information in the expectation means that nonstationarities may occur. The
innovation process is uniquely defined by (2). Our definition of innovation is a
generalization of the conventional definition, see e.g. [4].

Estimation of the innovation process can be performed by approximating
the conditional expectation, i.e. the best prediction of s(t) given its past (in
the least mean-square sense). This is basically a regression problem that can
be approximated in many cases by ordinary linear autoregressive models; in
the very simplest case, a reasonable approximation of the innovation process
may be given by the difference process As(t) = s(t) — s(¢ — 1). In general, the
nonlinear prediction may be approximated, e.g. by multi-layer perceptrons or
radial basis functions.

3 ICA Estimation using innovations

Let us consider how the concept of innovation process can be used in the frame-
work of estimation of the ICA data model. Consider a version of the ICA data
model in (1) where the observed data is a stochastic process x(t) that is repre-
sented as a linear combination of component processes:

x(t) = As(t). (3)

The concept of innovations can be utilized in the estimation of the data model
(3) due to the following lemma:

Lemma 1 Ifx(t) and s(t) follow the instantaneous mizing model (3), then the
innovation processes follow the ICA model (3) as well:

%(t) = A&(1). (4)



To prove the lemma, it is enough to multiply both sides of (2) by A and use
the linearity of the expectation operator, obtaining

A5(t) = x(t) — Ex(@)[t,s(t — 1),s(t = 2), ...). (5)

Since the information contained in (s(t — 1), s(t — 2), ...) equals the information
contained in (x(t —1),x(t —2), ...) due to the invertibility of A, this shows that
A5(t) is the innovation of x(t).

The lemma implies that it is enough for the model (3) to be identifiable
that the innovation process fulfill the identifibility conditions usually required
of the random vector s(t). In particular, it is enough that §(t) has independent
components and is stationary as well as ergodic [2, 1]. This is a generalization
of the ordinary identifiability conditions since the independence of the s;(t)
implies the independence of the innovation processes 3;(t). (This is due to the
fact that independence of the s;(¢) implies that the conditional expectation in
(2) can be separated into a component-wise function.)

4 Why use innovations?

The relevant question here is: Why it would be better to apply ICA on the
innovation instead of the original data. We claim that the following are valid
reasons to use innovations:

1. The innovations are usually more independent from each other than the
original processes. This is due to two factors. First, as mentioned above,
the independence of the original processes implies the independence of the
innovations, but not vice versa. Second, the innovations may correspond
to physically independent processes that are mixed in an autoregressive
process (inside the system) to give the source signals s; that are no longer
independent.

2. The innovations are usually more nongaussian than the original processes.
Consider, for example, a simple 1-D autoregressive process:

s(t) = as(t — 1) + 3(t). (6)

If the system is invertible, we have:

s(t) =Y a73(t— 7). (7)
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This means that s(¢) is a sum of the innovation variables. A well-known
result in ICA say that sums of nongaussian variables tend to be ’more
gaussian’ than the original variables. Thus the innovation process has a
distribution that is more nongaussian than the distribution of s.

The accuracy of the estimation of the ICA model increases with increasing
independence and nongaussianity of the components s; [5]. In consequence,
using innovations is likely to lead to much better estimates of the mixing matrix.



Thus these results show that to estimate the ICA data model when the
independent components (source signals) have time-dependencies (i.e. spectral
structure), it may be essential to preprocess the data before the application
of conventional ICA algorithms. The preprocessing required is to extract the
innovation process X(t) of the raw data, to be used in the conventional ICA
method.

5 Simulations

Separating images of human faces has been considered a difficult case for ICA,
since the faces, considered as 1-D signals of pixel gray-scale values, are not
independent [8]. In this section we show that they can be nevertheless separated
if ICA is applied on their innovation processes, which seem to be independent
enough.

Four photos of faces are depicted in Fig 1. To show how dependent these
signals are, we computed the correlation matrix:

1.0000 0.2154 0.3988 0.4839
0.2154 1.0000 0.2594 0.1534 8)
0.3988 0.2594 1.0000 0.6307
0.4839 0.1534 0.6307 1.0000

which shows that the source signals are rather strongly correlated. We then
mixed these signals using a random mixing matrix. The mixed faces are shown
in Fig. 2. First, ordinary ICA was applied to separation of the faces, using
the algorithm in [6, 5]. The results are depicted in Fig. 3. Clearly, ordinary
ICA failed to separate the faces. (The signs of the estimated independent
components, which cannot be estimated by the ICA model, have been chosen
to best approximate the original images.)

Next, we applied ICA on the innovation processes of the faces. To estimate
(an approximation of) the innovation process of x, we fitted a simple linear
first-order autoregressive model on the data. Subtracting the obtained predic-
tion from the data, we obtained a first approximation of the innovation process,
which was essentially equal to the difference process. This trivial approxima-
tion is not good enough, however, because the signal is also quite nonstationary.
When scanning the image row by row, significant nonstationarities are encoun-
tered in the beginning of each row. This gives large spikes in the obtained
approximation of the innovation process. To make the approximation better,
we discarded outliers in the first estimation of the innovation process. This
means that we effectively used a predictor that takes into account the non-
stationarity of the signal, obtaining a better approximation of the innovation
process.

Thus we estimated the mixing matrix using the estimated innovation pro-
cess. Separating the original images using the obtained estimate of the mixing
matrix, we obtained the faces given in Fig. 4. Clearly, using innovation pro-
cesses enabled accurate estimation of the mixing matrix.



Figure 4: Original faces estimated by ICA applied on innovation processes.



6 Conclusion

We considered independent component analysis of time-dependent stochastic
processes. Using the concept of innovation processes, we generalized the identi-
fiability conditions of the ordinary ICA model, showing that the independence
of the components of the innovation process is sufficient for the identifiability
of the model. We argued that using innovations enables a more accurate es-
timation of the ICA data model in many cases. In practice, this amounts to
preprocessing the data before application of conventional ICA algorithms.

Our results are related to work on blind separation of convolutive mixtures
[3, 9], but our framework is in some respects more general because it allows for
nonlinearities in the conditional expectation, and does not require the signals
to be stationary.! The framework of innovation processes is also closely related
to methods using algorithmic complexity [8].
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1Qur framework is not a strict generalization of deconvolutive ICA, however, because in
some cases where the convolutive ICA model holds, the innovation process as defined in (2)
may not have independent components.



