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Abstract. We present a novel extension to Independent Component
Analysis (ICA), where the data is generated as the product of two sub-
models, each of which follow an ICA model, and which combine in a
horizontal fashion. This is in contrast to previous nonlinear extensions
to ICA which were based on a hierarchy of layers. We apply the product
model to natural image patches and report the emergence of localized
masks in the additional network layer, while the Gabor features that are
obtained in the primary layer change their tuning properties and become
less localized. As an interpretation we suggest that the model learns to
separate the localization of image features from other properties, since
identity and position of a feature are plausibly independent. We also
show that the horizontal model can be interpreted as an overcomplete
model where the features are no longer independent.

1 Introduction

The study of natural images statistics has recently received a great deal of at-
tention in machine learning as well as in computational neuroscience for its wide
applicability from machine vision to the understanding of cortical processing.
There is now a large body of evidence suggesting that neural visual systems are
adapted to the statistics of the input [1, 2], where the timescale of adaptation can
range from evolutionary scale to the scale of seconds. Hence, visual mechanisms
reflect the statistical structure of the visual data. For example the features ob-
tained by applying Independent Component Analysis (ICA) to natural images
have very similar properties to those of Simple Cells in mammalian primary
visual cortex[3–5].

In ICA, the observed data vector x is assumed to be generated as a linear
superposition of features, x = As, where the distribution of the sources is usually
assumed to be a known supergaussian probability density function (pdf). Due to
the assumption that sources are independent, we can write p(s) =

∏
i pi(si) or for

the log-probability log p(s) =
∑

i log pi(si). If the mixing matrix A is invertible
and has inverse W, consisting of vectors wi we can make a transformation of
density to obtain the pdf for the data as log p(x) =

∑
i log pi(w

T
i x)−log | detW|.

This model can easily be optimized with maximum likelihood.



A weakness of ICA is, that as an inherently linear model, it is not able to re-
cover independent sources from data with complex, nonlinear dependencies such
as most natural signals. Therefore attempts have been made [6, 7] to extend ICA
to model more general densities. Taking these ideas in a different direction, here
we try to nonlinearly extend the ICA model to include two classes of sources,
which are mixed independently to reflect different aspects of an observed data
vector. The two parts are then combined nonlinearly to produce the actual ob-
served data vector. For modelling natural image patches this means that we
independently sample from submodels xl and xr , and the actual observed image
patch x is obtained as x = xl ⊙xr, where ⊙ denotes elementwise multiplication.

This kind of model can be interpreted as taking the basic principle from a
linear superposition model such as ICA but generalizing it to a nonlinear super-
position of different ”sources”, where the sources themselves are now generated
as ICA-like linear superpositions. As a general example of this idea, one visual
subsystem could specialize in ’what’ there is in a particular scene, whereas an-
other would code for ’where’ in the scene the stimulus is located. These two are
plausibly independent in general, but obviously cannot be captured by indepen-
dent sources in a linear model.

2 Methods

2.1 The proposed model

We define the generative model for the data as follows:

x = xl ⊙ xr = As ⊙ (Bt + c) (1)

where xl = As is the ”classical” ICA or sparse coding part and xr = Bt + c
codes for aspects of data that cannot be captured by the linear ICA model. The
⊙ indicates elementwise multiplication, so each pixel is defined by the product
of two independent parts. The matrix A is square and invertible whereas B is
undercomplete, with significantly fewer columns (features) than A. The vectors
s and t are the independent components of the two subimages. We require both
B and t to be non-negative to ensure that that xr is always positive. c is a small
constant that is added for numerical stability, and it was set to c = 0.1 for all
experiments. The model can be written more succinctly as

x = D(Bt + c)As (2)

where D indicates diagonalization of the vector.

2.2 Maximum Likelihood Optimization

As A is assumed to be invertible, we can solve for the components s as

s = A−1
D(Bt + c)−1x = WD(Bt + c)−1x (3)



where we define the filter matrix W = A−1 to be the inverse of the feature
matrix A. Now we define a pdf on s following the ICA model

p(s) =
∏

i

exp (g(si)) =
4
√

3

π

∏

i

1

cosh2(π/
√

12si)
(4)

where the function g(s) defines the normalized log-pdf, which we choose to be
the logistic distribution. Now we transform the density to obtain the probability
distribution for x as

log p(x|W,B, t) =
∑

i

g(wT
i D(Bt+ c)−1x)+ log | detW|−

∑

i

log |bT
i t+ c| (5)

where the extra terms due to the normalization constant are given by the de-
terminant of the Jacobian of the matrix WD(Bt)−1. From this we get the log-
likelihood of the parameters for a sample of data vectors of size T . We choose a
flat prior for A and B and a Laplacian prior for t, so the log-likelihood for one
data sample becomes:

log p(W,B, t|x) =
X

i

g(wT

i D(Bt + c)−1
x) + log |detW| −

X

i

log |f(bT

i t)| − |t|1

(6)

This can now be optimized by taking gradients of the sample expectation w.r.t.
both the weight matrices and the components t.

3 Identifiability with Artificial Data

To create random data following the model, we sample from a logistic distri-
bution for s and from an exponential distribution for t. The mixing matrices
are also generated randomly, with the restriction that the matrices have to be
well-conditioned for the algorithm to converge. We arbitrarily constrained the
condition number of A and B to be no larger than ten. Furthermore, B is con-
strained to be non-negative, following the model definition. The independent
mixtures xl = As and xr = Bt + c are multiplied elementwise to obtain data
following the model distribution. We generated 20,000 samples with a dimen-
sionality of 60, and with 4 and 8 features in B. Then, we attempted to estimate
the model parameters A and B from the data. Like in ICA, the order and the
sign of the components cannot be determined, so given the true mixing matrix
Ã we expect the product ÃA−1 to be a permuted diagonal matrix with random
sign. Similarly, for the second part of the model we expect B̃B† to be a permuted
identity matrix. Here the pseudo-inverse is used, since B is not a square matrix.

The results for our experiments on artificial data are given in Fig. 1. Up to
some noise, both A and B are correctly identified. The product ÃA−1 shows
that the vectors in A and Ã are identical up to randomly flipped signs, but the
order of the vectors is randomized. Since the vectors in B are constrained to be
non-negative, there is no sign indeterminacy but only the order of the vectors is
shuffled. This shows that the parameters of the proposed model can be identified
for a range of different sizes of B.



Fig. 1. Both parameter matrices A and B can be identified up to order and sign
indeterminacies. We show the product of the true and the inverse of the estimated
matrices, which results in permuted diagonal matrices. In the plots we code 0 as gray,
1 as black and -1 as pure white. The two plots on the left are for data generated with
4 vectors in B, on the right there are 8 vectors. The larger plots show ÃA−1, the
smaller ones B̃B†, the product of the true parameter matrix and the pseudoinverse of
the estimated matrix.

4 Experiments on Natural Images

4.1 Preprocessing

Experiments were performed on natural image patches sampled from natural
images available in P. O. Hoyer’s ImageICA package4. We used 20,000 patches
of size 16 × 16 pixels for all experiments and performed zero phase whitening
on the data [8]. The dimensionality was not reduced, and the DC-component
was retained. We discarded 20% of the patches with the lowest variance, which
correspond to blank image regions and do not significantly affect the gradient.

We performed experiments with B having a varying number of features be-
tween 2, 4, 8 and 16. The estimation was started with A initialized randomly,
and B to a matrix of all ones divided by the number of elements. The hidden
variables t were also initialized randomly, but each vector t was then normalized
to unit L1-norm. This had the effect that, with c = 0.1, each pixel of xr was
close to one initially and not influencing the xl part of the model. The estima-
tion was then started by learning only the matrix A for xl with a stepsize of
0.1, until visual inspection showed that it had converged to an ICA basis set
characterized by Gabor-like receptive fields. After this initialization, A, B and
t were estimated simultaneously. The stepsize for t was chosen to be 1, while
the stepsizes for A and B were both 0.1. The non-negativity of the components
xr was ensured by forcing both B and t to be non-negative after every update
step.

4 available at http://www.cis.hut.fi/projects/ica/imageica/



4.2 Separation into Gabors and localized masks

Since the novel model presented here is a generalization of ICA, and in fact
feature matrix A is initialized with an ICA basis, it should not be surprising that
the ”independent components” recovered by the model are Gabor-like filters that
are localized, oriented and band-pass, as shown in Fig. 2(a) for different numbers
of columns in B. However there are important differences that emerge once the
modulation due to the Bt component is taken into account. While for a small
number of columns in B the features look like the Gabor filters familiar from
the classical ICA model, they become less localized as the number increases. In
all cases the filters in B learn to perform a localized modulation, that dampens
some of the image to create a patch with blank areas. The vectors in B evenly
tile all of the pixel space, but selectively boost or mask regions of individual
patches. This is shown in Fig. 2(b).

4.3 Dependence of tuning properties on the number of filters

To investigate the change in appearance of the features in A, we parametrized
them with a least-squares fit to Gabor functions, i.e. Sinusoids with a Gaussian
envelope. We then analyzed the tuning statistics of the Gabors in terms of fre-
quency and size. As we show in Fig. 3, there is a significant change in aspect
ratio and modulation (number of zero crossings of the sinusoid) of the Gabors
as the number of filters in B is increased.

5 Discussion

5.1 Separation of structure and position

The most striking aspect of the results is that with an increasing number of
vectors in B, the appearance of the features starts to differ significantly from
the Gabor-like features that are obtained by most other ICA or Sparse Coding
models. All features become less localized, and especially the highest frequency
features, which tend to be very localized in the classical ICA model, loose all lo-
calization and cover the whole image patch. In an ICA model, this would clearly
be less than optimal because most natural images patches have only localized
structure. In the nonlinear model the situations is quite different though: De-
pending on the structure of xr, the localization properties can be recovered by
”masking off” the part of the reconstruction xl that does not contribute to the
total image patch x = xl⊙xr that is being coded. This is conceivable since most
image patches have blank regions and only localized structure such as edges or
textured objects. Rather than having a set of features that can code for arbitrary
image patches, it is advantageous to independently specify the region of the im-
age patch that contains structure, and the kind of structure. Our new model can
be viewed as accomplishing this by coding image structure in xl and location in
xr. By having the ICA reconstruction xl = As matched just to the structure,
and discarding most localization information from the basis A, a representation



Fig. 2. Comparison of the features obtained with ICA (top) and the new product
model (bottom three rows). We show a subset of 64 randomly chosen feature vectors of
A in the first column, and their Fourier power in the second column. For the product
model the with 4, 8 and 16 secondary features, the vectors of B are shown in the third
column. While A converges to the familiar ICA features, B produces localized masks.
As the number of features in B increases, the Gabors in A spread out to cover more of
the image patch, this is particularly evident for 16 columns in B. Intuitively, this can
be explained as a masking, where combining one feature from A with different masks
from B can produce new Gabors in various positions. The Fourier transforms show
how the features become more localized in Fourier space as the number of vectors of
B increases, but also helps to identify the unlocalized highest frequency features as
aliasing artifacts: All the Fourier power should be confined to a cicle around the origin,
the four corners are artifacts due to the rectangular sampling grid.
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Fig. 3. Change in tuning of the basis functions in A with an increasing number of
local fields in B. The aspect ratio increases for more fields, i.e. the Gabors become
more elongated, filling most of the patch rather than just a small portion. The number
of sidelobes of the Gabors also increases, making the basis functions less localized and
more similar to a Fourier basis.

with higher likelihood can be achieved. The additional part of the model xr

then simply masks off where in the image patch the particular structure occurs,
leaving the rest of the image patch blank. In this way, is possible to encode a
particular image patch with fewer basis functions than with classical ICA, since
the features can become more specialized for orientation and frequency, while
the localization in preserved in the second part of the model.

Along these lines, it is also possible to view the novel model as an implicitly
overcomplete version of ICA. By multiplying each of the n features in A with
each of the m features in B, a new set of features of size mn is obtained. For
a large number of secondary features, e.g. m = 16 the vectors in A are close
to sinusoids and the vectors of B are nearly Gaussian. Each of the sinusoids is
masked with Gaussians at different positions, which corresponds to constructing
a new set of Gabor features. It is important to note that the weights of the new
features will no longer be independent, since the ”mask” xr chosen for one of
the features in A will also be applied to each other features.

5.2 Relation to Contrast Gain Control

One of the initial motivations for the way the model was specified, in particular
the nonnegativity of xr, was that the secondary features would perform divisive
Contrast Gain Control (CGC) on the image patches. This can be easily seen by
rewriting 1 as

x

Bt + c
= As (7)

where with slight abuse of notation the fraction is taken to be elementwise.
Models of divisive normalization in various ways are abundant in the literature [9]
and are motivated from the observation that natural images are not stationary,
and the statistics vary considerably from one image region to another [10].



However, in preliminary experiments (results not shown) we could not con-
firm a significant reduction in energy dependencies in our model compared to
the classical ICA model.

6 Conclusion

We have presented an extension of ICA with a second layer, where, in contrast to
previous work, the layers are horizontal rather than hierarchical. After showing
the identifiability on simulated data, we have applied the novel model to natural
images. We report the emergence of localized ”masks” in the additional layer,
while the Gabor-like features in the primary layer become less localized than in
classical ICA. As a possible interpretation we suggest that the model learns to
separately code for the structure and position of features in image patches. This
gives the features an implicit position invariance, with one feature in A being able
to code for many different positions conditional on B. This is a powerful principle
which is outside the scope of linear models but may be of great importance in
neural visual systems.
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