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ABSTRACT

A novel approach for the problem of estimating the data

model of independent component analysis (or blind source

separation) in the presence of gaussian noise is introduced.

We de�ne the gaussian moments of a random variable as

the expectations of the gaussian function (and some re-

lated functions) with di�erent scale parameters, and show

how the gaussian moments of a random variable can be es-

timated from noisy observations. This enables us to use

gaussian moments as one-unit contrast functions that have

no asymptotic bias even in the presence of noise, and that

are robust against outliers. To implement e�ciently the

maximization of the contrast functions based on gaussian

moments, a modi�cation of our FastICA algorithm is intro-

duced.

1. INTRODUCTION

Indendent component analysis [5, 17] is a statistical model

where the observed data is expressed as a linear transforma-

tion of latent variables ('independent components') that are

nongaussian and mutually independent. Important appli-

cations of ICA are e.g. blind source separation and feature

extraction [17, 18]. We may express the model as

x = As+ n (1)

where x = (x

1

; x

2

; :::; x

m

) is the vector of observed ran-

dom variables, s = (s

1

; s

2

; :::; s

n

) is the vector of the latent

variables called the independent components, and A is an

unknown constant matrix, called the mixing matrix. The

vector n is noise, and is often omitted; most research has

concentrated on the problem of estimating the noise-free

model [1, 2, 3, 5, 15, 9, 17, 22]. For simplicity, we make

in this paper some assumptions that are not strictly neces-

sary: 1) the dimension of s equals the dimension of x, i.e.

n = m, 2) the noise n is gaussian and 3) the noise covari-

ance matrix � is known. In practice, this essentially means

that we use some additional method or prior knowledge to

estimate the order of the model and the covariance matrix;

such methods are somewhat independent of the method for

estimating the mixing matrix A.

In this paper, we introduce a novel approach to the esti-

mation of the noisy ICA model in (1). Using the concept of

gaussian moments, we show how it is possible to estimate

some higher-order statistics of the original (noise-free) data

using only noisy observations. This property is somewhat

similar to the property that higher-order cumulants are im-

mune to gaussian noise, but using gaussian moments, we

have a larger repertoire of nonquadratic functions that can

be used on the algorithms. In particular, we may choose

functions that are robust against outliers and/or reduce

asymptotic (mean-square) error. The simplest way to use

the gaussian moments is in the form of one-unit contrast

functions [9, 13]. As a practical method for optimizing

the contrast functions, a modi�cation of the FastICA al-

gorithm, which is based on a �xed-point iteration scheme

[15, 9, 13, 8], is introduced.

2. ONE-UNIT ALGORITHMS FOR NOISY

DATA USING KURTOSIS

Before introducing gaussian moments, we �rst show how

to estimate the noisy ICA model using higher-order cumu-

lants, especially kurtosis. Our approach is based on the

one-unit (or de�ation) methods for noise-free ICA [6, 9],

which are closely related to projection pursuit. Let us de-

note the noise-free data in the following by

y = As: (2)

The basic idea in the one-unit approach is to take some mea-

sure of nongaussianity and then �nd projections, say w

T

y,

in which this is locally maximized for sphered (whitened)

data, with constraint kwk = 1. Projections in such direc-

tions give consistent estimates of the independent compo-

nents, if the measure of nongaussianity is well chosen. This

approach could be used for noisy ICA as well, if only we had

measures of nongaussianity which are immune to gaussian

noise, or at least, whose values for the original data can be

easily estimated from noisy observations.

If the measure of nongaussianity is kurtosis [6] (the

fourth-order cumulant), it is almost trivial to construct one-

unit methods for noisy ICA, because kurtosis is immune to

gaussian noise. It must be noted, however, that in the pre-

liminary whitening, the e�ect of noise must be taken into

account; this is quite simple if the noise covariance matrix

is known. Denoting by C = Efxx

T

g the covariance matrix

of the observed noisy data, the ordinary whitening should

be replaced by the operation

~
x = (C��)

�1=2

x: (3)



In other words, the covariance matrixC�� of the noise-free

data should be used in whitening instead of the covariance

matrix C of the noisy data. In the following, we call this

operation 'quasi-whitening'. After this operation, the quasi-

whitened data
~
x follows a noisy ICA model as well:

~
x = Bs+

~
n (4)

where B is orthogonal, and
~
n is a linear transform of the

original noise in (1). Thus, the theorem in [6] is valid for
~
x,

and �nding local maxima of the absolute value of kurtosis is

a valid method for estimating the independent components.

3. A FAMILY OF ONE-UNIT CONTRAST

FUNCTIONS

It has been argued e.g. in [9, 10] that kurtosis may be a

rather poor measure of nongaussianity (contrast function)

in many applications. This is because it gives estimators

that are very sensitive to outliers, and have large mean-

square errors (at least for supergaussian data). Therefore,

in [9, 13, 12] an approach was developed in which the higher-

order statistics of the projectionw

T

y are taken into account

through general contrast functions of the form

J

G

(w

T

y) = jEfG(w

T

y)g �EfG(�)gj

p

(5)

where p = 1; 2, the function G is a su�ciently regular non-

quadratic function, and � is a standardized gaussian vari-

able. It has been proven [16] that �nding maxima of (5)

for whitened data, under the constraint kwk = 1 allows

for the estimation of the noise-free ICA model under cer-

tain assumptions. Moreover, such contrast functions can be

interpreted as approximations of di�erential entropy [12].

These one-unit contrast functions enable estimation of

independent components one-by-one, thus without prior

knowledge on the number of the independent components.

Moreover, the several one-unit contrasts can be used in par-

allel, which is approximately equivalent to ML estimation

[14]. It must be noted, however, that our contrast func-

tions do not require prior knowledge on the nature of the

distributions of the independent components, either.

4. UNBIASED CONTRASTS USING

GAUSSIAN MOMENTS

The approach of the preceding section could be used for

noisy data as well, if only we were able to estimate J

G

(w

T

y)

of the noise-free data from the noisy observations x. De-

noting by z a nongaussian random variable, and by n a

gaussian noise variable of variance �

2

, we should be able to

express the relation between EfG(z)g and EfG(z + n)g in

simple algebraic terms. In general, this relation seems quite

complicated, and can be computed only using numerical in-

tegration. The main point of this paper is to show that for

certain choices of G, a similar relation becomes very simple.

The basic idea is to choose G to be the density function of a

zero-mean gaussian random variable, or a related function.

Denote by

'

c

(x) =

1

c

'(

x

c

) =

1

p

2�c

exp(�

x

2

2c

2

) (6)

the gaussian density function of variance c

2

, and by '

(k)

c

(x)

the k-th (k > 0) derivative of '

c

(x). Denote further by

'

(�k)

c

the k-th integral function of '

c

(x), obtained by

'

(�k)

c

(x) =

R

x

0

'

(�k+1)

c

(�)d�, where we de�ne '

(0)

c

(x) =

'

c

(x). (The lower integration limit 0 is here quite arbi-

trary, but has to be �xed.) Then we have the following

theorem (proven in Appendix A):

Theorem 1 Let z be any nongaussian random variable,

and denote by n an independent gaussian noise variable of

variance �

2

. De�ne the gaussian function ' as in (6). Then

for any constant c > �

2

we have

Ef'

c

(z)g = Ef'

d

(z + n)g (7)

with d =

p

c

2

� �

2

. Moreover, (7) still holds when ' is

replaced by '

(k)

for any integer index k.

The theorem means that we can estimate the indepen-

dent components from noisy observations by maximizing a

general contrast function of the form (5), where the direct

estimation of the statistics EfG(w

T

y)g of the noise-free

data is made possible by using G(u) = '

(k)

c

(u). We call the

statistics of the form Ef'

(k)

c

(w

T

y)g the gaussian moments

of the data. Thus we maximize, for quasi-whitened data
~
x,

the following contrast function:

max

kwk=1

jEf'

(k)

d(w)

(w

T

~
x)g �Ef'

(k)

c

(�)gj

p

(8)

with d(w) =

p

c

2

�w

T

~

�w. This gives a consistent (i.e.

convergent) method of estimating the noisy ICA model due

to the theorem in [16].

To use these results in practice, we need to choose some

values for c and k. (The value of p is of little consequence.)

The choice of c is in fact avoided by the developments in the

next section. Two indices k for the gaussian moments seem

to be of particular interest: k = 0 and k = �2. The �rst

corresponds to the gaussian density function; such a con-

trast function has been used succesfully in noise-free ICA

[9] and its use can be justi�ed from the viewpoint of robust

statistics [10]. The case k = �2 is interesting because the

contrast function is then of the form of a (negative) log-

density of a supergaussian variable. In fact, '

(�2)

(u) can

be very accurately approximated by G(u) = 1=2 log coshu,

which has been widely used in ICA [2, 9, 22].

5. FAST OPTIMIZATION FOR GAUSSIAN

MOMENTS

To perform the optimization in (8), we can derive a mod-

i�cation of the FastICA algorithm [9, 8, 13]. Fast ICA is

a computationally optimized algorithm that optimizes one-

unit contrast functions considerably faster than ordinary

gradient methods. It can also be used to fast maximization

of the likelihood [14]. Speed-up factors of in the range of

10 to 100 are often observed.

First, we derive the FastICA algorithm for noisy data

usin kurtosis as the contrast function. Modifying slightly

the derivation in [15], we obtain the following form for the

FastICA algorithm:

w

�

= Ef
~
x(w

T

~
x)

3

g � 3(I+

~

�)ww

T

(I+

~

�)w (9)



where w

�

, the new value of w, is normalized to unit norm

after every iteration, and

~

� = Ef
~
n
~
n

T

g = (C��)

�1=2

�(C��)

�1=2

(10)

is the covariance of the noise after quasi-whitening. The

convergence proof in [15] is valid for (9) as well, showing

that the algorithm has global, cubic convergence. Several

independent components can be found using di�erent or-

thogonalization schemes, exactly as in the noise-free case

[15].

In the (more interesting) case where we use gaussian

moments in the contrast functions, we can replace in the

noise-free version all the expectations by gaussian moments

that give consistent estimates of the corresponding gaussian

moments of the original data. A detailed derivation is given

in Appendix B. Thus we obtain the following preliminary

form of the �xed-point iteration for quasi-whitened data:

w

�

= Ef
~
x'

(k+1)

d(w)

(w

T

~
x)g � (I+

~

�)wEf'

(k+2)

d(w)

(w

T

~
x)g

(11)

where w

�

, the new value of w, is normalized to unit norm

after every iteration, and

~

� is given by (10).

The �xed-point algorithm in (11) can be considerably

simpli�ed by adapting the value of c at every iteration. At

the same time, this solves the problem of choosing values for

the parameter c. Such an adaptation of c is justi�ed by the

fact that the function G needs only to be of a given shape, so

that the signs of certain non-polynomial cumulants do not

change [3, 16]. Moderate changes of c do not thus change

the convergence of the algorithm. For example, one could

adapt c before every step so that d(w) =

p

c

2

�w

T

~

�w =

1.

This gives �nally the following FastICA algorithm with

bias removal for quasi-whitened data:

w

�

= Ef
~
xg(w

T

~
x)g � (I+

~

�)wEfg

0

(w

T

~
x)g

(12)

where w

�

, the new value of w, is normalized to unit norm

after every iteration, and

~

� is given by (10). Surprisingly,

(12) is of the same form as (9). The function g is here

the derivative of G, and can thus be choosen among the

following:

g

1

(u) = tanh(u); g

2

(u) = u exp(�u

2

=2); g

3

(u) = u

3

;

(13)

where g

1

is an approximation of '

(�1)

, which is the gaussian

cdf (these relations hold up to some irrelevant constants).

These functions cover essentially the nonlinearities ordinar-

ily used in the FastICA algorithm [9, 13]. It can be seen

that the addition of

~

� in (12) is the key to removing bias.

Indeed, using the classical properties of kurtosis, Theorem 1

and the convergence proof of the �xed-point algorithm [13],

it can be seen that this modi�cation removes the asymptotic

bias that noise produces in ordinary ICA algorithms.

As mentioned above, more than one independent com-

ponents can be estimated using the same orthogonalization

schemes as in the noise-free case [15]. It is also simple to

derive adaptive one-unit learning rules as in [16].

6. SIMULATIONS

To test our algorithm in (12), we conducted lengthy exper-

iments. The dimension of the data was 4, the independent

components had i.i.d. Laplace distributions, and noise co-

variance was �

2

I, where � = :25. At each trial, a 4 � 4

mixing matrix was randomly generated, and normalized so

that the total energy of the signals was equal to 1. This

corresponds to a signal-to-noise ratio of 4. Badly condi-

tioned mixing matrices (condition number >10) were not

accepted, because any estimation procedure for noisy ICA

is highly sensitive to the conditioning of the mixing ma-

trix; badly conditioned matrices would produce outliers in

the error measure, making the analysis more di�cult. Only

one independent component was estimated at each trial,

and the resulting error was measured as:

error = min

i

j1� jw

T

b

i

j=kw

T

Bkj (14)

where b

i

is the i-th row of the mixing matrix after quasi-

whitening. Sample size N was varied from 1000 to 64000,

and the error for given N was estimated as the median of

the errors of 200 trials. At every trial, the FastICA al-

gorithm was run with 50 iterations, which seemed to be

always enough for convergence. The results are depicted

in Fig. 1. The dotted lines gives log-errors for estimators

without bias correction, using the 3 nonlinearities in (13);

the horizontal axis shows the logarithm of sample size. In

this case, errors do not tend to zero due to asymptotic bias.

The solid, dashed, and dash-dotted lines give the errors for

the 3 nonlinearities and using the bias correction. Now the

errors tend to zero, showing lack of bias. This con�rms that

our modi�cation of the FastICA algorithm is asymptotically

unbiased, i.e. consistent.

7. DISCUSSION

In this paper we introduced a new approach to estimation

of the noisy ICA model, using the concept of gaussian mo-

ments. The useful property of gaussian moments is that the

gaussian moments of underlying random variables can be

simply estimated from noisy observations. Thus we derived

a FastICA algorithm for noisy ICA that is computationally

simple and very fast, as well as statistically consistent and

robust against outliers. Comparing our approach to other

methods proposed for noisy ICA, we can conclude:

1. An Expectation-Maximization algorithm for noisy

ICA [21] provides a statistically elegant estimator for

noisy ICA, and has the bene�t of being able to esti-

mate the noise covariance matrix as well. An impor-

tant disadvantage with that method is, however, that

it has computationally exponential complexity (with

respect to the dimension of the data), which essen-

tially limits its use to small dimensions. The FastICA

algorithm is computationally considerably more e�-

cient; in the noise-free case, it has been succesfully

applied for data sets that have more than 100 di-

mensions [18]. Moreover, it seems likely that the EM

method of estimating the noise covariance could be

used also in connection with our algorithm as well.
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Figure 1: Convergence of the estimators for �xed noise level

(SNR=4) and sample size varying from 1000 to 64000. Hor-

izontal axis: log10 of sample size. Vertical axis: log10 of

error in (14). Dotted lines: estimators without bias cor-

rection, for the three nonlinearities in (13). Other lines:

estimators with bias correction (solid: g

3

, dashed: g

2

, dot-

dashed: g

1

). Only the estimators with bias correction have

errors that tend to zero.

2. Bias reduction techniques for ML estimation of noisy

ICA were proposed in [4, 7]. Such methods are com-

putationally simple, but since they are based on Tay-

lor approximations, they usually only reduce the

asymptotic bias, whereas our method removes it com-

pletely. Moreover, the FastICA algorithm is compu-

tationally more e�cient than the adaptive gradient

methods in [4, 7] in environments where fast tracking

is not needed.

3. The main bene�t of our method, based on gaussian

moments, with respect to cumulant-based methods

[20] is that our method is more robust against outliers

[10]. Furthermore, our methods seem to have, at least

for low noise levels, smaller mean-square errors for

most data sets [10].

4. Compared to methods using the joint likelihood of

the mixing matrix and the independent components

[11, 23], the FastICA algorithm is computationally

considerably more e�cient, since it reduces the di-

mension of the search space to a small fraction. Meth-

ods based on joint likelihood are useful, however, for

solving the additional problem of nonlinear recon-

struction of the independent components [11].
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A. PROOF OF THEOREM

Denote by p(:) the pdf of z. For k = 0, we have

Ef'

d

(z + n)g =

Z

'

d

(y)[

Z

'

�

(y � t)p(t)dt]dy

=

Z

p(t)[

Z

'

�

(y � t)'

d

(y)dy]dt = Ef'

c

(z)g (15)

which proves the theorem for k = 0. For other values of k,

introduce a hypothetical location parameter �. Taking the

k-th derivative (resp. integral) under the expectation of the

both sides of Ef'

c

(z+ �)g = Ef'

d

(z+n+ �)g, and setting

� = 0, we obtain the theorem for k > 0 (resp. k < 0). (The

lower integration limit for k < 0 must be set to 0 to comply

with the de�nition above).

B. DERIVATION OF FIXED-POINT

ALGORITHM FOR NOISY DATA

First note that

'

(k)

c

(x) = '

(k)

(

x

c

)c

(�k�1)

; (16)

and denote as above

d(w) =

p

c

2

�w

T

~

�w: (17)

Then the gradient of '

(k)

d(w)

(w

T

x) with respect to w can be

obtained as

r

w

'

(k)

d(w)

(w

T

x) = x'

(k+1)

d(w)

(w

T

x)

+

~

�w(c

2

�w

T

~

�w)

�1

(w

T

x)'

(k+1)

d(w)

(w

T

x)

+

~

�w(k + 1)(c

2

�w

T

~

�w)

�1

'

(k)

d(w)

(w

T

x) (18)

To proceed, we need the following lemma

Lemma 1 For all k, we have

(k + 1)'

(k)

(x) + x'

(k+1)

(x) = �'

(k+2)

(x):

(19)

Proof of lemma: For k � 0, the lemma follows from the

properties of the Tshebyshev-Hermite polynomials [19]. For

k < 0, take the Fourier transforms of both sides of (19):

(k + 1)(i�)

k

'(�) + i[(i�)

(k+1)

']

0

(�) = �(i�)

(k+2)

'(�)

(20)

which can multiplied by 1=(i�) to give

(k + 1)(i�)

k�1

'(�) + i(i�)

k

'

0

(�)� (k + 1)(i�)

(k+1)

'(�)

= �(i�)

(k+1)

'(�),

k(i�)

k�1

'(�) + i[(i�)

k

']

0

(�) = �(i�)

(k+1)

'(�) (21)

which is in fact (20) for k

�

= k � 1. Thus, by induction,

lemma holds for all k < 0 as well.

The lemma implies

d

�2

(k + 1)d

�k�1

'

(k)

(x=d) + d

�2

xd

�k�2

'

(k+1)

(x=d)

= �d

�k�3

'

(k+2)

(x=d)

,
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This means the gradient in (18) can be expressed as
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The equation giving the �xed-point algorithm was given

in [9] as

w

�

= EfrG(w

T

y)g �wEfG

00

(w

T

y)g: (24)

Choosing G(u) = '

(k)

c

(x), and using the above derivation,

we obtain the gradient part as (23). By Theorem 1, we have
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Thus we obtain (12).


