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Abstract. Markov Random Field (MRF) models with potentials learned
from the data have recently received attention for learning the low-level
structure of natural images. A MRF provides a principled model for
whole images, unlike ICA, which can in practice be estimated for small
patches only. However, learning the filters in an MRF paradigm has
been problematic in the past since it required computationally expen-
sive Monte Carlo methods. Here, we show how MRF potentials can be
estimated using Score Matching (SM). With this estimation method we
can learn filters of size 12 x 12 pixels, considerably larger than traditional
”hand-crafted” MRF potentials. We analyze the tuning properties of the
filters in comparison to ICA filters, and show that the optimal MRF
potentials are similar to the filters from an overcomplete ICA model.

1 Introduction

Probabilistic models of natural images are useful in a wide variety of applications,
such as denoising and inpainting[1], novel view synthesis[2], texture modelling
[3], and in modelling the early visual system [4]. Such models can also provide
controllable test stimuli for experiments in neurophysiology and psychophysics.

Two approaches that have received significant interest with relation to image
modelling are Markov Random Fields (MRF, e.g. [5]) and Independent Compo-
nent Analysis (ICA [6], in images context see e.g. [4]). Traditionally, in the MRF
framework the model parameters have been selected by hand (e.g. [3]) rather
than learned, whereas in the ICA approach the model parameters are learned
from the data. Only recently Roth and Black have shown that MRF performance
can be improved by fitting the model parameters to natural image data [1].

In ICA, the observed data vector x is assumed to be generated as a linear
superposition of features, x = As, where the distribution of the sources is usually
assumed to be a known supergaussian probability density function (pdf). Due to
the assumption that sources are independent, we can write p(s) = [ [, pi(s;) or for
the log-probability log p(s) = ), log p;(s;). If the mixing matrix A is invertible
and has inverse W, consisting of vectors w;, we can make a transformation of
density to obtain the pdf for the data as logp(x) = >, log p;(w! x)+log | det W|.
This model can easily be estimated with maximum likelihood.



Fig. 1. Sketch of a Markov Random Field: The MRF has maximal cliques of size 2 x 2
pixels; one clique x; is highlighted. Each unit of the field is associated to a pixel of the
underlying image Y. The potential energy V for each clique is defined as a function of
the inner product of the image patch corresponding to the clique with a bank of filters
of the same size as the clique, V(x) = ¢(w” x). This is visualized by the filter vector w
that is scanned over the whole image, and the product is computed with each clique. In
general there will be several filters in a filter matrix W, but for visualization purposes
only one is shown.

On the other hand, a MRF is a graphical model that is defined as a 2-D
lattice of units with undirected links, as illustrated in Fig. 1. The maximal cliques
formed by these connections play an important role as the potential energy of
the field is given as a function of these cliques. The key property of a MRF is
conditional independence, so the state of each unit on the field depends only on
those units it is directly linked to and the unit is independent of all other units
in the field. While ICA is limited to modelling small image patches, the MRF
provides a principled model for whole images of arbitrary size, even if the clique
size is limited.

The paper is structured as follows: In Section 2 we present the MRF model
and how it can be estimated with Score Matching. In Section 3 we discuss the
application of the model to natural images, show the filters that are obtained,
and analyze the properties of the filters compared to ICA models. Finally we
discuss the implications of this work in Section 4.



2 The MRF Model and Estimation

In contrast to ICA, where filter responses are computed by a simple inner prod-
uct, the energy (i.e. the negative logarithm of the non-normalized pdf) of a MRF
is given by a convolution of the image I with potential functions Uy
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where the convolution (denoted by *) runs over pixels indices z and y. The
elementwise nonlinearity ¢ gives the energy of the cliques of the field, which are
simply summed up to obtain the energy V of the field. As it is customary in ICA
to work on whitened data, we insert a whitening filter Q in the convolution so
it becomes V(IL,0) = >_; ., ¢(Ug x Q xI). The whitening filter can be absorbed
into the image, which corresponds to estimating a model for white data, but it
can also be viewed as a part of the potential function when the model is applied
to non-whitened data. It is important to use a whitening filter rather than an
arbitrary whitening matrix for this to hold.

The unnormalized probability of the model is given by the exponential of the
negative energy, and must be normalized by the partition function Z. Since Z
cannot be computed in closed form, we estimate the model using Score Matching
[7], which works on the non-normalized distribution. To estimate the model with
Score Matching we need to compute the Score function ¥; = g—g, the Score

Matching objective function J and its derivatives w.r.t. the parameter vectors.
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For further analysis it is convenient to rewrite the convolution as a discrete
sum of inner products. We rewrite the convolution I * Uy = Xwj, where X is a
matrix containing vectorized patches x; from the image, and wy, is a vectorized
filter. Similarly we write X; as a subset of X containing only those patches which
include the image pixel I;. Thus the energy becomes

V(I,0) =Y ¢ (wixi) (3)
k.t

Where the sum over ¢ is over the patches contained in the matrix X. Using this
notation we can compute the score function w.r.t. to the image pixels I;
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We denote elementwise multiplication of vectors by ®, and w indicates reversal
of the order of elements in a vector. It is important to note that in order to avoid
border effects, the index j does not run over all image pixels, but only those that
lie in the central region of the image so it can be reached by all pixels in the
filter w. The gradient of the objective function is now easily obtained from the
gradients
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Thus the Score Matching objective can easily be optimized by gradient descent.

3 Experiments on Natural Images

3.1 Methods

We performed experiments on natural images from P.O. Hoyer’s Imagel CA pack-
age®. For the ICA and overcomplete ICA experiments we randomly sampled
20,000 image patches of 8 x 8 and 12 x 12 pixels size. For the MRF, we sampled
5,000 larger ”images” of size 25 x 25 and 36 x 36 for use with filters of size 8 x 8
and 12 x 12 respectively. Now since the main advantage of the MRF model over
ICA is that it can be applied to arbitrarily large images, it may seem surprising
that we use images that are not significantly larger than the patches ordinarily
used in ICA. However, what is important for estimating the model is the size of
the filters relative to the images. In particular, since we use only the valid region
of the convolution, only the central pixels of the image contribute to the objec-
tive function. Thus the full range of dependencies is captured, and the filters
should be identical if they were estimated with larger images.

We used less samples for the MRF than for ICA since each of the images is
effectively generating more data points due to the convolution. In preprocessing
we removed the DC value of the images and normalized them to unit variance.
After sampling, we whitened the image vectors with a zero phase whitening filter
[8]. We did not reduce the dimensionality with PCA as it is customary in ICA
models, since this would destroy the structure that we wish to capture with the
MREF. Therefore the highest frequencies containing aliasing artifacts due to the
rectangular sampling grid will be boosted, which has to be taken into account
in the analysis of the results.

We performed experiments on a complete ICA model with 144 filters, and
a 16 times overcomplete ICA model with 2304 filters. The MRF had 144 fil-
ters, and all three models were estimated with Score Matching. The filters were
initialized randomly and estimated by gradient descent, in case of the MRF a
stochastic gradient with a batch size of 20 was used. The experiments were re-
peated 10 times with different random seed for the sampling of image patches

4 available at http://www.cs.helsinki.fi/u/phoyer/imageica.tar.gz
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Fig. 2. Comparison of the filters obtained for 12 x 12 (top) and 8 x 8 (bottom) image
patches. The complete and overcomplete ICA models shows the well-known Gabor like
filters, and the MRF potentials are very similar, sharing the properties of localization
and tuning for spatial frequency, phase and orientation. While for the ICA model it is
not necessary to normalize the filters, it is interesting to note that in the MRF case
almost all the filters go to zero unless the norms of the vectors w are constrained to
be unity.

and initialization of the weight matrix. All the filters were normalized to unit
norm, which is necessary to prevent filters from going to zero in the overcom-
plete ICA and MRF models. Convergence was determined by optical inspection
of the filters. Because the estimation of ICA with Score Matching is not widely
used, we also estimated the complete ICA model with FastICA, to control for
differences that are due to the estimation method.

3.2 Results

In most classical MRF work, the potentials that were used were of rather small
size such as 3 x 3 pixels and typically chosen to be directional derivatives. Thus
it is perhaps not surprising that the larger MRF filters we estimated are very
similar to ICA filters in appearance, being localized Gabor-like filters with tuning



Fig. 3. Polar plot of frequency vs. orientation for 12 x 12 image patches for ICA (circles)
and MRF (crosses). The orientations are not uniformly distributed, with filters prefer-
ring to be aligned along the pixels, horizontal or vertical, and at 45 degrees to these
directions. Due to the rectangular sampling grid, the maximum frequency is higher
along the diagonal, which may also account for the non-uniformity. Usually this prob-
lem is alleviated by dimensionality reduction amounting to high-pass filtering, which
is not easily possible with the MRF model.

for spatial frequency, phase and orientation. This is shown in Fig. 2, where ICA
and MRF filters are compared directly for different image patch sizes.

To analyze the similarity between the two models further, we fit Gabor func-
tion to the filters so we can analyze their tuning properties. We used a least
squares fit adapted from [9] to parametrize the filters in terms of length and
width, frequency, phase and orientation. In Fig. 3 we show a polar plot plotting
orientation against frequency.

In Fig. 4 we show histograms of the size and frequency distribution for the
three models. The complete ICA model produces very localized filters which
cover a relatively narrow band of frequencies. Both overcomplete ICA and the
MRF give slightly larger filters with a slightly broadened distribution of frequen-
cies. While the distributions for the MRF and ICA are somewhat different, it is
important to note that the filters for overcomplete ICA are also slightly different
and in some respects more similar to the MRF (e.g. somewhat larger filters with
less peaked frequency tuning). This may suggest that there are no fundamental
differences between the filters obtained from the two models.

We performed t-tests to quantify the statistical significance of the difference
in mean length, width and frequency of the filters between the four models,
FastICA, ICA and overcomplete ICA estimated with Score Matching and the
MRF. Only in the comparison between the MRF and overcomplete ICA, there
was no sufficient difference in the tuning properties to reject the null hypothesis
at the Bonferroni corrected threshold of 0.017. It is interesting to note that
estimating the same ICA model with two different estimation methods produces
a larger difference in the filters, than the difference between overcomplete ICA
and the MRF estimated with Score Matching.
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Fig. 4. Tuning of ICA (top), MRF and overcomplete ICA (bottom) for 12 x 12 image
patches. We show the size (length and width in pixels) of the Gaussian envelope of
the Gabors we fit, and the distribution of frequencies (rad per pixel). Additionally, we
show the distribution of orientations, which is clearly not uniform in both cases.

4 Discussion

Estimating optimal MRF potentials from natural images has previously been
attempted by Roth and Black [1], making use of Contrastive Divergence (CD)
[10]. We would like to point out that the filters obtained in the work of Roth
and Black have a very different appearance, being disjoint and distributed over
the whole image patch rather than the coherent and smooth Gabors that we
obtain. The patch size used by those authors was considerably smaller (3 x 3
and 5 x 5, which may forces features to spread out more to capture the longer
range dependencies of natural images. In addition, it is conceivable that with the
particular Monte Carlo method used by the authors, a different local optimum
is found or the method encountered some other problems.

It is possible to view the MRF model as a highly overcomplete ICA model
with some additional constraints. In particular, the convolution in (1) can be
interpreted as keeping the image fixed, and multiplying it with the filters in



different positions.The resulting ”filters” would be shifted copies of the original
filters at different positions in the image and padded with zeros. Thus, while
the model is highly overcomplete, non of the filters model the whole image, but
only regions. If we assume natural images to be stationary having copies of the
filters at different positions does not have an effect, and the main difference to
ICA would be that the size of the filters is restricted to be much smaller than
the image. This makes it quite obvious that optimal MRF filters should not be
vastly different from ICA filters. It would be interesting to investigate if there
are systematic differences in the sets of filters, and how they tile the parameter
space of positions, orientations etc. In particular, while an ICA basis may contain
nearly identical filters in different positions, this should not be the case with the
MRF model. Therefore, if one were to attempt to use ICA filters in place of MRF
potentials for e.g. a denoising task, one would face the problem of selecting the
correct subset of an ICA basis to form a set of near-optimal MRF potentials.

To conclude, we have show that it is possible to learn the filters used in
a non-Gaussian Markov Random Field model. The learning is based on score
matching and leads to Gabor-like filters. This gives a well-defined probabilistic
model of whole images instead of just small patches.
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