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Abstract

The effect of collinear context on the filter mediating the detection of a Gabor stimulus was investigated by using the classification
image method. Classification images were estimated for a 1.5 cpd horizontal Gabor target and the same target flanked by two collinear
Gabors horizontally 1.7� displaced from the target. The target was masked by a low-contrast white-noise mask. Obtained classification
images were fitted by Gabor functions. The results show that collinear flankers increase the length of the classification image profiles
along the collinear axis. At the same time, modest facilitory effects were observed in most subjects. The specificity and the amount of
context-induced elongation in the classification images makes it hard to be explained by uncertainty reduction alone. In previous studies,
collinear facilitation has been reported to abolish due to perceptual learning. We report a possibly related phenomenon: classification
image data was re-analyzed in two parts consisting of the early and the late trials. In the latter trials, differences between the classification
images in flankers and no-flankers condition are no longer significant.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

A classical view of early vision assumes that visual filters
act in a spatially localized manner, being driven only by
stimuli inside the receptive field. However, it is now widely
acknowledged that stimulation of areas nearby the recep-
tive field can substantially modulate the filters’ behaviour,
typically suppressing the output (see e.g., Cannon &
Fullenkamp, 1991; Carandini, Heeger, & Movshon, 1997;
Cavanaugh, Bair, & Movshon, 2002; Foley, 1994).

In the lateral masking paradigm, these contextual inter-
actions have been studied by examining the effect of
spatially displaced Gabor masks (flankers) on the detect-
ability of a Gabor target. Both suppressive and facilitatory
effects have been reported, depending on the configuration
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and the distance between the flankers and the target (Polat
& Sagi, 1993, 1994a). Facilitatory effects have been found
in collinear configurations, where the target Gabor and
the flanking Gabors lie coaxially to one another. Maximal
facilitation has been reported to occur when the distance
between the target and the flankers is 2–3 Gabor signal
wavelengths, but facilitation is observable even at 12 wave-
lengths (Polat & Sagi, 1993, 1994a).

Often these lateral interactions have been interpreted in
terms of excitatory and inhibitory interactions between the
filters sensitive to the target and the flankers (Adini, Sagi, &
Tsodyks, 1997; Chen & Tyler, 2001, 2002; Zenger & Sagi,
1996).

As facilitation can be found only in collinear, contour-like
configuration, it has been suggested that these excitatory
long-range connections could serve in a contour integration
mechanism (Polat, 1999; Polat & Sagi, 1993, 1994a). Howev-
er, there have been failures to show a link between contour
integration processes and collinear facilitation or even to
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show any collinearity effects in suprathreshold stimuli
(Hess, Dakin, & Field, 1998; Meese, Hess, & Williams,
2001; Williams & Hess, 1998).

Not all have agreed that this collinear facilitation phe-
nomenon implies the existence of nonclassical excitatory
long-range connections and it has been pointed out that
(1) flankers may cause substantial higher level uncertainty
reduction as the flankers and the target are identical except
for their positions (Williams & Hess, 1998; see also Yu,
Klein, & Levi, 2002) and (2) flankers may act as a pedestal
stimulus to the target. In this case detection would be med-
iated by nonoptimal perceptual filters that lie between the
target and the flanker. These filters would be sensitive to
the target while receiving a weak direct excitation from
the flankers (Solomon, Watson, & Morgan, 1999).

In this study, we investigated the mechanisms of contex-
tual collinear interactions by using the classification image
technique. The stimuli were masked by low-contrast white
noise. The contrast of the target stimulus was adjusted to a
detection threshold. In each trial, both the outcome of the
trial (correct, incorrect) and the presented two noise masks
were recorded. The relationship between each pixel in the
stimulus and subjects’ response was then analyzed by sub-
tracting the average noise field difference producing the
incorrect response from the average noise field difference
that produced the correct response (Abbey & Eckstein,
2002; Abbey, Eckstein, & Bochud, 1999). If observer’s per-
formance can be modeled by a linear single filter model, the
technique provides a direct way to estimate the spatial
profile of the filter mediating the detection.

By measuring the classification images for a Gabor tar-
get with and without collinear flankers, it is possible to
infer how flankers affect the filters used in the detection.
If the flankers act by (1) reducing the uncertainty, we
should observe diminishing of uncertainty effects in the
collinear flankers condition. If the flankers cause (2) a
pedestal effect, we should observe elongation of the target
filter in the direction of the flankers. We are unable to
draw exact predictions for models with long-range con-
nections (Adini et al., 1997; Chen & Tyler, 2001, 2002;
Zenger & Sagi, 1996) since they are parametric rather
than image driven and thus incapable predicting the per-
formance for our white-noise masked stimuli. These mod-
els often employ excitatory connections in long range,
which might cause elongation of the classification image
profile by a pedestal effect-like mechanism. However,
Fig. 1. Stimuli. (A) Target without noise mask. (B) No-flankers condition. (
often these models have also inhibitory connections in
short range, thus the net effect would depend on the
relative strengths of these two.

Furthermore, it has been suggested that collinear con-
text may play a special role in perceptual learning (see
e.g., Polat & Sagi, 1994b). We investigated the learning
effects from classification images by analyzing the data
separately from the early and the late trials.

Preliminary results were presented at the European
Conference on Visual Perception in Budapest, Hungary,
August 2004.

2. Methods

2.1. Apparatus and stimuli

Stimuli were generated by the Cambridge Research Systems 2/3 graph-
ics board in a Pentium PC and displayed on a calibrated Nokia Multi-
graph 445 CRT monitor. The mean luminance of the display was
20 cdm�2. The effective resolution of the monitor was 400 · 300 pixels
and display area 38 · 29 cm. Subjects viewed the stimuli at the distance
of 98 cm in a dimly lit room.

The stimuli were horizontal Gabor patches, which were additively
masked by white noise. An example of the stimuli is presented in
Fig. 1. The center frequency of the Gabors was 1.5 cpd and the width
of the circular Gaussian envelope was 0.75� at half height. A rather
low frequency was used to minimize the spatial uncertainty effects
reported in earlier classification image studies (Ahumada & Beard,
1999). The size of the rectangular noise mask was 2 · 2� with the stan-
dard deviation (rms-contrast) of 0.1 linear-contrast units (contrast is
expressed here as a fraction relative to the mean luminance-1). Noise
consisted of independently drawn Gaussian pseudorandom variables
produced by an algorithm with an extra long period (Press, Teukolsky,
Vettering, & Flannery, 1992). A new noise sample was generated for
every stimulus presentation. The classification images were measured in
two conditions: in a no-flankers condition for the central target Gabor
and in a flankers condition for the same target with the presence of
two static, high-contrast (0.4 U) flanking Gabors 1.7� (2.5 Gabor wave-
lengths) horizontally displaced from the target. This distance was select-
ed to get the maximum facilitation, based on a preliminary experiment
done with one subject (IK).

2.2. Procedure

A two-interval forced-choice (2IFC) procedure was used. Two
consecutive stimulus intervals were presented to the subject, one of them
containing the target stimulus. A trial started with the presentation of
small, low-contrast central fixation crosshair for 330 ms. The fixation
mark disappeared and there was a pause for 330 ms, then the first stimulus
was presented for 130 ms, a pause for 330 ms, and finally the second stim-
ulus appeared for 130 ms. The subject’s task was to indicate whether
the target was in the first or in the second interval by pressing a key.
C) Flankers condition. The nominal contrast level of the target is 0.25.
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Experiments were conducted in a series of 100 trials of single condition
(no-flankers/ flankers). Consecutive series were of different conditions to
control the practice effects.

Two subjects (TP and TR) performed the experiments in five separate
sessions each containing 1000 trials per condition to assess possible learn-
ing effects.

Target contrast was adjusted for 75% correct choices using either
method of constant stimulus (MOCS) and preliminary experiments to
estimate the threshold (subjects VS, SS, and IK) or an adaptive QUEST
Watson and Pelli (1983) method (subjects TP and TR).

Before the main experiment subjects practiced briefly with suprathresh-
old stimuli without the noise mask. During the first session, auditory feed-
back was used but after subjects become accustomed to the task, it was
turned off. When MOCS was used, slight (0.001–0.002 contrast unit)
adjustments of contrast level were done occasionally to keep the detection
performance at about 75%. The experiments were conducted during a
period of sixteen months.

2.3. Subjects

Five subjects participated in the experiment: IK is one of the authors
and highly experienced in psychophysical tasks similar to this, VS and
TP were experienced psychophysical subjects while SS and TR were naı̈ve
about the purposes of this experiment. All subjects had normal or correct-
ed to normal vision.

2.4. Data analysis

Subjects ran 5000 trials per condition (except IK 4000). Classification
images were estimated using the standard weighted sums method (Abbey
& Eckstein, 2002). First, the pixelwise difference between the two noise
masks presented in each trial was calculated. Then, noise mask differences
in trials resulting in correct detection and differences in trials resulting in
incorrect detection were averaged separately across the trials. Finally,
the average of the incorrects was subtracted from the average of the
correct detections.

To quantify the characteristics of the classification image profiles,
Gabor functions were fitted to them using the method of least squares.
Parameters controlling the amplitude a, horizontal extent rx, vertical
extent ry, wavelength k, and vertical and horizontal position xc, yc were
fitted so that the error sum of squares d2 in
Fig. 2. The classification images for five subjects and the filter
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was minimized. Fitting was done numerically, using the fminsearch func-
tion of Matlab 6.5 software.

Bootstrap methods (Efron & Tibshirani, 1993) were used for assess-
ing statistical significance. Random picks with replacements were taken
from experimentally obtained data so that the number of trials and the
distribution of trial types (correct, incorrect) were the same as in
the actual experiment. Then, the Gabors were fitted to each sample in
the resampled data. Confidence intervals for the fitted parameters were
calculated on the basis of 4000 such bootstrap samples in each condition
(flankers, no flankers). The statistical significance of the differences in
the fitted parameter values (p value) was obtained by the nonparametric
ASLboot method. Data sets for both conditions were first merged. Ran-
dom picks with replacement were taken from this merged data set so
that the number and distribution of the trial types matched the actual
experiments. After that, Gabor functions were fitted to both of these
bootstrap samples and the difference between the parameters analyzed
on the basis of 10,000 pairs.

Absolute efficiencies were calculated by comparing the observed
detectability indexes d 0o with ideal observer’s d 0i (i.e., standard signal-to-
noise-ratio of the stimulus) (see eg. Green & Swets, 1974; Tanner &
Birdsall, 1958).

F ¼ ðd 0o=d 0iÞ
2. ð2Þ

Finally, we re-analyzed the data to find out whether there were perceptual
learning effects. The data for the classification images was re-analyzed in
two chunks, the first consisting the first 2000 trials (two sessions) and
the latter the last 3000 trials. This aggregation of data was done to reduce
the noise.

3. Results

3.1. Detection performance

Detection performance is shown in Fig. 2. Performance
is expressed by absolute efficiency (F) rather than threshold
of an ideal observer. F is the absolute efficiency (see text).
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contrast, because for some subjects, proportion of correct
choices varied between the conditions. Results show that
absolute detection efficiency is 7% (TR) to 30% (IK) better
with collinear flankers (see Fig. 2).

3.2. Classification images

The classification images are presented in Fig. 2. The
parameters and statistics of the Gabor fits are presented
in Table 1. In all conditions and subjects, the profiles of
classification images clearly resemble a single Gabor-filter.
In the no-flankers condition, the profiles of the classifica-
tion images are smaller than the filter of the ideal observer
(or size of the target stimulus) except for subject TR.
Table 1
Best-fitting parameters (a, amplitude; rx, horizontal extent; ry, vertical extent;

Subject No-flankers

Best fit 95% Confidence interval

Ideal
rx 5.66

ry 5.66

f 12

VS
a 2.92 2.58 to 3.33
rx 3.29 2.84 to 3.79
ry 2.24 1.63 to 2.85
f 19.83 15.4 to 7192.00a

xc �0.50 �0.93 to 0.07
yc �0.18 �0.41 to 0.06

SS
a 2.74 2.35 to 3.16
rx 3.22 2.80 to 3.76
ry 3.54 2.89 to 4.25
f 14.54 13.06 to 16.23
xc �0.52 �0.97 to 0.25
yc �0.37 �0.60 to 0.11

TP
a 1.65 1.39 to 1.95
rx 3.66 3.06 to 4.48
ry 6.65 5.96 to 7.57
f 10.72 10.22 to 11.26
xc 0.12 �0.71 to 0.51
yc �0.20 �0.39 to 0.01

TR
a 2.11 1.90 to 2.37
rx 6.52 5.83 to 7.23
ry 5.37 4.75 to 6.12
f 12.77 12.27 to 13.31
xc 0.35 �0.39 to 1.08
yc 0.23 0.08 to 0.39

IK
a 3.48 3.11 to 3.95
rx 3.23 2.89 to 3.59
ry 3.07 2.52 to 3.58
f 13.09 12.00 to 14.28
xc �0.01 �0.40 to 0.47
yc 0.00 �0.03 to 0.34

Confidence intervals and p values were obtained by bootstrap estimation.
a Upper bound of the confidence interval could not be estimated reliably.
The profiles in classification images in the flankers con-
dition are horizontally elongated compared to the no-
flankers condition. The horizontal extent estimated from
the fits (rx) grows from 22% (TR) to 143% (VS) when com-
pared to the no-flankers profile. In other parameters,
changes are less pronounced. Seemingly significant lower-
ing of amplitude in no-flankers condition in some subjects
vanish if the norms of the filters are taken into account.

3.3. Learning effects

The time course of the experiment for horizontal extent
rx is shown in Fig. 3. The differences in horizontal
extent parameter are only evident at the beginning of
x,y, horizontal and vertical position)

Collinear flankers p value

Best fit 95% Confidence interval

5.66

5.66

12

1.67 1.32 to 2.26 <.001
8.01 5.06 to 11.45 <.001
3.38 2.39 to 4.19 .07

14.48 12.85 to 16.71 .27
�1.35 �2.70 to 0.15 .09
�0.04 �0.30 to 0.22 .41

2.42 1.87 to 3.00 .32
5.08 3.76 to 7.23 .02
4.03 3.51 to 4.76 .16

11.36 10.66 to 12.05 .34
�0.51 �1.70 to 0.24 .24
�0.37 �0.50 to 0.17 .47

1.43 1.28 to 1.90 .29
7.15 4.84 to 8.23 <.001
5.56 4.77 to 6.28 .06

10.42 9.88 to 10.91 .40
0.45 �2.37 to 0.52 .68
�0.30 �0.54 to 0.17 .49

1.80 1.62 to 1.99 .03
7.95 7.12 to 8.91 .01
5.90 5.35 to 6.52 .25

12.07 11.66 to 12.50 .04
�0.31 �1.32 to 0.21 .15

0.13 �0.03 to 0.26 .32

3.49 3.12 to 4.00 .98
3.97 3.31 to 4.60 .03
2.63 2.28 to 3.07 .21

12.54 11.58 to 13.81 .49
0.00 �0.87 to 0.09 .94
�0.01 �0.15 to 0.18 .96
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Fig. 3. The effect of practice (TP,TS). Best fits for the horizontal extent (rx) of the estimated filter as a function of trial number. Data is analyzed in the
independent chunks of 2000 and 3000 trials (see text). Solid lines: flankers condition. Dashed lines: no-flankers condition. Error bars represent 95%
confidence interval. Data in other subjects (not shown) are comparable. The difference between the early and the late session is statistically nonsignificant
(p > .1) in no-flankers condition but significant (p < .03) in collinear flankers condition for both subjects. p values were estimated by bootstrap methods.

1 Details are available on request.
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the experiments. Practice seems to cause retuning of the
profile of the classification images so that the best fitting
filters converge during learning, in a time period of about
two sessions.

4. Discussion

Our results show that collinear masks change the profile
of the classification images: adding the flankers elongates
the perceptual filter towards the flankers. This elongation
was significant (p < .05) for every subject. The elongation
in classification image profiles is likely to be linked to the
facilitation reported in earlier studies without the noise
masks. In fact, flankers slightly increased the absolute
efficiency.

The perceptual learning causes significant retuning in
the horizontal axis of the classification image profile.
After 2000 trials of practice, the difference in the hori-
zontal axis is not apparent any more. Practice in the lat-
eral masking paradigm at a single flanker distance
(without the noise masks) is known to destroy the collin-
ear facilitation (Polat & Sagi, 1994b). It seems that after
enough training, observers adopt a common strategy in
both conditions. This suggests that contextual informa-
tion is not used in an optimized detection strategy.
Learning effects here seem to operate mostly by retuning
of the filter towards the ideal profile, in line with earlier
studies (Gold, Sekuler, & Bennet, 2004; Li, Levi, &
Klein, 2004).

Earlier classification image studies have shown that
using a high-frequency Gabor-target leads to a featureless
classification image, likely to be explained by the uncertain-
ty of phase or location of the target (Ahumada & Beard,
1999). For the low-frequency target we used here, classifi-
cation images in the no-flankers condition are generally
smaller than the filter of the ideal observer, especially on
horizontal axis, and have broader orientation (and on most
subjects, frequency) tuning. This suggests uncertainty
about the spatial frequency and orientation of the target
stimulus.
Might the elongation caused by collinear flankers be
explained by uncertainty reduction? A simulation1 was
done to examine the issue. The task and the stimuli were
identical to that of the experiment. We simulated a model
observer having both orientation and spatial uncertainty.
The observer’s response was based on the maximum of out-
puts of a filter bank having the parameters of the ideal filter
but differing in orientation and spatial location.

Simulations show that orientation uncertainty causes
the classification images to underestimate the horizontal
width of the receptive area. However, the effect is quite
modest. Only in the maximum values, effects comparable
to the empirical data (up to 140%) was seen. Orientation
uncertainty does not explain why classification images are
in some cases more elongated than the ideal profile
(although this is significant just in TP; VS p = .07, TP
p > .1). Spatial uncertainty along the horizontal axis could
explain this, but again only in the extreme values. As the
research on this subject has barely begun, we cannot ascer-
tain how plausible such an assumption is. In an initial
study by Murray, Bennet, and Sekuler (2005), spatial
uncertainty could not explain the uncertainty effects in
the classification images. Thus, although an uncertainty
based explanation is not impossible, it requires rather spe-
cific and ill-founded assumptions. Furthermore, the classi-
fication images in the collinear-flankers condition are not
necessarily more ideally tuned than in no-flankers condi-
tion: we estimated the net effect of parameter changes to
the sampling efficiency (q2) of a linear single filter observer
having the best fitting templates by calculating the squared
dot product between the fitted profile Wf and the ideal
profile Wi (see also Li et al., 2004):

q2 ¼
X

x;y

W f ðx; yÞW iðx; yÞ
 !2

. ð3Þ

Results show that there is a notable increase just in two
subjects (SS,VS).
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We think that the pattern of results here is to be
explained more fruitfully in terms of sensitivity changes
in the low-level filters. Perhaps the simplest such explana-
tion—an analogue to the model suggested by Solomon
et al. (1999)—is that the flankers act like pedestal stimulus
to the filters between the target and the flankers. If the out-
puts of the filters are thresholded, the net effect of the target
and the external noise in the stimulus will occasionally
cause excitation exceeding the threshold in these filters
(see also Blackwell, 1998), which could explain the elonga-
tion in the classification images. Our results do not rule out
the possibility of more complex interactions if these act by
increasing (rather selectively) the sensitivity of the filters
situated near to the ends of the target.

To conclude, using classification images we have shown
that collinear flankers change the profile of the perceptual
filter, making it more elongated. The amount and the spec-
ificity of the change makes the hypothesis of uncertainty
reduction on a higher level problematic and suggests that
the observed changes in the classification images reflect at
least partially an increase of the sensitivity of low-level fil-
ters. During the data acquisition, differences between the
profiles greatly diminish and observers seem to adopt a
common detection strategy in both conditions. This may
be related to disappearance of the collinear facilitation in
contrast threshold studies (Polat & Sagi, 1994b). It suggests
that the optimized detection strategy is the same in both
conditions. Furthermore, it can be taken as further evi-
dence that perceptual learning operates by retuning of the
perceptual filters.
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