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Abstract

We consider a hierarchical two-layer model of natural signals in which both layers
are learned from the data. Estimation is accomplished by Score Matching, a recently
proposed estimation principle for energy-based models. Ifthe first layer outputs are
squared and the second layer weights are constrained to be non-negative, the model
learns responses similar to complex cells in primary visualcortex from natural images.
The second layer pools a small number of features with similar orientation and fre-
quency, but differing in spatial phase. For speech data, we obtain analogous results.
The model unifies previous extensions to ICA such as subspaceand topographic mod-
els and provides new evidence that localized, oriented, phase invariant features reflect
the statistical properties of natural image patches.

1 Introduction

A variety of methods like Independent Component Analysis (ICA, see Comon, 1994)
and Sparse Coding (Olshausen & Field, 1997) have been applied to model the statistical
structure of natural signals such as images and sounds. In computational neuroscience,
the goal of modelling these signals with unsupervised learning methods is to gain a bet-
ter understanding of sensory processing, which is assumed to be linked to the statistics
of ecologically valid stimuli (Barlow, 1961; Hyvärinen etal., 2009).

Linear ICA is limited in scope and cannot capture arbitrary dependencies, so more
recent models use a nonlinear representation to better capture the structure of the data.
In particular, there is a growing number of hierarchical models with two weight layers.
These include direct extensions to ICA such as Independent Subspace Analysis (ISA)
and topographic ICA (TICA, see Hyvärinen et al., 2001; Hyv¨arinen & Hoyer, 2000)
which can be viewed as employing a manually selected, fixed second layer that pools
over first layer features modelling dependencies which cannot be removed by a linear
transform. The fixed second layer in these models has the advantage that the probability
density function (pdf) can still be normalized in closed form, or approximations for
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the likelihood can be found. Thus a straightforward estimation of these models by
maximizing likelihood is possible.

More recently, models where the second layer is also learnedfrom the data have
received attention. However, this comes the expense of a more complicated estimation,
since these models can in general not be normalized in closedform, making maximum
likelihood learning very difficult. Two recent models of this kind are the hierarchical
Bayesian model by Karklin & Lewicki (2005, 2006) and the hierarchical Product of
Experts (Osindero et al., 2006). The first is a generative model in which the components
are not independent and identically distributed, but the variance is given by hidden
variables. The second model is an energy-based model with anintractable partition
function, similar to the one we consider here, and it is estimated using Contrastive
Divergence (CD, Hinton, 2002).

We present a two-layer model of natural stimuli where both layers are estimated
from the data, and analyze the resulting pooling patterns inthe second layer. Follow-
ing the classical energy model of complex cells (Adelson & Bergen, 1985; Spitzer &
Hochstein, 1985), linear filter outputs from the first layer are squared and then pooled,
where the pooling is learned from the data.

In our analysis we focus on two points in particular. We compare the results obtained
by estimating both layers of the model simultaneously, witha simplified model where
the second layer is estimated on top of a fixed ICA basis in the first layer, and report
differences in tuning of the linear filters as well as the higher order units. Furthermore,
we analyze the effect ofL1-normalization of the second layer on the resulting outputs,
and show that this normalization plays a significant role in obtaining pooling patterns
in line with previous complex cell models.

The model is estimated with Score Matching (Hyvärinen, 2005, 2007a), a consistent
estimation method for energy-based models which cannot be normalized in closed form.
Traditionally, these energy-based models would have to be estimated with Markov
Chain Monte Carlo (MCMC) methods, which is computationallyexpensive and it is
hard to evaluate convergence. While recent methods like Contrastive Divergence are
computationally more efficient, it is still necessary to setup a Markov chain, the choice
of which may greatly influence the convergence properties. Score Matching, in contrast,
gives an objective function which can simply be optimized bygradient methods.

This paper is organized as follows. In Section 2, we discuss previous models of
natural images, focussing on ICA and its extensions. In Section 3, the two-layer model
is presented including details of our implementation and the Score Matching estimation.
In addition, we review how the Score Matching objective function is derived. We test
the model and estimation on synthetic data in Section 4. In Section 5, we apply the
method to natural image data. We present models estimated with different constraints
and analyze the tuning statistics of the model cells for their complex cell properties. We
compare the effect of different normalization methods for the second layer of the model,
and compare the results with a complete model to those with anovercomplete first layer.
We focus on models with a non-negative second layer, but alsoconsider models without
the non-negativity constraint. In Section 6 we perform similar experiments with speech
data, where we obtain a sparse pooling in the second layer that is very similar to the
results for natural images. In Section 7 we discuss how our work compares to other
recently developed two-layer models, highlighting the principled estimation with Score

2



Matching and the analysis of the complex cell-like properties of the outputs in our
model. Finally we conclude with Section 8. Preliminary results have been published in
(Köster & Hyvärinen, 2007).

2 Modelling of Natural Images

Ever since mammalian visual receptive fields were describedby Hubel and Wiesel in
the 1960’s (see e.g. Hubel & Wiesel, 1959, 1962), efforts have been made to understand
why the receptive fields have the observed properties. One successful approach is based
on the idea that neural processing should be matched to statistics of ecologically valid
stimuli, i.e. natural images. This lead to the development of statistical models like
sparse coding (Olshausen & Field, 1996) and ICA (Jutten & Herault, 1991; Comon,
1994), which result in basis functions with a strong resemblance to the receptive fields
of simple cells.

The approach we use in this paper is inspired by the classicalICA model, so we
will briefly look at ICA and its application to natural images. For the ICA model we
suppose that a vector of independent components, or sourcess is mixed to generate the
observed data vectorx. This can be written as

x = As. (1)

In the simplest case, which is usually considered, the dimensionality of the source vec-
tor and the data vector is the same, soA is a square, invertible mixing matrix. Thus the
components can be recovered from the data using the filter matrix W = A

−1 as

s = Wx. (2)

There is a range of methods for the estimation of this model; here we focus on the
likelihood-based approach. The distribution of the individual components is modelled
by densitiespi, so by independence we have

p(s) =
∏

i

p(si) (3)

This allows us to write the pdf of the data as

p(x) = | detW|
∏

i

pi(w
T
i x) (4)

wherew
T
i are the rows ofW, and the determinant is a normalization factor due to the

transformation of the density. Thus we obtain the log-likelihood of the parameters for
a finite sample of data as

logL(W) =
∑

t

∑

i

log pi(w
T
i x(t)) + T log(| detW|) (5)

wherex(t) runs overT samples from the data. The likelihood can easily be maxi-
mized w.r.t. the filtersW by gradient ascent. Estimating an ICA model for natural
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image patches results in filters that are localized, oriented and band-pass, resembling
the spatial receptive fields of simple cells in the primary visual cortex (V1).

However, a large fraction of cells in V1 is not well describedby a linear response. In
particular, complex cells, which are insensitive to spatial phase, cannot be modeled with
a linear transform. To account for these responses, the ICA model can be extended by
adding a fixed second layer on top of squared linear filter responses: Methods such as
Independent Subspace Analysis (ISA, see Hyvärinen & Hoyer, 2000) and topographic
ICA (TICA, see Hyvärinen et al., 2001) employ a pooling of linear filter responses to
model residual dependencies between linear filters. In ISA,the vector of componentss
is projected onto a number of subspaces. Squared norms of projections onto subspaces
are then computed as

uj =
∑

i∈Sj

s2
i (6)

where the indexi runs over all the components that belong to thejth subspace. The pdf
of the model then takes the form

p(x) = | detW| exp



−
∑

j

f





∑

i∈Sj

(wT
i x)2







 (7)

where the scalar nonlinearityf(.) defines the overall shape of the pdf. The pooling can
also be viewed as a second linear transformation, or weight layer, where a number of
first-layer units converge into one higher order unit. Sinceindependence is assumed
only for the higher order unitsuj, the linear features that are projected onto one sub-
space may have dependencies. Applied to natural images, this results in a pooling of
features with similar frequency, orientation and location, but different spatial phase.
Thus it can be argued that complex cells are tuned to capture dependencies, in partic-
ular correlations in the variance of linear filters (Schwartz & Simoncelli, 2001), which
the above model makes explicit by computing squared norms.

3 The Model and its Estimation

3.1 The two-layer model

While the ISA model described above gives important insights into the interpretation of
simple and complex cells as feature detectors tuned to the statistics of natural stimuli,
it is somewhat limited as an explanationwhy the specific pooling is taking place, since
only a single linear transformation is learned from the dataand the additional connec-
tivity is pre-specified. This rules out certain types of connectivity that might provide a
better model of the data, in favor of architectures that havebeen hypothesized from the-
oretical principles. It would be preferable to estimate a full two-layer model, to allow
us to evaluate whether the kind of connectivity used in earlier models is actually valid
from the point of view of statistical optimality. A conceptually simple extension to the
ISA model described in the previous section would be to retain the basic structure, but
learning the second layer from the data rather than fixing it.Thus we define a pdf that
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can be viewed as describing a two-layer network

log p(x) =
∑

h

f
[

v
T
h g (Wx)

]

− logZ(W,V) (8)

where the first term in the log-probability is given by a sum over the outputs of indi-
vidual second layer units. HereZ(W,V) is the partition function of the model, i.e. a
function of the model parameters which ensures that the pdf integrates to unity. ThevT

h

are rows of the second layer weight matrixV, while the first layerW has been retained
from the ICA model. The two weight matrices need not be square, so in generalW
will be of sizen×m andV of sizem × o. We have two scalar nonlinearitiesg(.) and
f(.), the first of which computes nonlinear features from the data, whereas the second
shapes the overall pdf. Such a model cannot be normalized in closed form, since the
normalization constantZ is given by an intractable integral. Therefore we use Score
Matching for the estimation, which provides a straightforward method for learning in
energy-based models.

For the results presented in this work, we have definedg to be a squaring operation,
unless otherwise specified. In addition, the second layer was constrained non-negative.
This is a natural choice for a model of complex cells, where outputs are computed by
pooling over squared or rectified simple cell responses (Pollen & Ronner, 1983; Spitzer
& Hochstein, 1985). The second nonlinear function is chosento be of the form

f(u) = −
√

|u| + 1 (9)

which ensures that the overall distribution of the model is supergaussian. Again, this
nonlinearity was used in all the simulations, unless otherwise mentioned. Using these
nonlinearities, the model distribution becomes:

log p(x) = −
∑

h

√

vT
h (Wx)2 + 1 − logZ(W,V) (10)

We further constrained the vectorsv
T
h to be normalized to unitL2 or alternatively to unit

L1-norm, which corresponds to constraining the second layer units to have unit output
energy and encourages sparse connectivity.

3.2 Score Matching

Score Matching (Hyvärinen, 2005, 2007a,b) is an estimation method that allows learn-
ing of statistical models which are only specified up to a multiplicative normalization
constant (partition function). Consider samples from a random vectorx ∈ R

n that fol-
lows a pdfpx(ξ) and to which we would like to fit a model. We define a parametrized
model densityp(ξ|Θ) which includes the true pdf and whereΘ is a parameter vector
that we would like to estimate. Suppose that the normalization constantZ of the pdf
cannot be computed in closed form, and we useq to denote the unnormalized distribu-
tion. In the form of a log-probability we have the model:

log p(ξ|Θ) = log q(ξ|Θ) − logZ(Θ) (11)
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The model score function, which we define as the gradient of the log-probability with
respect to the data, is obviously identical forq andp, and given by:

Ψ(ξ;Θ) = ∇ξ log p(ξ;Θ) (12)

Likewise the score function of the observed data is denoted by

Ψx(.) = ∇ξ log px(.) (13)

Working with the score function thus has the advantage that it does not depend on the
normalization constantZ. The model can now be estimated by minimizing the squared
distance between themodel score functionΨ(ξ;Θ) and thedata score functionΨx(.).
This objective function is defined by

J(Θ) =
1

2

∫

ξ∈Rn

px(ξ)‖Ψ(ξ;Θ) − Ψx(ξ)‖2dξ (14)

This may not appear to be very useful at first sight, because estimating the data score
function is a nonparametric problem, and would require no less effort than estimating
the normalization constant. However, a much simpler form ofthe objective function can
be obtained. The full proof can be found in (Hyvärinen, 2005). We start by expanding
the squared term to

J(Θ) =
1

2

∫

ξ∈Rn

px(ξ)‖Ψ(ξ;Θ)‖2dξ +
1

2

∫

ξ∈Rn

px(ξ)‖Ψx(ξ)‖2dξ (15)

−

∫

ξ∈Rn

px(ξ)Ψ(ξ;Θ)T Ψx(ξ)dξ (16)

Here we note that the first term does not depend on the data score function, so rewriting
it with the squared norm expanded as a sum we get

1

2

∫

ξ∈Rn

px(ξ)‖Ψ(ξ;Θ)‖2dξ =

∫

ξ∈Rn

px

n
∑

i=1

1

2
ψ2

i (ξ;Θ)dξ (17)

where theψi are elements of the score function. The second term is constant wrt.Θ, so
we simply set

1

2

∫

ξ∈Rn

px(ξ)‖Ψx(ξ)‖2dξ = C (18)

Thus we focus on the third term, where we start by writing out the inner product
∫

ξ∈Rn

px(ξ)Ψ(ξ;Θ)T Ψx(ξ)dξ =
∑

i

∫

ξ∈Rn

px(ξ)ψi(ξ;Θ)ψx,i(ξ)dξ (19)

and consider a single element of the sum. We now use the definition of the score func-
tionψx,i(ξ) = ∂ log px(ξ)

∂ξi
, so making use of the chain rule, the term becomes

∑

i

∫

ξ∈Rn

px(ξ)ψi(ξ;Θ)

[

∂

∂ξi
log px(ξ)

]

dξ =
∑

i

∫

ξ∈Rn

px(ξ)

px(ξ)

∂px(ξ)

∂ξi
ψi(ξ;Θ)dξ

(20)
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We then use multivariate partial integration (Hyvärinen,2005) to obtain thei-th term as

−

∫

ξ∈Rn

∂px(ξ)

∂ξi
ψi(ξ;Θ)dξ =

∫

ξ∈Rn

px(ξ)
∂ψi(ξ;Θ)

∂ξi
dξ +D (21)

where the integration constantD is zero as lim
ξ→∞

px(ξ) = 0. Working with a finite

sample of data, we can replace the exact expectations with sample averages. Collecting
the terms, we then obtain the expression

J̃(Θ) =
1

T

T
∑

t=1

n
∑

i=1

[

∂

∂ξi
ψi(x(t);Θ) +

1

2
ψ2

i (x(t);Θ)

]

+ C (22)

which is easy to evaluate since it only contains terms depending on the model pdf. Score
matching has been shown to provide a consistent estimator (Hyvärinen, 2005), so if the
data follows the model,̃J is asymptotically minimized for the true parameters.

3.3 Estimating the model

We can now apply the Score Matching framework to the model defined in Equation
(10). The score function of the two-layer network is given by

Ψ(x) = ∇x

∑

h

f [vhg (Wx)] (23)

so we can write the Score Matching objective, i.e. the squared distance between model
and data score function as

J̃(V,W) =
T

∑

t=1

n
∑

k=1

o
∑

h=1

m
∑

ℓ=1

[

(wk
ℓ )

2vℓ
hg

′′

ℓ (w
T
i x(t))f ′(

∑

i

vi
hgi(w

T
i x(t)))

]

(24)

+

T
∑

t=1

n
∑

k=1

o
∑

h=1

f ′′

h (vT
h g(Wx(t)))

[

m
∑

ℓ=1

wk
ℓ v

ℓ
hg

′

ℓ(w
T
i x(t))

]2

+

T
∑

t=1

n
∑

k=1

1

2

[

o
∑

h=1

m
∑

ℓ=1

wk
ℓ v

ℓ
hg

′

ℓ(w
T
i x(t))f ′

h(v
T
h g(Wx(t)))

]2

Optimizing this objective is straightforward by gradient descent, which requires the
gradients of the above expression with respect to the elements of the weight matrices
W andV. These gradients are given in the Appendix. The non-negativity and norm
constraint were implemented by projecting onto the constraint set after each gradient
step.

4 Experiments on Simulated Data

To verify the identifiability of the model we estimated it forsimulated data with a known
higher-order structure. We generated data following the ISA model, which is a special
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case of the proposed two-layer model and easy to sample from.The data generated
in this way contains higher order dependencies in the form ofcommon variances for
groups of source variables, which cannot be captured by ICA.Samples from the ISA
model were generated as follows: To obtainT observations of ann-dimensional vector
which containsk subspaces, we first create a matrixM of n× T observations from an
i.i.d Gaussian with unit variance, and a matrixB of k × T variance parameters from
a uniform distribution. We introduce dependencies within groups of the Gaussians by
multiplying them with a common variance from the uniform distribution: U(i, t) =
M(i, t)B(j, t), ∀i ∈ Sj . The supergaussian variables produced in this way are then
multiplied with a mixing matrixA that is also generated randomly, so the data matrix
is X = AU. Before the estimation the data is whitened. For the experiments shown
below we setT = 5000, n = 21 andk = 7, so each subspace has three elements.

The experiments with artificial data mainly served the purpose to confirm the consis-
tency of the estimation, but also to try out various initialization and normalization pro-
cedures for the experiments on natural stimuli. We compareL1- andL2-normalization
of the second layer matrixV , and we compare randomly initializingV and initializing
it with an identity matrix, which allows pre-learning ofW as an ICA model.

For the visualization of the results, note that in ICA, one can simply multiply the
mixing matrixA with the estimated filter matrixW to obtain a permuted diagonal ma-
trix if the components are identified correctly. Thus visualinspection ofZ = W × A

can be used to to determine convergence. The ISA model is identifiable only up to
subspaces due to rotational symmetry, where the second layer determines the subspace
ownership of each element ofZ. By multiplying the second layer matrixV with Z,
a block-diagonal matrix with permuted rows should be obtained if the algorithm con-
verges correctly.

Results are presented in Figure 1. In each of the four experiments(a-d) we per-
formed, the top row shows the second layerV on the left and the productV × Z, on
the right. In the bottom row, on the left we show̃V where the rows ofV have been
permuted in such a way that identical rows are next to another. This is purely for vi-
sualization purposes and does not affect the objective function. Again, on the right we
plot the product̃V × Z. If this results in a permuted block-diagonal matrix, the second
layer has correctly identified the dependency structure in the first layer.

Firstly, the comparison between(a) and(b) shows that convergence is possible both
from V initialized with the identity matrix and from a randomV. However the number
of iterations is about an order of magnitude greater starting from random. Secondly,
between(a) and(c) we compare the effect ofL1 andL2-normalization. In this case, the
L2-normalized model has converged to a local minimum and has not identified all the
components correctly. In general however, there was no major difference between the
L1 andL2 normalization for this data. Finally, in(a) and(d) we analyze the effect of
estimating the layers sequentially, which means thatW is only learned whileV is fixed
to identity, after whichW is held fixed and learning is continued withV only. In this
simple example, the model converges to the correct solution, but as we will see later it
is preferable to estimate both layers simultaneously.
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(a) Diagonal initialization,L1-norm
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(b) Random initialization,L1-norm
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(c) Diagonal initialization,L2-norm
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(d) Pre-learning ofW, L1-norm

Figure 1: Simulations with generated data following the ISAmodel. For each of the
four plots we show the second layer matrixV on the top left and the productV×Z on
the top right. The bottom row contains the same matrices as the top row, but with the
vectors permuted for visualization purposes.
(a) Both layers estimated simultaneously withW initialized with Gaussian white noise
andV with an identity matrix. The rows ofV are constrained to unitL1-norm.
(b) Like (a), but both weight layers initialized with white noise. Convergence takes
nearly an order of magnitude longer, but the the global minimum is found nevertheless.
(c) Like (a), but with rows ofV constrained to unitL2-norm. Note that the second
layer converged to a local minimum.
(d) The estimation can be simplified by estimating onlyW first, with V held constant.
In the second step both layers are learned. The quality of theoptimum does not change,
but speed of convergence is increased.
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5 Experiments on Natural Images

5.1 Methods

All experiments were performed on images taken from P. O. Hoyer’s ImageICA pack-
age1, using20, 000 image patches of size16×16. The whole images were preprocessed
by approximate whitening assuming a1

f2 power spectrum and contrast gain control with
a Gaussian neighborhood of16 pixels diameter. Details of this preprocessing can be
found in (Hyvärinen & Köster, 2007). The preprocessing can be given a physiological
justification in terms of the processing in the retina and lateral geniculate nucleus, or it
can be viewed more pragmatically as simplifying the statistical structure of the images
slightly. We then randomly sampled patches from the images and removed the DC com-
ponent from the patches. We also discarded any image patcheswith low variance, since
they contribute little to the gradient and slow down learning. Finally we whitened the
patches and simultaneously reduced the dimensionality from 256 to 120 using principal
component analysis. The dimensionality reduction corresponds to low-pass filtering
and eliminates aliasing artifacts due to the rectangular sampling grid from the image
patches. Both weight matricesW andV were chosen to be square, of size120 × 120,
unless otherwise noted.

The matrixW was initialized with Gaussian white noise,V was initialized as an
identity matrix for the experiments in Sec. 5.2 and with noise from a uniform distri-
bution for the experiments in Sec. 5.3. The models were optimized using gradient
descent with a constant stepsize. To increase the speed of convergence of the experi-
ments in Sec. 5.2, we initialized by estimating the first layer only, keeping the second
layer fixed. After the convergence of the first layer to an ICA basis, we performed two
different experiments: In the first type of experiment, bothlayers were estimated si-
multaneously. In the second typeW was held fixed after initial convergence to an ICA
basis, and onlyV was estimated. In all experiments, the outputs units (rows of V) were
normalized to unitL1 or L2 norm after every step. Convergence was determined by
visual inspection and took about 300 hours on a Pentium IV workstation.

To analyze the tuning properties of the filters in the first layer, we fit Gabor functions
to the basis functions obtained by inverting the filter matrix W. For each of the first
layer responses, we used a least squares fit (adapted from Hyvärinen et al., 2001) to
determine location, orientation, size, phase and frequency of the optimal Gabor. To
compute tuning curves of the second layer outputs, we followed the model by taking
squares of the first layer filter responses and summing them, weighted by rows ofV.
The second layer nonlinearity is required in the estimationto define a supergaussian
pdf, but it is not considered part of our complex cell model, so we analyzed the second
layer outputs without any further nonlinearity. To obtain tuning curves, we designed
the test stimulus for each higher order unit as a Gabor function constructed from a
weighted average of the constituent first layer Gabor parameters. One of the parameters
(location, orientation, phase, frequency) was then variedwhile the others were held at
the optimum value.

1www.cs.helsinki.fi/patrik.hoyer
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5.2 Results

In Figure 2 we analyze the first layer features and how they differ from those of an
ICA model. Figure 2(a) shows a random selection of 48 of the 120 basis functions
for models estimated withL1 andL2-normalization, as well as the ICA basis functions
obtained withV fixed to identity, for comparison. It can be seen that all the filters
are Gabor-like and tuned in orientation, position, frequency and phase, resembling the
responses of simple cells. The basis functions from theL1 model appear slightly more
localized, but less frequency and orientation selective than the filters from theL2 model,
with ICA falling between the two extremes. Comparing the Score Matching objective
function for the three models, we observe that theL2 model has the best fit to the data
with J̃ = −79.1, followed by theL1 model withJ̃ = −70.5, while the ICA model only
achieves ãJ = −58.1 which improves very little toJ̃ = −59.6 if the second layer is
learned on top of the ICA basis without simultaneously allowing the basis functions in
W to adapt to the new pooling patterns.

In (b) we investigate how the ICA basis functions inW change when the first layer
adapts to the pooling patterns in the second layer. For this comparison, theL2-norm
model was estimated from the same random seed as the ICA model, whereV was
fixed to identity. As it can already be seen in(a), the features change only little, but
from a scatter plot showing the changes in the Gabor parameters for each linear filter,
some systematic changes become visible. The orientation tuning is least affected by the
estimation of both layers, so the parameter does not change significantly. Positions and
frequencies change slightly for most of the features, but strong changes in the tuning
are rare. The phase tuning is very different however, with many linear filters completely
changing the phase tuning to better adapt to the pooling in the second layer. This gives
some intuition why the improvement in model fit is so small ifV is estimated on top of
a fixed ICA basis, without allowing the features inW to adapt.

In Figure 3 we show the second layer of the model and the emerging pooling patterns
in more detail. In(a) and(b) we show a subset of the pooling patterns in a representation
adapted from (Hyvärinen et al., 2005), which also allows easy comparison with (Karklin
& Lewicki, 2005). For each higher order unit, the linear filters that contribute to the
output are represented by ellipses. The location and the orientation of each ellipse
correspond to the location and orientation of the underlying first-layer basis function.
Frequency is represented by the size of the ellipse, where larger corresponds to lower
frequencies. The shading of the ellipse represents the connection strength, light gray
being close to zero and black corresponding to maximal contribution. For theL1 model,
most of the outputs pool over a small number of linear filters,which share similar
orientations and positions, while the pooling is more heterogeneous for theL2 model.
While the sparseness of the pooling is more pronounced withL1-regularization, the
average number of significantly active linear filters is still well below 10% for theL2

norm model.
In (c) and(d) this is further analyzed for the two models: the plot on the left shows

the most active features for a random selection of second order units. The units can be
seen to share similar frequency, orientation and location,but differ in spatial phase. On
the right hand side, the second layer matrixV is shown directly. Again, the connectivity
can be seen to be sparse, with only a few first layer features contributing to each row
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(b) Change in tuning of the first layer

Figure 2:(a) A subset of 48 randomly selected linear basis functions in the first weight
layer. On the left and in the middle, features for models withan L1-normalized and
L2-normalized second layer are shown. On the right we show a model with the second
layer fixed to identity which corresponds to an ICA model. TheL2-norm model was
initialized with this ICA basis, so the filters are similar. The L1-norm model shows
somewhat more location selectivity, whereas the L2-norm model has more precise fre-
quency and orientation tuning.
(b) Change in tuning properties of the linear filters inW as the first layer adapts to
the pooling patterns in the second layer. The scatter plots show how the tuning of the
individual Gabors changes as we go from the ICA model to the L2-normalized model.
The horizontal axis shows the value of the parameter in the ICA model, the vertical axis
the value after learning both layers. While orientation tuning changes very little, and
position as well as frequency also remain relatively stable, the spatial phase changes
more dramatically.
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of V. Here the linear filter inputs were sorted by frequency and output rows by sparse-
ness. The pooling is quite homogeneous for theL1 case, but forL2-normalization,
large groups of high-frequency filters are pooled into one output. There are several
near-identical copies of these outputs, indicating a comparably large contribution to the
model pdf.

In Figure 4 we analyze the complex cell properties of the higher order outputs for
the different models. We further investigate the effect of simultaneous vs. sequential es-
timation of the weight layers and the difference betweenL1 andL2-normalization. The
tuning curves are computed by taking the optimal Gabor stimulus for each higher order
unit and changing one of the parameters (phase, position, orientation and frequency) at
a time. In(a), only the first layer was learned and the second fixed to the identity ma-
trix, so the model corresponds to ICA. This results in simplecell behavior with strong
phase selectivity. Sequential estimation of the two weightlayers withL1 normalization
is shown in(b), so the first layer filters are not adapted to the pooling patterns. There is
a decrease in selectivity to spatial phase, indicating complex cell properties. In(c) both
layers have been estimated simultaneously withL1 normalization. The adaptation of
the phase of the linear filters to the pooling patterns leads to a striking decrease in phase
selectivity, i.e. the second layer outputs become more complex cell-like. In particular
the upper 10% quantile of the outputs becomes essentially completely phase-invariant,
whereas in the sequential estimation, there is still a 40% modulation in this quantile.
At the same time the selectivity for position, orientation and frequency are not affected
considerably, with only a slight broadening. In(d) we show the responses for a model
with simultaneous estimation of both layers andL2 normalization. Due to the hetero-
geneous pooling patterns, much of the selectivity, in particular for position, is lost. At
the same time the large number of simple cell-like outputs with only a single strongly
active linear filter leads to a loss of phase invariance. The regularization with anL1

norm seems to be an important requirement to obtain complex-cell like responses.

5.3 Estimation of an overcomplete model

To generalize our experiments to an overcomplete model, we propose a model in which
the number of linear filters is higher than the data dimensionality, but the dimensionality
is reduced again for the higher order units. This is motivated by the observation that
with no normalization on the second layer, many of the outputs go to zero (experiments
not shown). Since we do not need to take the normalizability of the model into account,
it is straightforward to make the set of filters inW overcomplete. We consider such a
model which is overcomplete by a factor of four, with 240 filters in W estimated on
data with the dimensionality reduced to 60, but otherwise identical to the image data
used in the previous section.

In order to make the model overcomplete, we need to drop two simplifications used
to far. Firstly, we cannot use an ICA initialization since this would require as many
output units as linear filters. Instead of the initialization with an identity matrix, we
initialze V randomly with uniform noise. Secondly, the matrixW can no longer be
constrained to be an orthogonal rotation, so it is estimatedwith rows constrained to unit
L2 norm.

To analyze the effect of the random initialization separately from that of overcom-
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Figure 3:(a-b) A random selection of 24 higher order features, corresponding to indi-
vidual rows ofV. Each feature is represented by a number of ellipses corresponding
to individual first layer basis functions with the same orientation and position as the
ellipse. Spatial phase is not shown in this representation.Each unit can be seen to pool
over a small number of basis functions that tend to be iso-oriented and co-localized.
This is typical behavior for complex cell receptive fields. While theL1-norm penalty
in (a) leads to a relatively uniform population of outputs, the features with anL2-norm
constraint in(b) show a distinct splitting into two sub-populations: Some features pool
over a larger number of inputs and lose much of the location selectivity, while the rest
of the features pool over fewer features than with theL1-norm.
(c-d)Left hand side: Pooling patterns visualized in more detail by plotting the most ac-
tive linear filters contributing to some randomly selected higher order units. Each row
corresponds to one output and the black bars represent the relative strength of the linear
filter inputs. Right hand side: Plot of the second layer matrix V.
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(b) Sequential estimation ofW andV with L1 norm
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(c) Simultaneous estimation ofW andV with L1 norm
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(d) Simultaneous estimation ofW andV with L2 norm

Figure 4: Analysis of complex cells properties of the secondlayer outputs, following
(Hyvärinen & Hoyer, 2001). One parameter of the fitted Gaborwas changed at a time,
and the normalized response was plotted as a function of the tuning parameter. The
solid line shows the mean response of 120 tested cells, the dashed lines give 10% and
90% quantiles.
(a) Only the first layerW was estimated andV was fixed to identity.
(b) After W had converged it was held constant andV was estimated using this con-
stant first layer.
(c) W was initialized as above, but then both layers were estimated simultaneously.
This shows significantly less phase sensitivity in the tuning curves, indicating thatW
has adapted to the pooling imposed byV.
(d) Responses obtained withL2-normalization under simultaneous optimization. Not
only is some of the phase invariance lost, but position and orientation tuning are signif-
icantly worse than for theL1 case.
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pleteness, we compare the results from the overcomplete model with those from a com-
plete model with a randomly initialized second layer. Both models were estimated with
L2 normalization on the second layer. Figure 5 shows the results in the same way as the
previous plots, i.e. the first and second layer features and pooling patterns for these mod-
els. For the overcomplete model, it can be seen that some of the features, in particular
at higher frequencies, are less localized than in the modelswith ICA initialization. The
reason for this is evident when considering the pooling patters: there are many higher
order units pooling over a large number of linear filters, so selectivity in these features
is reduced and more global pooling patterns emerge. It is also worth pointing out that
some of the basis functions in the overcomplete case containmultiple Gabor functions,
indicating convergence to a local minimum. This problem is not due to the random
initialization as can be seen from the complete model, whichin fact has aJ̃ = −79.1
and is thus not significantly different in quality from the diagonally initialized model
we considered earlier. Rather, we suggest that the orthogonality of W is an important
requirement to avoid convergence to local minima.

5.4 Estimation without non-negativity constraints

In addition to the experiments with a non-negative second layer, we also estimated the
model with two different nonlinearities that did not require a non-negativity constraint,
allowing us to model negative energy correlations in addition to positive ones. First,
we analyzed the case of a symmetric nonlinearityf(u) = log cosh(u), which leads to
an output distribution that is sparse for both negative and positive outputs. Additionally
we report on the results with an asymmetric nonlinearity, where the negative half of the
nonlinearity corresponds to a low variance Gaussian distribution, and the positive half
follows a logistic distribution. In both cases anL2-norm constraint was imposed on
rows ofV, which was initialized randomly with Gaussian white noise.Moreover, the
first-layer nonlinearity was set asg(u) = log cosh(u) instead of the squaring, in order
to be able to better model a heavy-tailed distribution in conjunction with the second
nonlinearity.

In the symmetric model (results not shown), we found sparse connectivity of the
second layer, but with higher order features very differentfrom the complex cell-like
responses of the non-negative model: For some of the outputs, the first layer forms
pairs of features which both contain two Gabors in their receptive field, one that is
identical in both features, and one that is identical but of opposite sign, as in (Lindgren
& Hyvärinen, 2006). Individual higher order outputs pool one such pair of features with
one strong negative and one positive weight. Using the identity a2−b2 = (a−b)(a+b),
this can be interpreted as taking the product of the sum and difference of the two linear
filters, which turns out to be the product of two individual Gabor filters. Thus the
model is effectively taking products of linear filter outputs, with results very similar
to those observed previously in quadratic ICA (Lindgren & Hyvärinen, 2006). In the
model with sparse positive and Gaussian negative outputs (results not shown), we report
higher order features with one or a small number of highly active positive inputs, and a
larger number of small negative inputs. This could possiblybe interpreted as surround-
inhibition, or a gain control phenomenon.

Thus we see that the results depend strongly on the choice of the nonlinearityf , and
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Figure 5: Comparison of a complete and a four times overcomplete model, both with
randomly initializedV, andL2-normalization on the second layer.(a-b)shows a subset
of the filters inW, for the two models. Random initialization does not lead to qualitative
differences, but the overcomplete model learns features with are less localized and more
frequency selective.(c-d)shows a representation of the higher order features (see Fig. 3
for details). The overcomplete model can be seen to give riseto a population of highly
selective outputs which include only a single linear filter as well as a population of
largely invariant higher order units pooling over a large fraction of inputs and retaining
only orientation selectivity.(e-f) shows the second layer weight matrixV with inputs
arranged by frequency and outputs ordered by sparseness of the pooling.
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very different results can be obtained by changing the nonlinearity. It seems difficult
to make a principled choice off , because the usual measures of sparseness do not
easily generalize to two-layer models. In future research,f could possibly be estimated
from the data. In the current work, we choose to analyze only the results from the
non-negative model, because it seems to be most in line with the visual processing
in mammalian visual cortex, i.e. complex cell responses. Furthermore, we view our
model as a direct extension to models with non-negative second layers such as ISA and
topographic ICA. These have previously been motivated by the observation of strong
positive energy correlations between linear filter outputs, so non-negativity seems to be
a reasonable constraint.

6 Experiments on Audio data

In order to demonstrate the general applicability of our model to a variety of data sets,
we also tested it on speech data from the TIMIT database. The model was estimated
in exactly the same way as for image data, and the data was preprocessed as follows:
We took 100 short utterances from the database, and resampled them to 8kHz. The
data was high-pass filtered with a cutoff at 100Hz and then normalized to unit vari-
ance. We sampled 10,000 random sound windows of 16ms length,which corresponds
to 128-dimensional data and removed the DC component. We also applied our standard
preprocessing consisting of whitening and contrast gain control, as described above for
image data. Simultaneously we reduced the dimensionality from 128 to 120, which
amounts to low-pass filtering and serves to eliminate artifacts due to the windowing
procedure. The rows of the second layer were constrained to unit L1-norm.

The results we obtained from the speech data are remarkably similar to those from
image data and are presented in Figure 6. In(a) we show the first layer features in the
time domain, which are tuned to specific frequency bands as well as onset time and
duration. The second layer in(b) shows that a sparse connectivity has been learned
between groups of first layer features. This is analyzed further in (c), where we we
show which first layer features are pooled in the second layer. We obtain higher order
features where similar frequencies with slightly different temporal onset are pooled.
Interestingly, the pooling size is considerably smaller than for image data, some of
the outputs have as few as three contributing first order features. This indicates that
individual linear filters outputs are closer to independentfor audio data than for images,
and that residual dependencies after the first layer are smaller.

7 Discussion

Hierarchical models have a long history in computational neuroscience and machine
learning, and they are a promising approach to modelling thecomplicated structure of
natural signals. However, it has not been feasible until recently to estimate multiple
layers of these models from the data. The estimation can be difficult in different ways,
such as the need to integrate over latent variables in generative models, or the computa-
tion of the intractable partition function in energy-basedmodels. In this work we have
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Figure 6: Experiments for speech data from the TIMIT database.
(a) The first layer gives outputs localized in both frequency andtime.
(b) The second layer shows connections between features with dependencies of squares.
(c) A random selection of output units. Each row shows the activefirst layer filters in
one row ofV.
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used Score Matching for estimating an energy-based model while avoiding to compute
partition function, and we have shown how both layers of a two-layer model can be
estimated from the data.

Two recent models have a similar hierarchical structure butare estimated in a dif-
ferent way from the model considered here. In particular thehierarchical Product of
Experts (PoE, Osindero et al., 2006) is closely related to our work. Instead of using
the “independent component” point of view, the model is defined as an overcomplete
“product of experts” model with experts following Student-t distributions. The estima-
tion is performed using Contrastive Divergence, which was recently shown (Hyvärinen,
2007a) to be related to Score Matching. The results obtainedare similar to those re-
ported here: Estimating the model on natural images also leads to pooling of linear
filters with similar position and orientation, but different spatial phase. However, the
authors do not show the pooling patterns, so it is not clear whether they also observed
sparse connectivity in the second layer. A surprising difference to our model is that
the authors observe it makes little difference whether the second layer is estimated on
top of a fixed, predetermined first layer. However, model comparison is not straight-
forward with CD, which does not provide an objective function, so it is not clear if
there is no further change in the linear filters in the PoE model, or if the authors simply
did not investigate this further. In any case, the change in first layer units, which leads
a significantly more complex cell-like behavior of output units, shows the importance
of estimating the layers simultaneously in our model. The first layer features adapt to
the structure of the second layer by changing the spatial phase tuning, which results
in a better model fit as gauged by the Score Matching objectivefunction, as well as
increasing the phase invariance of the output units.

The hierarchical Bayesian model by Karklin & Lewicki (2005,2006) is also related
to our work in that the authors estimate two layers of a hierarchical model of natural
images, but it is different in that the model is generative rather than energy-based. It is
related to the generative topographic ICA model (Hyvärinen et al., 2001), where sources
are not generated independently, but have dependencies introduced by multiplication
with hidden variance variables, which are themselves givenby a linear mixing of higher
order sources. An exact estimation of such a generative model is not tractable because
it requires integration over the possible states of the higher order variance variables.
The authors thus resort to using a maximum a posteriori (MAP)approximation for the
higher order sources. Similar to our results, the authors obtain Gabor-like filters in
the first layer, but the second layer, which describes patterns of variance dependencies
between linear filters, is quite different from the results of our energy-based models.
The authors report broadly tuned features, encoding globalproperties of the data, and do
not obtain simple pooling patters with e.g. common orientations and spatial frequencies.
In agreement with our results, the linear filters in the first layer are reported to change
depending on the pooling patterns in the second layer.

While the sparseness of the connectivity in the second layeris an important factor
in obtaining complex cell-like responses, it is important to note that sparseness was
not explicitly enforced in our model. Experiments withL2-normalization and random
initialization of V still result in sparse connectivity, even though the outputunits lose
much of their complex cell properties. The non-negativity andL1-norm penalty appear
to be important factors in obtaining a uniform population ofphase invariant higher order
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cells which pool over a small number of first order units. TheL1-norm can be related
to energy efficient coding and wiring length constraints, which has been proposed to
play a role in shaping the receptive fields in retinal cells (Vincent et al., 2005) and
may be of similar importance for early visual cortex. With theL2-norm we observed
a fragmentation into two populations of output cells with different pooling patterns. In
addition to one very sparse population, a second populationpools over a larger number
of inputs, and loses much selectivity.

8 Conclusion

We have presented an energy-based model of natural images and sounds with two layers
of weights estimated from the data. The two layer model was estimated using Score
Matching, which allows estimation without knowledge of thepartition function. On
natural images, the estimation of both layers with anL1-norm penalty on the second
layer leads to the emergence of complex cell properties for the higher order units. We
analyze how the model parameters differ if the second layer is estimated on top of a
fixed ICA basis and report that the phase tuning of the linear filters changes when both
layers are estimated simultaneously, which results in an increase in phase invariance of
the outputs. We performed experiments with a randomly initialized second layer,L2-
normalization and without non-negativity constraints, which all lead to sparse pooling
but less complex cell-like outputs.
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Appendix

Derivatives of the objective function

We need to evaluate the gradients in the objective function (equation 24) w.r.t. the el-
ements ofW andV. Since the expression can readily separated into a sum of three
terms, which we callA, B andC, we treat these separately. We get six terms∂A

∂W
, ∂B

∂W
,
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etc. Writing these out, we get for the first term
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For the second term we get
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and for the third term, the derivative is
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Next we evaluate the derivatives for V, for the first term:
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the second term:
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and similar for the third term:
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