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Abstract

Statistical methods, such as independent component
analysis, have been successful in learning local low-level
features from natural image data. Here we extend these
methods for learning high-level representations of whole
images or scenes. We show empirically that independent
component analysis is able to capture some intuitive natu-
ral image categories when applied on histograms of outputs
of ordinary Gabor-like filters. This can be taken as an in-
dication that maximizing the independence or sparseness of
features may be a meaningful strategy even on higher lev-
els of image processing, for such advanced functionality as
object recognition or image retrieval from databases.

1. Introduction

There seems to be a rather general consensus both in
vision research and pattern recognition on the low-level
mechanisms for feature extraction in natural images. Linear
filters similar to the Gabor family have interesting analyti-
cal properties [2] and similar filters have emerged by data-
driven statistical methods from natural images [8, 10, 5].
Existence of equivalent mechanisms in biological vision has
been known since the classic work of Hubel and Wiesel [3].

Much more controversial is the question of what should
be done with the filtered images to facilitate higher level
functions such as object recognition, content-based image
retrieval and finally, image understanding.

In this paper we show that it is possible to learn some
intuitive natural image categories (categorical attributes)
by applying data-driven, unsupervised methods on the his-
tograms of outputs of low-level features in high-resolution
natural images. Our method applies independent compo-
nent analysis (ICA, see [5]) on the histograms of outputs of
linear filters — called independent spectral representations
in [6].

We present empirical results showing that the method is
able to learn features that typically respond highly to a sin-
gle intuitive natural category and are mostly inactive on im-
ages not belonging to the same category.

The rest of this paper is organized as follows. Section 2
quickly outlines ICA, the spectral representations and our
framework for learning the categorical attributes. In sec-
tion 3 we outline our experimental design. Section 4 de-
scribes results on natural images. Finally, section 5 con-
cludes with some future directions.

2. Learning natural image categories

2.1. Independent and sparse components

Maximizing sparsity or independence has turned out to
be an useful optimization criteria for learning low-level fea-
ture extractors that are similar to those found in natural vi-
sual systems [8, 5]. Since sparse coding and independent
component analysis are very similar, we will concentrate
on ICA in this presentation.

ICA assumes that the observed data matrix
�

is gener-
ated by a model ���������
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	 � . ICA tries to do this by maximizing the statistical in-
dependence of the rows of

�
. For a more thorough account,

see e.g. [5]. When ICA is applied to small natural image
patches, Gabor-like filters emerge as rows of 	 [8, 5]. In
particular, the features are linear filters that are 1) oriented
2) localized in space and 3) bandpass.

A tempting approach would be to try to find sparse or in-
dependent representations from a large dataset of full-size
natural images, instead of applying the methods to small
windows sampled from the dataset. One might hope that



this would reveal components of more complicated struc-
ture. However, it is likely that the features would only be re-
scalings of the original features, since ICA gives quite simi-
lar features on different image sizes. Moreover, doing inde-
pendent component analysis on full size images would be
prohibitively expensive computationally and require mas-
sive amounts of data.

Another approach that is not fruitful is to do ICA on
the independent components of natural image patches. This
means simply stacking two linear transformations. Nothing
is gained in this way, since the first linear transformation
already gave the most independent features.

The approach we take in this paper is to examine how a
statistical description of low-level image features could be
used as a starting point for learning higher-order features
from images.

2.2. Spectral representations

Liu and Cheng [6] argued that if the different marginal
statistics derived from an image patch are independent, they
provide a low-complexity representation for the full joint
distribution of the patch content. Subsequently, they pro-
posed to compute an independent spectral representation
(ISR) to characterize a single image.

ISR is basically a set of marginal statistics calculated
from outputs of linear filters on an image, with the property
that the marginals are assumed to be independent by con-
struction. A “spectral” representation is created by convolv-
ing an image separately with filters in a chosen filter bank.
For each of the filter outputs, a histogram is estimated as
one (multidimensional) marginal statistic. The histograms
are then concatenated to form the spectral representation
for the image. In ISR, the filters are typically estimated
by ICA and their responses are assumed to be independent.
Although maximizing the independence is the goal of ICA,
true independence is not likely to be obtainable from natural
image data. However, this may be a useful first approxima-
tion, and even if independence is not attained, the results
can often be interpreted as maximally sparse coding [8, 5].

2.3. ICA of low-level feature histograms

We propose here that a combination of independent spec-
tral representations and another ICA phase yields interest-
ing attributes that characterize whole images or scenes. This
is different from the classic application of ICA which is sup-
posed to yield only very low-level, local features.

Basically, we compute the independent components of
the independent spectral representations of each image. ISR
of an image consists of histograms of the responses of low-
level filters (typically given by ICA). We concatenate the
histograms of all filters for each image, thus obtaining a

representation vector for each image. Then we perform ICA
on these data.

3. Experimental design

We applied our method — first ordinary ICA, followed
by ICA on the histograms of the outputs of the first ICA
— on a well-known set of natural images. Due to space
constraints we give only a relatively high-level description
of our method1.

We used the natural image dataset provided by van
Hateren and van der Schaaf [10]. The dataset contains ap-
proximately ������� gray-scale images with resolution ������	�

����
�� . We used the ”deblurred” versions. The images show
miscellaneous shots of suburbs and countryside. Shrubs,
fields, woods, buildings etc. are featured, photographed at
various distances and lightings. For a more in-depth de-
scription of the image set and its calibration, see [10].

Although the original ISR construction [6] uses multiple
resolutions and window sizes, in this paper we use a simple,
single-resolution single-size design that suffices for obtain-
ing the shown results. Thus, for the first phase, we sampled
��������� image patches of size ��
�
���
 to learn the filter bank
	 . To perform ICA, we used the FastICA package [4]. We
used ������� nonlinearity in symmetric estimation mode. The
number of filters was reduced to ����� by considering only
the ����� first principal components of the image patches.

Then we computed the output histograms for each image
and each filter. First, we randomly selected ����� images to
estimate the histogram bin centers. This was done by ap-
plying each filter 	���� to all the images, taking note of the
minimum ���! "� and maximum �$#&%'� responses of the filter
	(�)� over the images. Next, we computed a ��� -bin binning
for each filter 	��)� by dividing the interval * ���! +� � ��#&%,�.-
to ��� equal-width bins. After the center locations were es-
timated, the independent spectral representation was com-
puted for each of the ������� images. In this representation,
each ��� -bin histogram was normalized by the / 
 -norm.

For each image, the histograms of the different filter re-
sponses were concatenated to form a single vector. Thus,
each image was characterized by a vector of dimension
����
0����� � ������� . These vectors were normalized by the
/21 -norm. The ������� -dimensional data was reduced by prin-
cipal component analysis (PCA) to ��� dimensions.

Finally, we used ICA to learn ��� independent compo-
nents of the data in this representation. Again, we used
�3����� nonlinearity in symmetric mode. However, the ICA
settings here did not seem to make much difference. The
method was robust against a variety of nonlinearities tried,
e.g. derivative of gaussian and skewness. Different normal-
izations of the input data didn’t alter the results significantly.

1To ensure replicable results, source code is available at
http://www.cs.helsinki.fi/u/jtlindgr/stuff/



Figure 1. Five attributes related to open
scenes. Each row shows the five images for
which the attribute was most active.

4. Results and analysis

It is quite difficult to visualize the obtained ��� indepen-
dent components. We choose here to show the results in
terms of the original images. The following figures rep-
resent images ordered by their activation of a single real-
valued component (attribute). In ICA, both high (positive)
and low (negative) activations of the components can be sig-
nificant: we selected for each shown component the better
tail. The shown figures were power-transformed by ��� 	 to
enhance visibility.

Figure 1 shows five categorical attributes related to open
scenes. The attributes were selected manually from the set
of ��� . Although the images across the rows are similar, the
groups are not identical. Likewise, figure 2 shows com-
ponents responding to woods. The first three components
seem to differ in the amount of light let through the foliage
and the viewing distance used. The last two rows seem qual-
itatively different from the first three.

Finally, figure 3 shows some miscellaneous components.
The component on the first row responds to clouds, but also
to patches having some textural similarity. The following
three components display reeds, flora and road surfaces.
The last component shows man-made structures.

By looking at the figures shown, it could be suspected
that similar ”categories” might emerge from presenting the
image data as grayscale histograms (simple distributions of
pixel values). Figure 4 shows an example from an exper-
iment where we performed ICA on 	�� -bin grayscale his-
togram data. Although the method does generate some rea-
sonable attributes, the loss of all spatial information usually
makes the results less intuitive, so they will not be consid-

Figure 2. Attributes related to woods.

Figure 3. Miscellaneous attributes.

ered further here.
We also tried to provide preliminary answers to two other

questions raised by our results: 1) How many of the ���
features are meaningful to a human observer? 2) What is
the role of the optimization for independence in the second
phase, compared to, e.g., PCA? To address these questions,
we first computed ��� principal components from the ISR
data. Then, for both PCA and ICA, we created a display
for both tails of each component: Each display contained
	 
�	 � ��	 highest responding natural images in the respec-
tive tail. This totaled to 
 
 
 
 ��� � 
���� displays. We pre-
sented the displays randomly and without identifiers to five
naïve subjects and asked them to vote which of the displays
were ”reasonable”. Then, we grouped the positive votes of
each subject per method. On average, the subjects voted
����� 	 � and 
�� � of the displays to be reasonable, for ICA
and PCA respectively. To compensate for the high variance
in the total vote counts, we normalized the votes of each



Figure 4. For comparison, an attribute com-
puted from graylevels instead of ISR.

subject to sum to one. The � -value, testing for equality of
means, for the normalized vote data was ��� ����� according to
a Kruskal-Wallis test. Thus, we can say that the subjects
rated the ICA results better with a statistically significant
difference.

Perhaps surprisingly, the PCA results we got are similar
to those presented by Torralba and Oliva [9]. Their method
used PCA on Fourier-transformed low-resolution images.
They found that the second principal component was able
to order images so that one end of the activation range fea-
tured ”open” images and the other ”closed” (or cluttered)
ones. The third principal component ordered natural images
against images showing man-made structures. This hints at
similarities in the two methods. Of course, the low-level
ICA features are bandpass, and therefore the histograms are
somewhat related to a Fourier representation. Our method,
however, is applied on high-resolution images and benefits
from high resolutions due to the histograms being better es-
timated when the resolution is high.

5. Discussion

We have presented a method for unsupervised, data-
driven estimation of high-level features that appear to be
related to natural image categories. Our construction has
several parameters and technical details most of which seem
uncritical. Perhaps the most significant of these is the esti-
mation of the histograms and choosing proper binning for
them. It is possible that an entirely different density esti-
mator would be better here, as most of the marginal his-
tograms in ISR have a particular, supergaussian shape. We
performed some preliminary experiments where we tried to
replace the histograms with other statistics. Especially, we
tried order statistics and the first four moments of a distribu-
tion. These alternatives did not produce significantly better
results.

Traditionally, feedforward architectures have been a con-
venient framework for pattern recognition [7]. However,
evidence from biological systems shows that at least natu-
ral pattern recognition uses feedback from higher levels to
adjust lower-level functionality [1, 9]. Very relevant to our
method are the arguments by Bar [1], suggesting that in bi-
ological visual systems the lower level might first supply
the higher-level mechanism with a crude approximation of

the scene, which is used to generate feedback to make ad-
justments at the lower level. A crude approximation might
be based on the histograms of low-level features as we did
here. Furthermore, the categorical features that we found
could be useful for higher level mechanisms to aid in deci-
sion making as argued, e.g., in [9], who obtained results that
are somewhat similar to ours, but using a different method.

An important direction of future work consists of more
thoroughly characterizing what kind of properties the cur-
rent method is able to capture. During our experiments with
van Hateren’s dataset we noted that many images do not
respond highly to any of the estimated components, even
though the images are perceptually reasonable. This may
also be due to the strong reduction of dimension by PCA,
which may lead to considerable loss of information. How-
ever, the reduction of dimension was necessary since the
number of images must be much larger than the dimension
in order for ICA to be possible. Experiments with much
larger databases may alleviate this problem.

To conclude, we proposed a method for learning high-
level features of whole images or scenes. This was based
on independent component analysis of histograms of low-
level features. We showed empirical results that indicate
the viability of the method.
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