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Abstract

We consider a hierarchical two-layer model of natural sigima which both layers

are learned from the data. Estimation is accomplished byeSéatching, a recently
proposed estimation principle for energy-based modelshdffirst layer outputs are
squared and the second layer weights are constrained torbaagative, the model
learns responses similar to complex cells in primary visoalex from natural images.
The second layer pools a small number of features with sinilntation and fre-

quency, but differing in spatial phase. For speech data, btairo analogous results.
The model unifies previous extensions to ICA such as subspaté&pographic mod-
els and provides new evidence that localized, orientedsehavariant features reflect
the statistical properties of natural image patches.

1 Introduction

A variety of methods like Independent Component Analys3(Isee Comon, 1994)
and Sparse Coding (Olshausen & Field, 1997) have been dpplreodel the statistical
structure of natural signals such as images and soundsmipwtational neuroscience,
the goal of modelling these signals with unsupervised lagrmethods is to gain a bet-
ter understanding of sensory processing, which is assumeel linked to the statistics
of ecologically valid stimuli (Barlow, 1961; Hyvarinen ak, 2009).

Linear ICA is limited in scope and cannot capture arbitragpehdencies, so more
recent models use a nonlinear representation to betteureajbte structure of the data.
In particular, there is a growing number of hierarchical msdvith two weight layers.
These include direct extensions to ICA such as Independdrgdaice Analysis (ISA)
and topographic ICA (TICA, see Hyvarinen et al., 2001; Hymén & Hoyer, 2000)
which can be viewed as employing a manually selected, fixedngklayer that pools
over first layer features modelling dependencies which cbbe removed by a linear
transform. The fixed second layer in these models has thentayathat the probability
density function (pdf) can still be normalized in closednfigror approximations for



the likelihood can be found. Thus a straightforward estiomabf these models by
maximizing likelihood is possible.

More recently, models where the second layer is also leafnoad the data have
received attention. However, this comes the expense of a ownplicated estimation,
since these models can in general not be normalized in cfoser making maximum
likelihood learning very difficult. Two recent models of shkind are the hierarchical
Bayesian model by Karklin & Lewicki (2005, 2006) and the hmhical Product of
Experts (Osindero et al., 2006). The first is a generativeahiadvhich the components
are not independent and identically distributed, but theawae is given by hidden
variables. The second model is an energy-based model withti@ttable partition
function, similar to the one we consider here, and it is estétd using Contrastive
Divergence (CD, Hinton, 2002).

We present a two-layer model of natural stimuli where botreta are estimated
from the data, and analyze the resulting pooling patterrkarsecond layer. Follow-
ing the classical energy model of complex cells (Adelson &gj@ea, 1985; Spitzer &
Hochstein, 1985), linear filter outputs from the first layesr aquared and then pooled,
where the pooling is learned from the data.

In our analysis we focus on two points in particular. We coraphe results obtained
by estimating both layers of the model simultaneously, \&igimplified model where
the second layer is estimated on top of a fixed ICA basis in tkelfiyer, and report
differences in tuning of the linear filters as well as the leigbrder units. Furthermore,
we analyze the effect af;-normalization of the second layer on the resulting outputs
and show that this normalization plays a significant rolebtaoing pooling patterns
in line with previous complex cell models.

The model is estimated with Score Matching (Hyvarinen 2@D07a), a consistent
estimation method for energy-based models which cannabirealized in closed form.
Traditionally, these energy-based models would have todbenated with Markov
Chain Monte Carlo (MCMC) methods, which is computationaipensive and it is
hard to evaluate convergence. While recent methods likar&stive Divergence are
computationally more efficient, it is still necessary toget Markov chain, the choice
of which may greatly influence the convergence propertiesréSMatching, in contrast,
gives an objective function which can simply be optimizedybgdient methods.

This paper is organized as follows. In Section 2, we discuegigus models of
natural images, focussing on ICA and its extensions. Ini@e&, the two-layer model
is presented including details of our implementation aed3bore Matching estimation.
In addition, we review how the Score Matching objective fimtis derived. We test
the model and estimation on synthetic data in Section 4. bti@e5, we apply the
method to natural image data. We present models estimathadiiffierent constraints
and analyze the tuning statistics of the model cells fortt@mnplex cell properties. We
compare the effect of different normalization methodslierd¢econd layer of the model,
and compare the results with a complete model to those witivarcomplete first layer.
We focus on models with a non-negative second layer, butalssider models without
the non-negativity constraint. In Section 6 we perform amexperiments with speech
data, where we obtain a sparse pooling in the second layersthary similar to the
results for natural images. In Section 7 we discuss how ouk wompares to other
recently developed two-layer models, highlighting thepipled estimation with Score
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Matching and the analysis of the complex cell-like progertof the outputs in our
model. Finally we conclude with Section 8. Preliminary fesbave been published in
(Koster & Hyvarinen, 2007).

2 Modelling of Natural Images

Ever since mammalian visual receptive fields were descityeldubel and Wiesel in
the 1960’s (see e.g. Hubel & Wiesel, 1959, 1962), effortehmen made to understand
why the receptive fields have the observed properties. Geeessful approach is based
on the idea that neural processing should be matched tstatstf ecologically valid
stimuli, i.e. natural images. This lead to the developmdrgtatistical models like
sparse coding (Olshausen & Field, 1996) and ICA (Jutten &diker 1991; Comon,
1994), which result in basis functions with a strong resembé to the receptive fields
of simple cells.

The approach we use in this paper is inspired by the clasKigaimodel, so we
will briefly look at ICA and its application to natural imageBor the ICA model we
suppose that a vector of independent components, or sauisesxed to generate the
observed data vectar. This can be written as

x = As. (1)

In the simplest case, which is usually considered, the damelity of the source vec-
tor and the data vector is the same @ a square, invertible mixing matrix. Thus the
components can be recovered from the data using the filteix\a&t = A~! as

s = Wx. (2)

There is a range of methods for the estimation of this modele lwe focus on the
likelihood-based approach. The distribution of the indinal components is modelled
by densitieg;, so by independence we have

p(s) =[] p(si) (3)
This allows us to write the pdf of the data as

p(x) = | det W| Hpi(wlfx) (4)

wherew?! are the rows oW, and the determinant is a normalization factor due to the
transformation of the density. Thus we obtain the log-Itkebd of the parameters for
a finite sample of data as

log L(W) = 37 3" log p(w! (1)) + T log(| det W) (5)

wherex(t) runs overT’ samples from the data. The likelihood can easily be maxi-
mized w.r.t. the filtersW by gradient ascent. Estimating an ICA model for natural
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image patches results in filters that are localized, orteated band-pass, resembling
the spatial receptive fields of simple cells in the primagual cortex (V1).

However, a large fraction of cells in V1 is not well descrilich linear response. In
particular, complex cells, which are insensitive to spgiase, cannot be modeled with
a linear transform. To account for these responses, the |Gdettan be extended by
adding a fixed second layer on top of squared linear filteraesps: Methods such as
Independent Subspace Analysis (ISA, see Hyvarinen & HB@00) and topographic
ICA (TICA, see Hyvarinen et al., 2001) employ a pooling afdar filter responses to
model residual dependencies between linear filters. In t&Ayector of components
is projected onto a number of subspaces. Squared normsjetpons onto subspaces
are then computed as

u =y 8 (6)

i€S;

where the index runs over all the components that belong to tfiesubspace. The pdf
of the model then takes the form

p(0) = [det Wlexp | =D f | 3 (w/x)? ()

1€S;

where the scalar nonlineariffy(.) defines the overall shape of the pdf. The pooling can
also be viewed as a second linear transformation, or wesylatr| where a number of
first-layer units converge into one higher order unit. Simmependence is assumed
only for the higher order units;, the linear features that are projected onto one sub-
space may have dependencies. Applied to natural imagesieshlts in a pooling of
features with similar frequency, orientation and locatibat different spatial phase.
Thus it can be argued that complex cells are tuned to capgpendiencies, in partic-
ular correlations in the variance of linear filters (Schwa&tSimoncelli, 2001), which
the above model makes explicit by computing squared norms.

3 The Model and its Estimation

3.1 The two-layer model

While the ISA model described above gives important ing gt the interpretation of
simple and complex cells as feature detectors tuned to #istgts of natural stimuli,
it is somewhat limited as an explanatiahy the specific pooling is taking place, since
only a single linear transformation is learned from the @atd the additional connec-
tivity is pre-specified. This rules out certain types of cectivity that might provide a
better model of the data, in favor of architectures that lien hypothesized from the-
oretical principles. It would be preferable to estimate latimo-layer model, to allow
us to evaluate whether the kind of connectivity used in earhodels is actually valid
from the point of view of statistical optimality. A concejailly simple extension to the
ISA model described in the previous section would be to metta¢ basic structure, but
learning the second layer from the data rather than fixinghus we define a pdf that



can be viewed as describing a two-layer network
logp(x) = ) f [viig (Wx)] —log Z(W. V) (8)
h

where the first term in the log-probability is given by a suneiothe outputs of indi-
vidual second layer units. Het&(W, V) is the partition function of the model, i.e. a
function of the model parameters which ensures that thenpe§iates to unity. The;
are rows of the second layer weight matsix while the first layeW has been retained
from the ICA model. The two weight matrices need not be squsren generaW
will be of sizen x m andV of sizem x o. We have two scalar nonlinearitigs.) and
f(), the first of which computes nonlinear features from the dateereas the second
shapes the overall pdf. Such a model cannot be normalizeld$ed form, since the
normalization constant is given by an intractable integral. Therefore we use Score
Matching for the estimation, which provides a straightfardrmethod for learning in
energy-based models.

For the results presented in this work, we have defintexdbe a squaring operation,
unless otherwise specified. In addition, the second laysromastrained non-negative.
This is a natural choice for a model of complex cells, whergots are computed by
pooling over squared or rectified simple cell responseddéRdl Ronner, 1983; Spitzer
& Hochstein, 1985). The second nonlinear function is chdedre of the form

f(u) = =/[u[ +1 9)

which ensures that the overall distribution of the modelugesgaussian. Again, this
nonlinearity was used in all the simulations, unless otimswnentioned. Using these
nonlinearities, the model distribution becomes:

logp(x) = — Z \/VE (Wx)? + 1 —log Z(W, V) (10)
3

We further constrained the vectar$ to be normalized to unik, or alternatively to unit
Li-norm, which corresponds to constraining the second layis to have unit output
energy and encourages sparse connectivity.

3.2 Score Matching

Score Matching (Hyvarinen, 2005, 2007a,b) is an estimatiethod that allows learn-
ing of statistical models which are only specified up to a iplittative normalization
constant (partition function). Consider samples from alosn vectorx € R” that fol-
lows a pdfp, (&) and to which we would like to fit a model. We define a parametrize
model density(£|©) which includes the true pdf and whe@&eis a parameter vector
that we would like to estimate. Suppose that the normatimatonstantZ of the pdf
cannot be computed in closed form, and we g¢$e denote the unnormalized distribu-
tion. In the form of a log-probability we have the model:

log p(£|©) = log ¢(£|©) — log Z(©) (11)



The model score function, which we define as the gradientefd-probability with
respect to the data, is obviously identical foandp, and given by:

V(& 0) = Velogp(€: O©) (12)
Likewise the score function of the observed data is denoged b
Uy () = Velog px(.) (13)

Working with the score function thus has the advantage trddes not depend on the
normalization constarit. The model can now be estimated by minimizing the squared
distance between thaodel score functio® (£; ®) and thedata score function,(.).

This objective function is defined by

1©) =5 | p(@(E:®) — i) (14)

This may not appear to be very useful at first sight, becausmang the data score
function is a nonparametric problem, and would require 88 kffort than estimating
the normalization constant. However, a much simpler forthefbjective function can
be obtained. The full proof can be found in (Hyvarinen, 2008k start by expanding
the squared term to

1©) = 5 | m@Eola g [ n@ln@re s
SR GHEDRROT (16)

Here we note that the first term does not depend on the data &owtion, so rewriting
it with the squared norm expanded as a sum we get

1 2 "1 :
§/£6R"pX(£)”\I](£; 0)|"°d¢ = &RHPX;Q%' (&;©)dg a7)

where the); are elements of the score function. The second term is qunsta ©, so
we simply set
1
IR GG 1)
geRn

Thus we focus on the third term, where we start by writing betihner product
| nleue o) ue)e - > PR G INSE D
§€R” £€R”

and consider a single element of the sum. We now use the dfioit the score func-

tion ¢ ;(§) = 810(%7?;(5), so making use of the chain rule, the term becomes

9 §) op(§) , ..
Z/EGR” 1/% € 9) |: g 1ngx :| dE Z/;ER" px 852 Q/JZ(E, @)dE
(20)




We then use multivariate partial integration (Hyvarin2dQ5) to obtain the-th term as

_ Ip=(§) . _ Ni(&;0©)
L Buieone= | nio™E

where the integration constant is zero asglim (&) = 0. Working with a finite

€+ D (21)

sample of data, we can replace the exact expectations withlsaverages. Collecting
the terms, we then obtain the expression

70)= 3323 [grnter0) « guixne)| v @2

which is easy to evaluate since it only contains terms daepgrah the model pdf. Score
matching has been shown to provide a consistent estimayogfihen, 2005), so if the
data follows the model/ is asymptotically minimized for the true parameters.

3.3 Estimating the model

We can now apply the Score Matching framework to the modehddfin Equation
(10). The score function of the two-layer network is given by

U(x) = Vi Y _ f[vig (Wx)] (23)
h

SO0 we can write the Score Matching objective, i.e. the sqldigtance between model
and data score function as

12

> wivige(wix(t)) f1(vi g(Wx(t)))

Optimizing this objective is straightforward by gradiemsdent, which requires the
gradients of the above expression with respect to the elenoérihe weight matrices
W andV. These gradients are given in the Appendix. The non-nagatind norm
constraint were implemented by projecting onto the comdtsset after each gradient
step.

4 Experiments on Simulated Data

To verify the identifiability of the model we estimated it imulated data with a known
higher-order structure. We generated data following tern®del, which is a special
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case of the proposed two-layer model and easy to sample fiidme. data generated

in this way contains higher order dependencies in the forrooimon variances for
groups of source variables, which cannot be captured by Eafples from the ISA
model were generated as follows: To obtéimbservations of an-dimensional vector
which contains: subspaces, we first create a maivixof n x 7" observations from an
I.i.d Gaussian with unit variance, and a matBxof £ x 7' variance parameters from

a uniform distribution. We introduce dependencies withioups of the Gaussians by
multiplying them with a common variance from the uniformtdtsution: U(i,¢) =
M(i, t)B(j,t),Vi € S;. The supergaussian variables produced in this way are then
multiplied with a mixing matrixA that is also generated randomly, so the data matrix
iIs X = AU. Before the estimation the data is whitened. For the expmarimishown
below we sefl” = 5000, n = 21 andk = 7, so each subspace has three elements.

The experiments with artificial data mainly served the pagio confirm the consis-
tency of the estimation, but also to try out various inization and normalization pro-
cedures for the experiments on natural stimuli. We compare@and L,-normalization
of the second layer matri¥ , and we compare randomly initializig and initializing
it with an identity matrix, which allows pre-learning 8% as an ICA model.

For the visualization of the results, note that in ICA, ona sanply multiply the
mixing matrix A with the estimated filter matri¥V to obtain a permuted diagonal ma-
trix if the components are identified correctly. Thus vismapection ofZ = W x A
can be used to to determine convergence. The ISA model isifidete only up to
subspaces due to rotational symmetry, where the seconddatermines the subspace
ownership of each element @. By multiplying the second layer matri¥ with Z,

a block-diagonal matrix with permuted rows should be oladiif the algorithm con-
verges correctly.

Results are presented in Figure 1. In each of the four expeetisga-d) we per-
formed, the top row shows the second la¥eon the left and the produd x Z, on
the right. In the bottom row, on the left we shdwwhere the rows oV have been
permuted in such a way that identical rows are next to anofhieis is purely for vi-
sualization purposes and does not affect the objectiveifumcAgain, on the right we
plot the producl x Z. If this results in a permuted block-diagonal matrix, thecsel
layer has correctly identified the dependency structurkerfitst layer.

Firstly, the comparison betweda) and(b) shows that convergence is possible both
from V initialized with the identity matrix and from a randow. However the number
of iterations is about an order of magnitude greater s@ftiom random. Secondly,
betweena) and(c) we compare the effect df; and L,-normalization. In this case, the
Lo-normalized model has converged to a local minimum and hagleatified all the
components correctly. In general however, there was noma#ference between the
L, and L, normalization for this data. Finally, i(a) and(d) we analyze the effect of
estimating the layers sequentially, which means Wait only learned whiléV is fixed
to identity, after whichW is held fixed and learning is continued with only. In this
simple example, the model converges to the correct solutiainas we will see later it
is preferable to estimate both layers simultaneously.
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Figure 1: Simulations with generated data following the I®Adel. For each of the
four plots we show the second layer matkixon the top left and the produdt x Z on
the top right. The bottom row contains the same matricesasogrow, but with the
vectors permuted for visualization purposes.

(a) Both layers estimated simultaneously Wi initialized with Gaussian white noise
andV with an identity matrix. The rows oY are constrained to unit,-norm.

(b) Like (a), but both weight layers initialized with white neis Convergence takes
nearly an order of magnitude longer, but the the global mimmis found nevertheless.
(c) Like (@), but with rows ofV constrained to unif,-norm. Note that the second
layer converged to a local minimum.

(d) The estimation can be simplified by estimating oM¥first, with V held constant.
In the second step both layers are learned. The quality afgtismum does not change,
but speed of convergence is increased.



5 Experiments on Natural Images

5.1 Methods

All experiments were performed on images taken from P. O.aidsymagelCA pack-
agéL, using20, 000 image patches of sizZé x 16. The whole images were preprocessed
by approximate whitening assuming%apower spectrum and contrast gain control with
a Gaussian neighborhood o6 pixels diameter. Details of this preprocessing can be
found in (Hyvarinen & Koster, 2007). The preprocessing ba given a physiological
justification in terms of the processing in the retina andritgeniculate nucleus, or it
can be viewed more pragmatically as simplifying the stia$structure of the images
slightly. We then randomly sampled patches from the imagds@moved the DC com-
ponent from the patches. We also discarded any image patithelew variance, since
they contribute little to the gradient and slow down leagnifrinally we whitened the
patches and simultaneously reduced the dimensionality 2f® to 120 using principal
component analysis. The dimensionality reduction coordp to low-pass filtering
and eliminates aliasing artifacts due to the rectangulanpdiag grid from the image
patches. Both weight matricB¥ andV were chosen to be square, of siz® x 120,
unless otherwise noted.

The matrixW was initialized with Gaussian white nois¥, was initialized as an
identity matrix for the experiments in Sec. 5.2 and with edi®m a uniform distri-
bution for the experiments in Sec. 5.3. The models were optichusing gradient
descent with a constant stepsize. To increase the speedhwdrgence of the experi-
ments in Sec. 5.2, we initialized by estimating the first tayely, keeping the second
layer fixed. After the convergence of the first layer to an 1G5&iB, we performed two
different experiments: In the first type of experiment, blatyers were estimated si-
multaneously. In the second typ¥ was held fixed after initial convergence to an ICA
basis, and onl\w was estimated. In all experiments, the outputs units (rdwé)avere
normalized to unitl,; or L, norm after every step. Convergence was determined by
visual inspection and took about 300 hours on a Pentium I\kstation.

To analyze the tuning properties of the filters in the firselayve fit Gabor functions
to the basis functions obtained by inverting the filter ma¥V. For each of the first
layer responses, we used a least squares fit (adapted frodrikigw et al., 2001) to
determine location, orientation, size, phase and frequent¢he optimal Gabor. To
compute tuning curves of the second layer outputs, we fatbtihe model by taking
squares of the first layer filter responses and summing thenighted by rows oiV.
The second layer nonlinearity is required in the estimateodefine a supergaussian
pdf, but it is not considered part of our complex cell modelwe analyzed the second
layer outputs without any further nonlinearity. To obtaiming curves, we designed
the test stimulus for each higher order unit as a Gabor fonatbnstructed from a
weighted average of the constituent first layer Gabor patensieOne of the parameters
(location, orientation, phase, frequency) was then vasibile the others were held at
the optimum value.

1Www.cs.helsinki.fi/patrik.hoyer
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5.2 Results

In Figure 2 we analyze the first layer features and how theerdifom those of an
ICA model. Figure 2(a) shows a random selection of 48 of the 120 basis functions
for models estimated with,; and L.-normalization, as well as the ICA basis functions
obtained withV fixed to identity, for comparison. It can be seen that all thters
are Gabor-like and tuned in orientation, position, frequyesind phase, resembling the
responses of simple cells. The basis functions fromitheodel appear slightly more
localized, but less frequency and orientation selectiaa the filters from thé., model,
with ICA falling between the two extremes. Comparing ther®ddatching objective
function for the three models, we observe that fhenodel has the best fit to the data
with J = —79.1, followed by theL; model with.J = —70.5, while the ICA model only
achieves aJ = —58.1 which improves very little toJ = —59.6 if the second layer is
learned on top of the ICA basis without simultaneously ait@the basis functions in
W to adapt to the new pooling patterns.

In (b) we investigate how the ICA basis functionsWi change when the first layer
adapts to the pooling patterns in the second layer. For tmgparison, the.,-norm
model was estimated from the same random seed as the ICA nwideie V was
fixed to identity. As it can already be seen(m), the features change only little, but
from a scatter plot showing the changes in the Gabor parasneteeach linear filter,
some systematic changes become visible. The orientatmamgis least affected by the
estimation of both layers, so the parameter does not chamgi&santly. Positions and
frequencies change slightly for most of the features, nongt changes in the tuning
are rare. The phase tuning is very different however, withyriaear filters completely
changing the phase tuning to better adapt to the poolingaisé¢icond layer. This gives
some intuition why the improvement in model fit is so smaWiis estimated on top of
a fixed ICA basis, without allowing the featuresWi to adapt.

In Figure 3 we show the second layer of the model and the engepgioling patterns
in more detail. In(a) and(b) we show a subset of the pooling patterns in a representation
adapted from (Hyvarinen et al., 2005), which also allows/eaamparison with (Karklin
& Lewicki, 2005). For each higher order unit, the linear fite¢hat contribute to the
output are represented by ellipses. The location and tlemtation of each ellipse
correspond to the location and orientation of the undeglyirst-layer basis function.
Frequency is represented by the size of the ellipse, whegerlaorresponds to lower
frequencies. The shading of the ellipse represents theection strength, light gray
being close to zero and black corresponding to maximal dariton. For thel.; model,
most of the outputs pool over a small number of linear filtevkjch share similar
orientations and positions, while the pooling is more tegeneous for thé., model.
While the sparseness of the pooling is more pronounced ltregularization, the
average number of significantly active linear filters isl stll below 10% for thelL,
norm model.

In (c) and(d) this is further analyzed for the two models: the plot on thHedkows
the most active features for a random selection of secorgf amits. The units can be
seen to share similar frequency, orientation and locabanhdiffer in spatial phase. On
the right hand side, the second layer maWixs shown directly. Again, the connectivity
can be seen to be sparse, with only a few first layer featunesilsoting to each row
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(a) Linear filters in the first layer
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(b) Change in tuning of the first layer

Figure 2:(a) A subset of 48 randomly selected linear basis functionserfitbt weight
layer. On the left and in the middle, features for models vaithL;-normalized and
L,-normalized second layer are shown. On the right we show ahwath the second
layer fixed to identity which corresponds to an ICA model. Thenorm model was
initialized with this ICA basis, so the filters are similarhd L;-norm model shows
somewhat more location selectivity, whereas thenbrm model has more precise fre-
quency and orientation tuning.

(b) Change in tuning properties of the linear filtersWi as the first layer adapts to
the pooling patterns in the second layer. The scatter phaiw $iow the tuning of the
individual Gabors changes as we go from the ICA model to thadrmalized model.
The horizontal axis shows the value of the parameter in theni@del, the vertical axis
the value after learning both layers. While orientationitignchanges very little, and
position as well as frequency also remain relatively statble spatial phase changes
more dramatically.
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of V. Here the linear filter inputs were sorted by frequency antguturows by sparse-
ness. The pooling is quite homogeneous for thecase, but forL,-normalization,
large groups of high-frequency filters are pooled into ongwil There are several
near-identical copies of these outputs, indicating a caoaigg large contribution to the
model pdf.

In Figure 4 we analyze the complex cell properties of the éigirder outputs for
the different models. We further investigate the effectiofidtaneous vs. sequential es-
timation of the weight layers and the difference betwégmand L,-normalization. The
tuning curves are computed by taking the optimal Gabor stisiior each higher order
unit and changing one of the parameters (phase, positigmtation and frequency) at
a time. In(a), only the first layer was learned and the second fixed to thaiigana-
trix, so the model corresponds to ICA. This results in singak behavior with strong
phase selectivity. Sequential estimation of the two weligyers withL; normalization
is shown in(b), so the first layer filters are not adapted to the pooling padtelhere is
a decrease in selectivity to spatial phase, indicating ¢exngell properties. Irfc) both
layers have been estimated simultaneously Witmormalization. The adaptation of
the phase of the linear filters to the pooling patterns leadsstriking decrease in phase
selectivity, i.e. the second layer outputs become more tangell-like. In particular
the upper 10% quantile of the outputs becomes essentiattplately phase-invariant,
whereas in the sequential estimation, there is still a 40%utadion in this quantile.
At the same time the selectivity for position, orientatioddrequency are not affected
considerably, with only a slight broadening. () we show the responses for a model
with simultaneous estimation of both layers alydnormalization. Due to the hetero-
geneous pooling patterns, much of the selectivity, in paldr for position, is lost. At
the same time the large number of simple cell-like outputs wnly a single strongly
active linear filter leads to a loss of phase invariance. HBgelarization with an’;
norm seems to be an important requirement to obtain congattike responses.

5.3 Estimation of an overcomplete model

To generalize our experiments to an overcomplete modelro@ose a model in which
the number of linear filters is higher than the data dimeraditnbut the dimensionality
is reduced again for the higher order units. This is motoddge the observation that
with no normalization on the second layer, many of the ogtpotto zero (experiments
not shown). Since we do not need to take the normalizabifith@model into account,
it is straightforward to make the set of filtersW overcomplete. We consider such a
model which is overcomplete by a factor of four, with 240 fiten W estimated on
data with the dimensionality reduced to 60, but otherwigmiatal to the image data
used in the previous section.

In order to make the model overcomplete, we need to drop tmpldications used
to far. Firstly, we cannot use an ICA initialization sincestwould require as many
output units as linear filters. Instead of the initializatiith an identity matrix, we
initialze V randomly with uniform noise. Secondly, the matNX can no longer be
constrained to be an orthogonal rotation, so it is estimaigdrows constrained to unit
Lo norm.

To analyze the effect of the random initialization sepdydt®m that of overcom-
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Figure 3:(a-b) A random selection of 24 higher order features, correspanth indi-
vidual rows of V. Each feature is represented by a number of ellipses camespy
to individual first layer basis functions with the same ota&ion and position as the
ellipse. Spatial phase is not shown in this representakach unit can be seen to pool
over a small number of basis functions that tend to be isented and co-localized.
This is typical behavior for complex cell receptive fields.hW the L,-norm penalty
in (a) leads to a relatively uniform population of outputs, thetdeas with anl.,-norm
constraint in(b) show a distinct splitting into two sub-populations: Somattees pool
over a larger number of inputs and lose much of the locatitetseity, while the rest
of the features pool over fewer features than with fhenorm.

(c-d) Left hand side: Pooling patterns visualized in more detajplotting the most ac-
tive linear filters contributing to some randomly selectéaghler order units. Each row
corresponds to one output and the black bars represent#tieeestrength of the linear
filter inputs. Right hand side: Plot of the second layer mafi
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Figure 4: Analysis of complex cells properties of the seclayeér outputs, following
(Hyvarinen & Hoyer, 2001). One parameter of the fitted Gakas changed at a time,
and the normalized response was plotted as a function ofuthieg parameter. The
solid line shows the mean response of 120 tested cells, steeddines give 10% and
90% quantiles.

(@) Only the first layefW was estimated an¥l was fixed to identity.

(b) After W had converged it was held constant &vidvas estimated using this con-
stant first layer.

(c) W was Iinitialized as above, but then both layers were estinsitaultaneously.
This shows significantly less phase sensitivity in the tgréarves, indicating tha¥v
has adapted to the pooling imposedVy

(d) Responses obtained with,-normalization under simultaneous optimization. Not
only is some of the phase invariance lost, but position arehtation tuning are signif-
icantly worse than for thé, case.

15



pleteness, we compare the results from the overcompletelmatth those from a com-
plete model with a randomly initialized second layer. Botbd®ls were estimated with
L, normalization on the second layer. Figure 5 shows the ieButhe same way as the
previous plots, i.e. the first and second layer features aaoling patterns for these mod-
els. For the overcomplete model, it can be seen that some dé#tures, in particular
at higher frequencies, are less localized than in the madéhd CA initialization. The
reason for this is evident when considering the poolinggpsittthere are many higher
order units pooling over a large number of linear filters, sledivity in these features
is reduced and more global pooling patterns emerge. It ssvatsth pointing out that
some of the basis functions in the overcomplete case comtalitiple Gabor functions,
indicating convergence to a local minimum. This problemas due to the random
initialization as can be seen from the complete model, whidact has a/ = —79.1
and is thus not significantly different in quality from theagonally initialized model
we considered earlier. Rather, we suggest that the orttadigpof W is an important
requirement to avoid convergence to local minima.

5.4 Estimation without non-negativity constraints

In addition to the experiments with a non-negative secoyer]ave also estimated the
model with two different nonlinearities that did not requa non-negativity constraint,
allowing us to model negative energy correlations in additio positive ones. First,
we analyzed the case of a symmetric nonlineafity) = log cosh(u), which leads to
an output distribution that is sparse for both negative agitpe outputs. Additionally
we report on the results with an asymmetric nonlinearityekgtlthe negative half of the
nonlinearity corresponds to a low variance Gaussian digion, and the positive half
follows a logistic distribution. In both cases dn-norm constraint was imposed on
rows of V, which was initialized randomly with Gaussian white noiséoreover, the
first-layer nonlinearity was set ggu) = log cosh(u) instead of the squaring, in order
to be able to better model a heavy-tailed distribution injgoction with the second
nonlinearity.

In the symmetric model (results not shown), we found spaosmectivity of the
second layer, but with higher order features very diffefemin the complex cell-like
responses of the non-negative model: For some of the outihedirst layer forms
pairs of features which both contain two Gabors in their pége field, one that is
identical in both features, and one that is identical butpgasite sign, as in (Lindgren
& Hyvarinen, 2006). Individual higher order outputs poakssuch pair of features with
one strong negative and one positive weight. Using the ijeat— > = (a —b)(a+b),
this can be interpreted as taking the product of the sum dfedehce of the two linear
filters, which turns out to be the product of two individual i®a filters. Thus the
model is effectively taking products of linear filter outputvith results very similar
to those observed previously in quadratic ICA (Lindgren &#gnen, 2006). In the
model with sparse positive and Gaussian negative outpgsl{s not shown), we report
higher order features with one or a small number of highlwegtositive inputs, and a
larger number of small negative inputs. This could posdielynterpreted as surround-
inhibition, or a gain control phenomenon.

Thus we see that the results depend strongly on the choibe ofonlinearityf, and
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Figure 5: Comparison of a complete and a four times overcetaphodel, both with
randomly initializedV, andL,-normalization on the second layéa-b) shows a subset
of the filters inW, for the two models. Random initialization does not leadualgative
differences, but the overcomplete model learns featurtrsase less localized and more
frequency selectivgc-d) shows a representation of the higher order features (se@ Fig
for details). The overcomplete model can be seen to givaaiagpopulation of highly
selective outputs which include only a single linear filterveell as a population of
largely invariant higher order units pooling over a larggctron of inputs and retaining
only orientation selectivity(e-f) shows the second layer weight matNxwith inputs
arranged by frequency and outputs ordered by sparsendss pboling.
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very different results can be obtained by changing the neality. It seems difficult

to make a principled choice of, because the usual measures of sparseness do not
easily generalize to two-layer models. In future reseafatguld possibly be estimated
from the data. In the current work, we choose to analyze dmyresults from the
non-negative model, because it seems to be most in line Wéhvisual processing

in mammalian visual cortex, i.e. complex cell responsesithéamore, we view our
model as a direct extension to models with non-negativergklayers such as ISA and
topographic ICA. These have previously been motivated byothservation of strong
positive energy correlations between linear filter outpstsnon-negativity seems to be

a reasonable constraint.

6 Experiments on Audio data

In order to demonstrate the general applicability of our eldd a variety of data sets,
we also tested it on speech data from the TIMIT database. Tduehwas estimated
in exactly the same way as for image data, and the data waspessed as follows:
We took 100 short utterances from the database, and res@utingm to 8kHz. The
data was high-pass filtered with a cutoff at 100Hz and themabzed to unit vari-
ance. We sampled 10,000 random sound windows of 16ms lemgtblh corresponds
to 128-dimensional data and removed the DC component. Weap[died our standard
preprocessing consisting of whitening and contrast gamtrof as described above for
image data. Simultaneously we reduced the dimensionabiy 128 to 120, which
amounts to low-pass filtering and serves to eliminate atsfalue to the windowing
procedure. The rows of the second layer were constraineqitd.y4-norm.

The results we obtained from the speech data are remarkiaflgisto those from
image data and are presented in Figure a)rwe show the first layer features in the
time domain, which are tuned to specific frequency bands disawenset time and
duration. The second layer () shows that a sparse connectivity has been learned
between groups of first layer features. This is analyzedéurin (c), where we we
show which first layer features are pooled in the second .lajerobtain higher order
features where similar frequencies with slightly differé@mporal onset are pooled.
Interestingly, the pooling size is considerably smallantior image data, some of
the outputs have as few as three contributing first ordeufeat This indicates that
individual linear filters outputs are closer to independenaudio data than for images,
and that residual dependencies after the first layer ardemal

7 Discussion

Hierarchical models have a long history in computationalroscience and machine
learning, and they are a promising approach to modellingtimeplicated structure of
natural signals. However, it has not been feasible untimég to estimate multiple
layers of these models from the data. The estimation canffieuttiin different ways,
such as the need to integrate over latent variables in girenaodels, or the computa-
tion of the intractable partition function in energy-baseddels. In this work we have
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Figure 6: Experiments for speech data from the TIMIT databas

(a) The first layer gives outputs localized in both frequency tme.

(b) The second layer shows connections between features wiémdencies of squares.
(c) A random selection of output units. Each row shows the adtiselayer filters in
one row ofV.
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used Score Matching for estimating an energy-based modkd ewoiding to compute
partition function, and we have shown how both layers of a-lay@r model can be
estimated from the data.

Two recent models have a similar hierarchical structureabaitestimated in a dif-
ferent way from the model considered here. In particularhieearchical Product of
Experts (PoE, Osindero et al., 2006) is closely related tonmrk. Instead of using
the “independent component” point of view, the model is defias an overcomplete
“product of experts” model with experts following Studdrtdistributions. The estima-
tion is performed using Contrastive Divergence, which veagntly shown (Hyvarinen,
2007a) to be related to Score Matching. The results obtanedimilar to those re-
ported here: Estimating the model on natural images als#sléa pooling of linear
filters with similar position and orientation, but diffetespatial phase. However, the
authors do not show the pooling patterns, so it is not cleathdr they also observed
sparse connectivity in the second layer. A surprising ckffiee to our model is that
the authors observe it makes little difference whether du®sd layer is estimated on
top of a fixed, predetermined first layer. However, model cangon is not straight-
forward with CD, which does not provide an objective funnti®o it is not clear if
there is no further change in the linear filters in the PoE mantef the authors simply
did not investigate this further. In any case, the changeashlayer units, which leads
a significantly more complex cell-like behavior of outpuitanshows the importance
of estimating the layers simultaneously in our model. Thst fayer features adapt to
the structure of the second layer by changing the spatigdeghaing, which results
in a better model fit as gauged by the Score Matching obje&tinetion, as well as
increasing the phase invariance of the output units.

The hierarchical Bayesian model by Karklin & Lewicki (20@®06) is also related
to our work in that the authors estimate two layers of a hatniaal model of natural
images, but it is different in that the model is generatiteeathan energy-based. Itis
related to the generative topographic ICA model (Hyvarieeal., 2001), where sources
are not generated independently, but have dependencieduced by multiplication
with hidden variance variables, which are themselves diyealinear mixing of higher
order sources. An exact estimation of such a generative nedet tractable because
it requires integration over the possible states of the dngitder variance variables.
The authors thus resort to using a maximum a posteriori (Medproximation for the
higher order sources. Similar to our results, the authotainlisabor-like filters in
the first layer, but the second layer, which describes pettef variance dependencies
between linear filters, is quite different from the resultoor energy-based models.
The authors report broadly tuned features, encoding glwoglerties of the data, and do
not obtain simple pooling patters with e.g. common orieatetand spatial frequencies.
In agreement with our results, the linear filters in the fisster are reported to change
depending on the pooling patterns in the second layer.

While the sparseness of the connectivity in the second ligyan important factor
in obtaining complex cell-like responses, it is importamtnibte that sparseness was
not explicitly enforced in our model. Experiments with-normalization and random
initialization of V still result in sparse connectivity, even though the outmits lose
much of their complex cell properties. The non-negativitg &,-norm penalty appear
to be important factors in obtaining a uniform populatiopbése invariant higher order
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cells which pool over a small number of first order units. Thenorm can be related

to energy efficient coding and wiring length constraintsjohithas been proposed to
play a role in shaping the receptive fields in retinal celln¢ént et al., 2005) and

may be of similar importance for early visual cortex. Witle th,-norm we observed

a fragmentation into two populations of output cells witffetient pooling patterns. In

addition to one very sparse population, a second populpbois over a larger number
of inputs, and loses much selectivity.

8 Conclusion

We have presented an energy-based model of natural imagesands with two layers
of weights estimated from the data. The two layer model wamased using Score
Matching, which allows estimation without knowledge of thartition function. On
natural images, the estimation of both layers with/lamorm penalty on the second
layer leads to the emergence of complex cell propertiesh®higher order units. We
analyze how the model parameters differ if the second layesiimated on top of a
fixed ICA basis and report that the phase tuning of the linétargichanges when both
layers are estimated simultaneously, which results in erease in phase invariance of
the outputs. We performed experiments with a randomlyalded second layelr, -
normalization and without non-negativity constraints,jefall lead to sparse pooling
but less complex cell-like outputs.
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Appendix

Derivatives of the objective function

We need to evaluate the gradients in the objective funcegudtion 24) w.r.t. the el-
ements ofW andV. Since the expression can readily separated into a sum ex thr

terms, which we call, B andC, we treat these separately. We get six tegiis =,
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etc. Writing these out, we get for the first term

i = ZZijan [(wéffgz'(.)f'(;v,igx.))] (25)
= i{vii?wfg!(-) n() (26)
+ ivi(wffgé”(-)xdfé(-) (27)
+ E;i::vi(wf)zgé’(-) HOTTABE: } (28)

For the second term we get
2
83 n o
= 33t |3t @
¢ k=1 h:l

o n 2
= Z{Z ' ()vigi()za [wavigé ] (30)
h

+ fi()2 [Z w?vﬁgé(-)] [vhg' ()] (31)
(=1

+ Z [wavﬁgé ] [whvg! () ]} (32)

and for the third term, the derivative is
oC 4 / ~ k £ /

owd Z Zzwfvhgé Z BN dwevhge )Ia () (33)

¢ =1 ¢=

k=1 Lh=1 (=1 1

For better readability we substituté "7 | >/" wivhg;()f1(.)] = A in all subse-
quent equations.
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Next we evaluate the derivatives for V, for the first term:

aA n (0] m
S = ZZZ - [(whPeft (5] 37)
a 1 = (%

= Z S (@l *lgl () f" (hge)gn + (wf)Pg "()M)} (38)
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the second term:

8Bk n o a m 2
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and similar for the third term:
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