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Summary. Independent component analysis (ICA) was developed in the signal
processing and neural computation communities. Its original purpose was to solve
what is called the blind source separation problem: when linear mixtures of some
original source signals are observed, the goal is to recover the source signals, using
minimum assumptions on the mixing matrix (i.e. blindly). This leads to a linear
model that is very similar to the one used in factor analysis. What makes ICA
fundamentally different from conventional factor analysis is that the source signals
are assumed to be non-Gaussian, in addition to the basic assumption of their in-
dependence. In fact, this implies that the model can be uniquely estimated from
the data, using supplementary information that is not contained in the covariance
matrix. Interestingly, a very close connection can be found with projection pursuit:
The basic form of the ICA model can be estimated by finding the projections that
are maximally non-Gaussian, which is the goal of projection pursuit as well. On
the other hand, the dimension of the observed data vector is often first reduced
by principal component analysis, in which case ICA can be viewed as a method of
determining the factor rotation using the non-Gaussianity of the factors.
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1 Introduction

Independent Component analysis (ICA) is a multivariate linear latent vari-
able model. In its formulation, it is very closely related to factor analysis
(see e.g., Lawley and Maxwell, 1971) which was developed mainly by social
scientists. Its actual estimation methods, on the other hand, are very similar
to projection pursuit, developed by statisticians (see e.g., Huber, 1985). The
key difference between ICA and ordinary factor analysis is that the latent
factors are assumed to be non-Gaussian, i.e. to have non-normal distribu-
tions. This seemingly small difference in the model definition leads to huge
differences in the estimation procedure and the applications of the model. In
fact, non-normality allows us to separate several linearly mixed independent
latent signals, and also to uniquely determine the factor rotation without tra-
ditional factor rotation methods such as varimax. The purpose of this paper
is to introduce ICA to a reader that is already familiar with factor analysis
as it is usually applied in the social sciences.
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The history of ICA goes back to the early 80’s when Hérault, Jutten and
Ans (Hérault and Ans, 1984; Jutten and Hérault, 1991) considered a prob-
lem in computational neuroscience: How is it possible that when neural fibres
carry signals that are mixtures of some underlying source signals, the central
nervous system is able to recover (separate) those source signals. A small
group of researchers, mainly French, developed the basic idea further in a
signal processing context. Possibly the first principled estimation method for
ICA was proposed by Cardoso (1989), and Comon (1994) laid the theoretical
foundation in his fundamental paper showing that the model was identifiable
in the sense that everybody had hoped for. After 1995, ICA was enthusi-
astically received by people working on neural networks and computational
neuroscience due to the work by Bell and Sejnowski (1995), who developed an
improved algorithm for ICA estimation, and Olshausen and Field (1996), who
showed explicit connections between ICA and models of the visual processing
in the brain.

The basic definition of ICA is surprisingly simple. Let x1, x2, ..., xn denote
n observed random variables. These are modelled as a linear transformation
of n latent variables s1, s2, ..., sn:

xi =
n∑

j=1

aijsj , for i = 1, 2, ..., n. (1)

The aij are constant unknown parameters to be estimated, not unlike fac-
tor loadings. We make the following assumptions on the latent variables or
independent components si:

1. The si are mutually (statistically) independent.
2. The si are non-Gaussian, i.e. have non-normal distributions.

The linear mixing model in Eq. (1) is not terribly different from an ordi-
nary factor analysis model. One difference is that there are no separate noise
variables or specific factors in this model. However, the number of the factors
is quite large, in fact, equal to the number of observed variables. Thus, we
could think that the common and specific factors, as well as noise are just all
grouped together in the si.

1

Assumption 1 is not unlike the one usually made in factor analysis in
the case of maximum likelihood estimation. If the si follow a joint Gaussian
distribution, independence follows from the conventional assumption of un-
correlatedness. This is a special property of the normal distribution, however,
and we shall see below that in the case of non-Gaussian variables, uncorre-
latedness does not at all imply independence.

1 Denoting the number of common factors be k, the total number of latent factors
including specific ones becomes n + k in ordinary factor analysis. This is always
larger than the maximum number of independent components in ICA, which is
n. However, if n is large and k is small, the difference may not be very important.
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So, what really distinguishes the ICA model from ordinary factor anal-
ysis is the second assumption of non-Gaussianity. In fact, a possibly more
illuminating name for ICA would be non-Gaussian factor analysis. Due to
non-Gaussianity, both the estimation theory and practical results of ICA are
very different from those obtained by ordinary factor analysis.

In the next section, we will first show how ICA is able to do “blind source
separation”, something that ordinary factor analys is not able to do. In section
3 we will discuss why this is so, why non-Gaussianity is so important, and
how ICA can be interpreted as a factor rotation. Section 4 discusses basic
statistical criteria that can be used to estimate the ICA model, and shows the
intimate connection between ICA and projection pursuit. Finally, Section 5
concludes the paper.

2 Blind Source Separation

To see the drastic effect of the assumption of non-Gaussianity, let us consider
a problem that has inspired a large part of ICA research, called blind source
separation. Imagine that you are in a room where a number of people (say,
three) are speaking simultaneously. You also have three microphones, which
you hold in different locations. The microphones give you three recorded
time signals, which we could denote by x1(t), x2(t) and x3(t), with x1, x2

and x3 the amplitudes, and t the time index. Each of these recorded signals
is a weighted sum of the speech signals (“sources”) emitted by the three
speakers, which we denote by s1(t), s2(t), and s3(t). We could express this as
a linear equation which is just like Eq. (1), where the aij with i, j = 1, ..., 3
are some parameters that depend on the distances of the microphones from
the speakers. The goal in blind source separation is to estimate the original
speech signals s1(t), s2(t), and s3(t), using only the recorded signals xi(t).

As an illustration, consider the waveforms in Fig. 1. The original speech
signals could look something like those on the left, and the mixed signals
could look like those in the middle. The problem is to recover the “source”
signals using only the mixed data.

One approach to solving this problem would be to use some information
on the statistical properties of the signals si(t) to estimate both the aij and
the si(t). Let us assume that s1(t), s2(t), and s3(t) are, at each time instant
t, statistically independent. If the si are non-Gaussian as well, we see that we
have in fact all the assumptions of the ICA model! Independent component
analysis can thus be used to estimate the aij , and this allows us to separate
the three original signals from their mixtures. This is called “blind” source
separation because hardly any information on the sources was used, only the
very weak assumptions on statistical independence and non-Gaussianity.

Figure 1, on the right, gives the three signals estimated by ICA. As can
be seen, these are very close to the original source signals on the left (the
signs of some of the signals are reversed, but this has no significance.)
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Fig. 1. Left: The original audio signals. Middle: The observed mixtures of the
original signals. Right: The estimates of the original signals, obtained by ICA.

3 ICA vs. Factor Analysis

Factor analysis does not separate sources It is important to note that ordinary
factor analysis cannot separate source signals as described in the preceding
section. This is because factor analysis, or related techniques such as principal
component analysis, can only estimate the factors up to a rotation. But in
the preceding source separation example, we had three source signals, that
is, three factors, and also three observed variables. If one is able to estimate
the factors (source signals) only up to a rotation, that means that one is not
really able to estimate them at all, since most orthogonal rotations mix the
source signals just as badly as the original mixing.

It may be very surprising that the original sources or independent com-
ponents can be recovered at all. Indeed, the proof that this is possible was
presented only relatively recently (Comon, 1994), and it certainly does sur-
prise many people hearing it for the first time. In the following, we will try
to explain intuitively why the non-Gaussianity assumption enables the esti-
mation of the model.

Illustration of why ICA is possible To illustrate the ICA model in statistical
terms, consider two independent components that have uniform distributions
The joint density of s1 and s2 is then uniform on a square, which is illustrated
in Fig. 2, on the left.

Now, assume that the mixing matrix A is orthogonal. Basically, we make
this assumption here because we consider the problem of estimating an or-
thogonal factor rotation (see below). Mixing these variables, we obtain the
observed data x as shown in Fig. 2, in the middle. The mixed data has a
uniform distribution on a rotated square. Actually, from Fig. 2 you can see
an intuitive way of estimating A: The edges of the square are in the direc-
tions of the columns of A. This means that we could, in principle, estimate
the ICA model by first estimating the joint density of x1 and x2, and then
locating the edges. So, intuitively we see that the problem can be solved, in
this special case.
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Fig. 2. Left: The joint distribution of the independent components s1 and s2 with
uniform distributions. Middle: The joint distribution of the observed (orthogonal)
mixtures x1 and x2. Right: The marginal distribution of a mixture.

Why Gaussian variables are no good On the other hand, we can illustrate
why Gaussian variables are not allowed. Assume that the joint distribution
of s1 and s2 is Gaussian. Using the classic formula of transforming densities
we get the joint density of the mixtures x1 and x2 as

p(x1, x2) =
1

2π
exp(−

‖AT x‖2

2
)| det AT | =

1

2π
exp(−

‖x‖2

2
) (2)

where the latter equality comes from the orthogonality of A (again, we con-
sider an orthogonal factor rotation). Thus we see that the orthogonal mixing
matrix does not change the density, since it does not appear in this equation
at all. This means that there is no information in the observations of x1 and
x2 that could be used to estimate A.

This phenomenon is related to the property that uncorrelated jointly
Gaussian variables are necessarily independent. Thus, the information on
the independence of the components does not get us any further than uncor-
relatedness. Thus, in the case of Gaussian independent components, we can
only estimate the ICA model up to an orthogonal transformation, which is
in fact what ordinary factor analysis does.

ICA as factor rotation In classic factor analysis, the fact that Gaussian vari-
ables leave the orthogonal transformation undetermined is well known. Many
methods have been developed to determine the “factor rotation”, i.e. to find a
suitable orthogonal transformation. However, none of the conventional meth-
ods try to determine the rotation so that the the blind source separation prob-
lem would be solved, that is, so that the matrix A of factor loadings would
be properly estimated. The only exception seems to be the work by Mooi-
jaart (1985), who employed the estimation of generalized least squares using
third-order moments in addition to the second-order moments to propose a
new estimation procedure in factor analysis for non-normal distributions.

Conventional factor rotations use criteria that are very different from non-
normality, typically related to an easy interpretation of the factor structure.
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Often in social sciences, the investigators expect there to be a relatively small
number of latent factors, each of which has its indicators. That is, the indi-
cator variables of a given factor are largely loaded on that factor, but almost
unrelated with the other factors. Mathematically speaking, each row of the
factor loadings matrix A has only one salient loading. Many rotation meth-
ods have been proposed to achieve this. However, there seems no theoretical
background that justify the use of such methods.

ICA has no rotation problem, since the matrix A can be estimated almost
completely, up to trivial scale indeterminacies. In fact, in many cases, before
application of ICA, the dimension of the data is first reduced by PCA or factor
analysis. ICA then gives an orthogonal rotation of the factors. Especially in
that case, ICA can be seen as a factor rotation which is determined by the
search for the true factors that really are independent.

4 Principles of ICA Estimation

“Non-Gaussian is independent”

Intuitively speaking, the key to estimating the ICA model is non-Gaussianity.
The starting point here the Central Limit Theorem that says that the distri-
bution of a sum of independent random variables tends toward a Gaussian
distribution, under certain conditions. Thus, a sum of two independent ran-
dom variables usually has a distribution that is closer to Gaussian than any
of the two original random variables. This is illustrated in Fig. 2, on the
right, where the density of a mixture is shown: it is closer to the Gaussian
distribution than the uniform density is.

To estimate one of the independent components, we consider a linear
combination of the xi; let us denote this by y = wT x =

∑
i wixi, where w

is a vector to be determined. Let us make a change of variables, defining
z = AT w. Thus, y is a linear combination of the factors si according to
Eq. (1), with weights given by zi. Since a sum of even two independent random
variables is typically more Gaussian than the original variables, zT s is more
Gaussian than any of the si and becomes least Gaussian when it in fact equals
one of the si. Therefore, we could take as w a vector that locally maximizes

the non-Gaussianity of wT x! Such a vector would necessarily correspond
to a z which has only one nonzero component, which means that wT x =
zT s equals one of the independent components. Our approach here is rather
heuristic, but it can be shown rigorously that this is a valid approach (Delfosse
and Loubaton, 1995; Hyvärinen et al., 2001)

To estimate several independent components, we need to maximize the
non-Gaussianities of several projections defined by vectors w1, ...,wn. To
prevent different vectors from converging to the same maxima, it is enough
to decorrelate the outputs wT

1
x, ...,wT

n x. That is, the optimization is done
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under a constraint of uncorrelatedness of the wT
i x. In the case of a factor

rotation, this simply means that the rotation is orthogonal.
Our approach to ICA makes explicit the connection between ICA and pro-

jection pursuit. In basic projection pursuit, we try to find directions such that
the projections of the data in those directions have interesting distributions,
i.e., display some structure. It has been argued that the Gaussian distribu-
tion is the least interesting one, and that the most interesting directions are
those that show the least Gaussian distribution. This is exactly what we do
to estimate the ICA model. This also gives an interesting interpretation of
what ICA is doing when the data was not generated as a sum of independent
variables. Conversely, ICA gives a very illuminating characterization of pro-
jection pursuit. Typically, projection pursuit has been reported to find latent
clusters and nonlinear relations, but the independence property has not been
discussed at all.

Measures of non-Gaussianity

To use non-Gaussianity in ICA estimation, we must have a quantitative mea-
sure of non-Gaussianity of a random variable, say y, assumed here centred.

A classical measure of non-Gaussianity is kurtosis, defined as

kurt(y) = E{y4} − 3(E{y2})2. (3)

Kurtosis is basically a normalized version of the fourth moment E{y4}. For
a Gaussian y, kurtosis is zero, and for most (but not quite all) non-Gaussian
random variables, kurtosis is non-zero. Kurtosis, or rather its absolute value,
has been widely used as a measure of non-Gaussianity in ICA and related
fields. The main reason is its simplicity, both computational and theoretical.

However, in practice an important problem with kurtosis is that it can be
very sensitive to outliers (Huber, 1985). Hyvärinen (1999) proposed a class of
robust non-Gaussianity measures, inspired by an information-theoretic mea-
sure of non-Gaussianity, called negentropy. These measures J take the form

J(y) ∝ [E{G(y)} − E{G(ν)}]2 (4)

for some non-quadratic function G. In particular, choosing G that does not
grow too fast, one obtains more robust estimators. For example, one could
take G1(u) = log coshu, which is basically a smoother version of the absolute
value, not unlike the Huber function (Huber, 1985). A very fast algorithm,
called FastICA, for actually performing the optimization was proposed by
Hyvärinen (1999).

Another popular approach for estimating the ICA model is maximum

likelihood estimation. Interestingly, one can show that principles of maxi-
mum non-Gaussianity and maximum likelihood estimation are very closely
connected. If the nonquadratic function G in Eq.(4) is chosen as the loga-
rithm of the density function of the independent components (separately for
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each component if they have different distributions) the methods are approx-
imately equivalent (Hyvärinen et al., 2001). For non-Gaussian components,
the log-density is nonquadratic, so we see again that it is important to use
information not contained in the covariance matrix.

5 Conclusion

ICA is a recently developed method for decomposing multivariate data into
independent factors. The emphasis is on finding a factor rotation that gives
factors that are as independent as possible. In the general case where the
factors have non-normal distributions, the covariance matrix contains only
a part of the information on independence, and independence is a much
stronger property than mere uncorrelatedness. It can be shown that ICA
is closely related to projection pursuit: the most independent factor rotation
can be found by finding the most non-Gaussian projections.
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