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Abstract— We propose a method that takes observations
of a random vector as input, and learns to segment each
observation into two disjoint parts. We show how to use the
internal coherence of segments to learn to segment almost any
random variable. Coherence is formalized using the principle
of autoprediction, i.e. two elements are similar if the observed
values are similar to the predictions given by the elements
for each other. To obtain a principled model and method, we
formulate a generative model and show how it can be estimated
in the limit of zero noise. The ensuing method is an abstract,
adaptive (learning) generalization of well-known methods for
image segmentation. It enables segmentation of random vec-
tors in cases where intuitive prior information necessary for
conventional segmentation methods is not available.

I. INTRODUCTION

Assume we observe a very high-dimensional random

vector x = (x1, . . . , xn), and we want to segment each

observation x(t) into a small number of disjoint segments.

That is, we want to associate a discrete label to each element

xi(t) that tells which segment the i-th element belongs to

in the current observation. While many methods exist for

performing such a segmentation, they all require that the user

defines a similarity measure between the different elements

xi(t) based on some intuitive prior information. Here, our

purpose is to show how the similarity relationships of the

elements can be learned from the statistics of the random

vector.

The classic application of segmentation methods is image

segmentation (see e.g. [1], [2]), where the elements of x

typically give the grey-scale values of the image at differ-

ent spatial points. A large number of methods have been

proposed for image segmentation in computer vision. Image

segmentation is also effortlessly performed by our visual

system. However, conventional image segmentation methods

and neural models use a large amount of prior knowledge

on the structure of images and the sampling structure of the

image. Our purpose is to develop a system that can learn to

perform such segmentation on almost any kind of random

vectors.

The basic idea is illustrated in Figure 1. For humans,

segmenting the image in a) is fast and “effortless”. This

is presumably because the visual system has learned the

statistical regularities in natural images. Segmentation of data

that has different statistical properties then becomes difficult

or impossible for the visual system. This is illustrated in

b), where the image in a) has been transformed so that the

pixels have been randomly permuted (reordered). Finding the

segment is now impossible for humans. However, we claim it
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Fig. 1. Illustration of the easy segmentation of natural images and the
necessity for learning. The image in a) is effortlessly segmented by our
visual system. However, if we just permute the pixels, obtaining b), the
segmentation is impossible for the human visual system. Our method is
based on learning the statistical structure of the input, and therefore, it can
segment a) and b) equally well, assuming that we can learn the statistical
structure of the data by observing many typical images of the image class
in question. For example, if we can observe many images that have been
permuted in the same way as the image in b), we can segment them even
though any segmentation structure seems to be completely absent.

is possible to learn to perform segmentation even in this latter

case, because the statistical dependencies in a) and b) are

similar except for a permutation. If the segmentation system

is based on the statistical structure of the input, we can learn

to segment the image in b) provided that we can observe

many images that have the same statistical structure as the

image in b).

We propose here a statistical model that generalizes the

concept of segmentation to arbitrary random vectors. The

basic assumption is that is is possible to define and learn a

segmentation for any random vector by learning to use its

statistical structure. At the same time, we hope to elucidate

the probabilistic underpinnings of classic image segmen-

tation, which can be useful for improving current image

segmentation methods. However, our purpose is to propose

a general-purpose data analysis method, so it is not likely to

be competitive with image segmentation methods that exploit

the special structure of images.

Our approach is quite different from methods that decom-

pose a random vector into a small number of components,



such as principal component analysis, factor analysis, and

independent component analysis. These methods represent

each observed data vector as a linear combination of a

number of components, whose number is typically of the

order of n, and the patterns (basis vectors or weight vectors)

corresponding to each component are fixed. In contrast,

segmentation represents each observed data vector as a single

pattern of +1’s and −1’s (in the basic case of two segments),

but this pattern is not at all fixed: instead, it can take any of

the 2n different values possible for a binary vector.

How do we use the statistical structure of the data for

segmentation? The basic principle is that the data inside

each segment should be “coherent” in some intuitive sense of

the word. To formalize this, we propose the notion of auto-

prediction, which means that the observed values inside the

same segment predict each other well, whereas values cannot

be predicted across segment borders. In the following, we

first define the problem formally and discuss the definition

of coherence in Section II. We propose a generative model

in Section III and show how to estimate it in Section IV.

Simulations are reported in Section V and experiments with

real data in Section VI. Section VII discusses extensions and

related methods, and Section VIII concludes the paper.

II. PROBLEM DEFINITION AND SCOPE

A. Notation and basic approach

Let us first define the segmentation problem formally. The

observed random vector is denoted by x = (x1, . . . , xn). It

is assumed that we have access to a large number of observa-

tions from which we can learn the statistical structure of the

random vector. Let us denote by x(t) = (x1(t), . . . , xn(t))T

an observation of the random vector x. It is important to

emphasize that we want to segment each x(t) separately, i.e.

the segmentation will be different for each sample index t.

We shall here concentrate on the basic case of segmenting

the vector into two parts. Then, the problem is to find a

function

s : x(t) → {−1, +1}n (1)

that has binary vector values. In the following, we often use

the short-cut notation s(t) for s(x(t)), and s for s(x). The

elements of s are denoted by si.

The function s should be such that the variables xi for

which si(x(t)) = +1 form a “coherent whole”, and likewise

for those xi for which si(x(t)) = −1. Coherence should

be a measure of how the segmentation follows the statistical

structure of the random vector x.

B. Coherence and segmentation

Coherence can be defined in many ways and different

methods can be obtained. Intuitively, the central part in

Figure 1 a) is coherent. Here, we discuss what kind of a

definition of coherence we should find to fulfill two slightly

conflicting purposes: 1) to be in line with the way human

observers segment natural images 2) to be generalizable to

other kinds of data sets.

In the simplest case, one could think that if some of

the observed xi are close to a given value, and others are

close to another value, we can define two coherent segments

using this closeness criterion, i.e. by clustering. However,

this approach is not satisfactory. First, we do not know if

this division is in line with the statistics of the input. For

example, if, in a natural image, two pixels that are far away

from each other have similar values, this does not mean that

they are likely to belong to the same segment as defined by

a human observer. Statistically, this is reflected in the fact

that the pixels are not correlated: Similar gray-scale values

for uncorrelated variables are not evidence for belonging to

the same segment. Second, in natural images, two segments

can be very clearly visible even if the values are quite

different inside the segments. This is already seen in Fig. 1

where the background pixels have values in a large range,

including those in the central “figure” segment. Thus, any

kind of thresholding or clustering of pixel values is clearly

insufficient as an account of segmentation by the human

visual system.

Another point that we must consider is that while image

segmentation algorithms consider the proximity relations

between pixels, in the general case we do not have prior

information on which variables are “close” to each other —

the whole notion is meaningless in some cases. Any such

proximity relations must be learned by a statistical analysis

of the data.

A final point is that while in natural images correlations are

typically positive, and coherence is related to pixels having

similar values, this need not be the case for other kinds of

data sets. We want our coherence criterion to be such that

if xi and xj are strongly negatively correlated, i.e. typically

have values of opposing signs, our coherence measure will

consider it coherent for these two variables to have values of

opposing signs. This means an invariance to the definition of

the signs of the variables: in many kinds of data sets it may

not be clear whether we should use xi or −xi as input for

some i.

To move towards a computational definition of coherence,

let us define coherence of a segmentation by the following

principle of autoprediction. The prediction of the observed

value of any variable using observed values of other variables

in the same segment (cluster, partition) should be as good as

possible (small prediction error). In contrast, prediction of

the observed value of the variable using observed values of

variables that belong to a different segment should be as poor

as possible (large prediction error). “Prediction” here means

the best possible prediction using knowledge of the statistics

of the random vector.

The principle of autoprediction brings us closer to a com-

putational definition. In the following sections, we propose

a generative model as well as a computationally simpler

definition of coherence that take into account the discussion

above.



III. GENERATIVE MODEL FOR LEARNING SEGMENTATION

A. Basic idea

Now, we define a simple generative model for s and x that

incorporates the structure explained in the preceding section.

The main point is that the data in the two segments are

generated independently from each other. The same model

is used for both segments, but two independent observations

are sampled from (generated by) the model, one for each

segment. We use a model that gives “autopredictable” data,

i.e. data in which variables can be predicted from each other.

This implies that inside a given segment, the variables can be

predicted from each other. In contrast, the values of variables

in the other segment cannot be predicted because the two

segments were “filled in” by two independent samples.

B. Conditionally gaussian segments

Next, we describe the generative model in detail. In the

first step of the generative model, the binary segmentation

labels si are created. (The segmentation labels are considered

latent random variables in this generative model, and the

segmentation function is based on probabilistic inference of

these random variables.) This gives a binary label vector for

each observation (sample point). A large number of models

is possible. For example, one could use different versions

of the Boltzmann machine [3]. However, as will be seen

below, the exact specification of this part is immaterial to

the estimation, so we do not propose a detailed model here.

The fundamental question is, How should the data be

generated, given the segmentation labels si? We propose

that each segment is generated using a multivariate gaussian

distribution, independently from each other. Let us denote

a global covariance matrix of a gaussian distribution by Σ.

Now, given a realization of s, consider the set of indices

i for which si = 1. For those indices, we extract the

corresponding submatrix from Σ by taking elements whose

both row and column indices belong to that index set. We

call that submatrix Σ+, and we generate a gaussian sample

vector with the covariance matrix Σ+. These values are then

given to the xi(t) whose indices i belong to that same set

where si = 1. Then we look at the remaining set of indices

(for which si = −1), and generate a new gaussian vector

using the corresponding submatrix of Σ, independently from

the previous gaussian vector. This gives the values for the

remaining xi(t).

C. Simplified low-rank model

A great simplification of the algebraic developments below

is obtained if we model the covariance matrix by a subspace

structure, i.e.

Σ = AAT (2)

where the matrix A has only a small number k of columns. In

other words, the generated gaussian data inside one segment

is concentrated in a subspace of k dimensions. It must be

emphasized that this does not imply that the observed data

x would belong to a subspace of the data space because the

total data generating process is nonlinear. We assume that A

has orthogonal columns of unit norm. Some gaussian i.i.d.

noise is further added to the data.

In other words, the data is generated as a linear combi-

nations of some prototypes given by the columns of A, and

the coefficients for each prototype are different in the two

segments (and in each observation of x).

Thus, in this simplified low-rank model, we generate

one observed data vector x(t), where t is the sample

index, as follows. Generate the segment labels, i.e. a bi-

nary vector s(t). Generate a zero-mean gaussian vector

y+(t) = (y+(1, t), ..., y+(k, t))T independently from each

other, where k is the subspace dimension, i.e. the number of

columns in A. These are the coefficients of the columns

of A inside the segment where si = 1. Likewise, gen-

erate independent zero-mean gaussian variables y
−

(t) =
(y
−

(1, t), ..., y
−

(k, t))T (for the segment where si = −1).

The variance of all these gaussian coefficients is chosen as

σ2
y . Create also independent gaussian noise variables ni of

variance σn. Then one observed data vector is generated as

xi(t) =

{

∑

j aijy−(j, t) + ni, if si(t) = −1
∑

j aijy+(j, t) + ni, if si(t) = +1
(3)

The procedure is repeated for each observed data vector.

All generated gaussian variables are independent from each

other, and they are independent from the si which are also

independent for all observed data vectors.

IV. ESTIMATION OF THE MODEL

Now we show how to estimate the model by maximum

likelihood estimation. The complete likelihood of the data

(for one data point), which depends on the latent variables

y
−

, y+, and s as well, is given by

log p(x,y
−

,y+, s|A)

=
1

2σ2
n

‖x −
1

2
(1 − s) ⊗ (Ay

−
) −

1

2
(1 + s) ⊗ (Ay+)‖2

+ log p(s) −
1

2σ2
y

(‖y
−
‖2 + ‖y+‖

2) + const. (4)

where 1 is a vectors of all ones, and ⊗ denotes component-

wise multiplication of two vectors. The likelihood for the

whole data set is, of course, obtained by summing this over

all the observation of x, and the corresponding inferred

values of the latent variables. (For notational simplicity, we

omitted the sample index t from x,y
−

,y+ and s.)

Now, we can estimate the parameter matrix A as well as

the latent variables by maximization of the likelihood with

respect to all the latent variables and A, given observations

of the x.

To simplify the estimation, we assume that the noise level

is very low, i.e. σ2
n is very small. Then, for any real data set,

the weight on the reconstruction error, i.e. the first term in (4)

dominates the others. This implies that the prior model for s

is immaterial in the estimation of the model. The estimation

is then basically a problem of optimal reconstruction of the

data: for each observed variable in each observed data point,

the latent variables are chosen to minimize distance between



the observed data point x(t) and its reconstruction either by

Ay+(t) or Ay
−

(t).
The likelihood is simple to maximize after this additional

simplification. The optimal value of s, given A and other

latent variables, can be computed in closed form:

ŝ(t, Â, ŷ
−

(t), ŷ+(t)) =

sign(x(t)⊗(Â(ŷ+(t)−ŷ
−

(t))−
1

2
(Âŷ+(t))2+

1

2
(Âŷ

−
(t))2)

(5)

The squares in this formula mean taking squares of all

elements of the vector.

The optimal values for A as well as for y
−

and y+ can

be computed by simple pseudoinverse computations. First,

let us compute the optimal y, given A. Optimization of the

likelihood is then a simple regression problem that can be

solved with classic pseudoinverses. Denote by I(t) the set

of indices (for a single sample point) for which ŝi(t) = 1.

Denote by AI a matrix which contains the rows of A whose

index is in I(t), and likewise by xI(t) a vector which contains

the elements of y+(t) whose indices are in I(t). Then, we

simply compute

ŷ+(t) = Â
pinv
I(t) xI(t) (6)

where Mpinv denotes the Moore-Penrose pseudoinverse of

the matrix M. The computation of the optimal y
−

is com-

pletely analogue.

ŷ
−

(t) = Â
pinv

Ī(t)
xĪ(t) (7)

where Ī(t) denotes the complement set of the index set I(t).
The computation of the optimal A is straightforward as

follows. Denote one row of A by Ai. For a given index

i ∈ {1 . . . n}, compute a matrix Ỹ of size n × t which is

such that each element is equal to ŷ+(i, t) if ŝi(t) = 1 and

otherwise equal to ŷ
−

(i, t). Thus, it collects the estimates of

the coefficients really used in the data generation process.

Denote by Xi an t-dimensional vector (xi(1), . . . , xi(T ).
Then, the estimate of Ai is obtained as

Âi = XiỸ
pinv (8)

After computing this for all i, the matrix has to be orthogo-

nalized using the classic method:

Â = Â(ÂT Â)−1/2 (9)

See, e.g. [4] on the computation of the matrix square root.

Thus, the estimation of the parameters and the latent

variables is done by cycling though the updates in Equa-

tions (5,6,7,8,9). Note that these updates need no stepsizes

or other parameters.

For fast and reliable convergence, a good initial point is

important. We propose that the columns of A are initially

set to the k first principal components, which we use in the

simulations and experiments below. The ŝ could be initialized

randomly, or perhaps by setting ŝi(t) = 1 for all i and t,

which we used below. Using (6,7), one can then compute

the initial y+(t) and y
−

(t) and start the iteration.

V. SIMULATIONS

To test our estimation method, we created artificial data

according to the generative model and then estimated it using

the method proposed above.

The dimension of the data was n = 50, and the subspace

dimension k was taken to be three. We had two different

conditions. In the first, “random” one, we used a completely

random prior in which all s ∈ {−1, +1}n have equal proba-

bilities. In the second, we used a Boltzmann machine prior in

which we created by intuitively appealing dependencies by

arranging the variables on a ring-like structure, and defining

the connection bij between a variable and its 6 nearest

neighbours to equal 1, and all other connections to equal 0.

The columns of A were randomly chosen in both conditions.

The variances were chosen as σy = 1 and σn = .01.

An illustration of a vector created in the Boltzmann

condition is shown in Figure 2 a), which shows s and b),

which shows the x. In total, 1000 such random vectors were

created in both conditions.

The task was now to learn to find the original segments

in each vector. The resulting segmentation for the vector in

Figure 2 b) is shown in Figure 2 c). We can see that the

segmentation coincides with the true segmentation that is

visually evident in Figure 2 a) because we chose a visually

intuitive Boltzmann machine structure.

To assess the quality of the segmentation for the whole

ensemble of 1000 vectors, the obtained segmentations ŝ(t)
were compared to the true segmentations s(t) used in gener-

ating the data. This was computed by simply counting what

proportion of elements in the two vectors was equal. Thus,

we obtained 1000 different numbers that should be close to 1.

Actually, since the segmentation is symmetric with respect

to the “figure” and the “ground”, we have to compute the

maximum between the similarity of ŝ(t) and −ŝ(t) to the

true segmentation.

Histograms of the matches are shown in Figure 3 for

the random condition, and in Figure 4 for the Boltzmann

condition. approximately 90% of the vectors had a match

of more than 80%. Thus, our method found the original

segments with reasonable accuracy.

VI. EXPERIMENTS ON REAL IMAGES

We also tested our method in segmentation of grey-scale

random images. One should note, however, that this is merely

an illustration of our method on real data and the method

is not proposed as a serious competitor for existing image

segmentation methods which use a lot of prior information

on the structure of images and do not try to learn it from

scratch.

We used images from Hans van Hateren’s natural stimuli

collection1 as well as some images from the CalTech hu-

man face and background datasets. 2 All the images were

converted to greyscale and rescaled so that they contain

approximately 65,000 pixels.

1http://hlab.phys.rug.nl/archive.html, see [5]
2http://www.vision.caltech.edu/html-files/archive.html
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Fig. 2. Illustration of segmentation of one observation. Horizontal axis is
index i in all plots. Vertical axis is value of the i-th element of the vector
plotted. a) The original segmentation label vector s for one observation
in the Boltzmann condition. For visualization purposes, the covariance
structure follows the vector indices. b) The observed data vector x c) The
estimated segmentation ŝ found by our method (the sign of si is immaterial).

Due to the overwhelming computational complexity of

learning to segment full images, we considered segmentation

of 32× 32 pixel patches only. The subspace dimension was

set to three.

We considered each image separately, treating patches

sampled from each image as a separate random variable.

The model parameters were separately learned for each full-

size image using 10,000 randomly sampled patches from that

image. We then took a smaller number of patches from the

images to be segmented.

The estimated basis vectors for three images are shown

in Fig. 5. It turns our that the basis vectors are not very

different from the PCA basis vectors. This does not seem to

be an algorithmic artefact, because it is intuitively appealing:

The basis vectors typically describe a DC component, and

vertical and horizontal edges, which seems to be reasonable

in image segmentation. The edges are actually much sharper

than the PCA basis vectors.

Some results for segmenting image patches are shown in

Figure 6. The results are reasonably well in line with human

segmentation. However, the basis vector similar to the DC

component seems to be quite dominant which is seen in

the fact that the segmentations are not very different from
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Fig. 3. Accuracy of segmentation in the random condition. Histogram of
matches between estimated segmentations and the true underlying segmen-
tations with artificial data. Horizontal axis: correlation coefficient between
underlying true segmentation and its estimate.
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Fig. 4. Accuracy of segmentation in the Boltzmann condition. Histogram of
matches between estimated segmentations and the true underlying segmen-
tations with artificial data. Horizontal axis: correlation coefficient between
underlying true segmentation and its estimate.

a simple thresholding. Thus, the method may not be very

useful for natural grey-scale images, which merely serve as

an illustration of and inspiration for our method.

VII. DISCUSSION

a) Multidimensional locations: An important extension

of the present method is to the cases where the elements to

be segmented are multidimensional. For example, in color

images every spatial location has typically three RGB values.

It would be meaningless to consider each value separately, in

which case each pixel would get three segmentation results.

Likewise, texture detectors can be used to associate texture

information to each spatial location. One of the advantages

of our method is that it can be readily extended to this

multidimensional case. We only need to consider assign the



Fig. 5. Estimated basis vectors for three natural images, with subspace
dimension equal to three. Each row shows the basis vectors for one image.

Fig. 6. Segmentation results for natural images are shown for six patches of
32× 32 pixels taken from relatively natural images. The left-hand displays
show the original patches, and the right-hand displays show the resulting
segmentation, black and white giving the two segments.

same si for each of the, say q, variables that all belong to the

same spatial location. In practice, this leads to a very simple

modification of the algorithm, where each ŝi is computed by

first computing q signs as in (5), and finally assigning the

sign that get more “votes” to ŝi.

b) Related work: A related method was proposed in [6]

where the purpose was to segment multivariate time-series

so that the segmentation need not be the same for all the

series. Implicitly, this then introduces a segmentation of the

multivariate time series for each time step. This method is

quite different from ours in that it is based on the temporal

structure of the time series. A complementary approach to

ours is provided by [7], in which the similarity matrix is

learned using examples of segmented vectors. This is in

contrast to our approach which is completely unsupervised.

c) Future work: An important question for future work

is what kind of data sets might be easily segmented using

our method. We believe such applications can probably be

found in natural language processing (segmentation of text

documents), bioinformatics (segmentation of micro-arrays),

and multivariate econometric data sets. Another important

question is how to estimate more than two segments. Also,

the method is very noise-sensitive because it is based on

approximation of low noise, which also leads to the total

neglect of a prior model for the segments, p(s). Future work

should consider interesting priors for s and incorporate their

estimation to the method. This should a be straightforward

addition to the likelihood; the problems are mainly compu-

tational because then computation of the optimal ŝ is much

more complicated than in Eq. (5).

VIII. CONCLUSION

We proposed a new method of multivariate data analysis

that is based on learning to segment observations of any

random vector, based on its statistical structure. This can also

be seen as an improvement of image segmentation methods

by introducing the aspect of adaptation to the method. We

formulated a generative model to accomplish the task, and

showed how it can be simply estimated in a low-noise

approximation. Simulations and experiments on real data

confirmed the validity of the method.
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