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Abstract— The operation of V1 simple cells in primates
has been traditionally modelled with linear models resembling
Gabor filters, whereas the functionality of subsequent visual
cortical areas is less well understood. Here we explore the
learning of mechanisms for further nonlinear processing by
assuming a functional form of a product of two linear filter
responses, and estimating a basis for the given visual data by
optimizing for robust alternative of variance of the nonlinear
model outputs. By a simple transformation of the learned model,
we demonstrate that on natural images, both minimization and
maximization in our setting lead to oriented, band-pass and
localized linear filters whose responses are then nonlinearly
combined. In minimization, the method learns to multiply the
responses of two Gabor-like filters, whereas in maximization it
learns to subtract the response magnitudes of two Gabor-like
filters. Empirically, these learned nonlinear filters appear to
function as conjunction detectors and as opponent orientation
filters, respectively. We provide a preliminary explanation for
our results in terms of filter energy correlations and fourth
power optimization.

I. INTRODUCTION

The study of natural image statistics (see e.g. [1], [2])
examines the relations between the statistical structure of
natural images and properties of visual processing. One
especially important question not easily addressable in the
frameworks of psychophysics or neurophysiology concerns
the functional purpose of the encountered visual machinery,
i.e. "why is it like it is?”. This question implies goals for the
visual processing and is slowly becoming more addressable
(for advocates of this viewpoint, see e.g. [3], [4]). Regarding
vision, one way to approach this issue is to fit computational
models to natural image data, optimizing the model to fulfill
some chosen objective function. If the optimization leads
to similar processing as encountered in natural systems,
this gives an interesting proposition regarding the functional
properties of the natural processing. On the other hand,
conflicting results enable to question and refine the used
objective in the studied setting. Finally, understanding the
statistical structure of image data is also clearly useful for
applied fields such as computer vision and content based
image retrieval.

Usual linear approaches to natural image modelling —
such as Independent Component Analysis (ICA) and sparse
coding — lead to image models that represent images as linear
combinations of simple elements such as edges and bars that
resemble Gabor filters or V1 simple cell receptive fields of
primates [5], [6], suggesting that such processing provides
an efficient low-level coding for the visual input. However,
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it should be kept in mind that such simple features may be
insufficient for more complex tasks, such as segmentation or
object recognition. This intuition is complemented by results
from physiology, where proceeding onward in the visual
hierarchy from the area V1 leads to increasingly nonlinear
processing. Already in V2, neurons appear to respond to
feature conjunctions, but not to the individual features [7],
[8], [9]. Such behavior can not be easily attained with
linear models [10], and thus nonlinear processing appears a
prerequisite for models hoping to have resemblance to later-
stage visual functionality.

Unfortunately, there are several difficulties with nonlinear
models, and questions include how to choose the model
structure, how to fit its parameters properly, and how to
interpret the model. Here we take a small but natural step
forward from linear models by considering models consisting
of products of responses of two linear filters, i.e. we consider
a subclass of quadratic models that have been previously
studied also in the context of natural images [11], [12], [13],
[14], [15], [16]. In the current paper we give evidence that
although previous studies using this model class have largely
led to model behavior resembling that of complex cells, this
may have more to do with the used objectives than the model
class or the data. Typically, independence of the individual
quadratic component outputs has been optimized ([11], [12],
[13], [14], [15]) but also temporal coherence [13] and slow
feature analysis [17] have been studied in this context. Here,
we examine an objective related to maximizing or minimiz-
ing the energy of the component responses (in our setting this
is closely related to response variances). Maximization of our
objective could be suggested to correspond to searching for
maximally active directions in the product space of linear
filter responses, whereas minimization might correspond to
looking for sparse feature combinations. Both cases are
nontrivial, as in our setting the responses of the underlying
linear filters that are combined have unit variance. We show
that depending on the optimization direction, models having
either opponent orientation behavior or conjunctive behavior
are learned. We show that both types of models produce
their outputs by nonlinearly combining outputs of linear
filters that are localized, oriented and bandpass, resembling
Gabor filters. It should be noted that qualitatively similar
behavior has also been encountered in natural systems.
Opponent orientation behavior has been found in second-
order processes of the human vision [18] (but see also [19]),
whereas conjunctive processing preferring angles and corners
has been demonstrated in the macaque area V2 [7], [8], [9].
The current paper presents (to the best of our knowledge)



the first computational study to demonstrate the emergence of
opponent orientation behavior, and the first study to show that
both conjunctive and subtractive behavior can emerge from
the same computational optimization framework (conjunctive
feature learning has been previously observed in [15] but
with a more complex approach).

The rest of this paper is organized as follows. In section
IT we describe our used method. Section III describes the
data and our experimental setup, and the empirical results
are presented in section IV. We provide some theoretical
explanations for our results in section V. Finally, section VI
concludes the paper.

II. OPTIMIZATION OF PAIRED ENERGIES

Assume vectorized image patches x € R*™, E[x] = 0
and that E[xxT] = I, i.e. the data has zero mean and its
covariance matrix is the identity matrix. This can be always
be attained with a linear whitening transform, see e.g. [20].
For the whitened data, we attempt to learn an orthonormal
basis W € R2Z™X2m for x with rows of W as linear
projection directions. Instead of working in the output space
of the linear filter outputs, i.e. with responses of the form
S = WZTX for filter w,;, we assume a functional form of a
product of two linear filter responses, that is, the response of
a single nonlinear component ¢ in our model is

st = (v)wlx) g
= @R 0@

where v; and w; are the i:th and m + i:th rows of W,
respectively. The second identity follows by simple manip-
ulation from the choice a; = v; + w; and b; = v, — w;,.
This computation is illustrated in network form in Figure 1.
It can thus be seen that the function class we are optimizing
is a subclass of quadratic models that have been previously
considered for natural images [11], [12], [13], [14], [15], and
in modelling texture processing (e.g. [21]). Two-layer models
in general (such as that of [22]) closely resemble quadratic
models. The subclass chosen here has the benefit that it has
only O(m) parameters and is more constrained, whereas
a full quadratic model would require O(m?) parameters.
Also, once the models have been fitted, the operation of a
single filter product is easier to explain than a full quadratic
model, which supports a linear combination of 2m terms
instead of the subtraction of two terms in eq. (2). That
is, a full quadratic model can linearly filter the response
energies of 2m linear filters; here this second-stage filtering is
constrained to be a simple fixed subtraction of two response
energies.

The actual objective function that is used to optimize W
can strongly affect the learned models. In our setting, the
objective L; of a single component % is

L; = Ex[g(si(x))], 3)

where ¢ is a nonlinearity. We estimate the weights of W by
either minimizing or maximizing a global objective function,
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Fig. 1. Two ways of representing our nonlinear components as simple

networks. A) A single component s; pairing two filter outputs v'x and
w7T'x by multiplying them. B) An equivalent form that takes the difference
of the energies of two filters a and b that follow from v and w by simple
manipulation (see text).

which is simply a sum over all of the individual m objectives,
giving

L= ZL = ZEX[Q(Si(X))]- )

In similar spirit to previous work on linear models, we
could use g for various purposes, such as preferring that the
response s follows some chosen distribution (as in e.g. [11]),
or is as sparse as possible (e.g. [5]), or that the different filter
responses are maximally independent by maximization of
nongaussianity (e.g. [20]). For example, if we had specified
the more traditional summation of the two terms in eq. (2)
instead of subtraction, we could expect to learn complex cell
models if we chose g to prefer sparse outputs [11]. On the
other hand, by specifying a subtraction (or equivalently the
multiplication of two linear filter outputs) we are potentially
able to get more tightly tuned features that require high
responses from both paired linear filters for the magnitude
of the product response to be high (as in [15]).

Instead of the above choices, in the current paper we study
three measures of response energy,

91(s) abs(s), 5)
ga(s) = &% (6)
gic(s) = log cosh(s), @)

where g1 and g;. can be taken as more robust versions of the
(unsigned) energy go. As log cosh grows substantially slower
than s? after |s| > 1, it is less subjective to effects of outliers
than s2, whereas abs() naturally has linear behavior also in
region [—1, 1]. These simple objective functions are shown in
Figure 2 for clarity; in section V we show how s? is related
to both the optimization of energy correlation of linear filters
and the fourth powers of the linear filter responses.
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Fig. 2.  Behavior of some possible nonlinearities g. Inside the region
[~1,1], log cosh behaves similarly to s2 and outside it approximately
linearly. In the current paper the two other functions are used as more
robust alternatives for s2.

We optimize our objective functions by gradient ascent or
descent, depending on if we are minimizing or maximizing.
The derivatives of our nonlinearities g are

g1 (s) sign(s) (8)
gy(s) = 2s 9)
9i.(s) = tanh(s), (10)

and the gradients simply

oL; , T
= Bl (s) (WX (an
oL; , T
S, = Bl s)(vIxx. (12)
This gives the gradient ascent update rules
vi = vi + Ex[g' (5:) (Wl x)x] (13)
wi = w; + Ex[g (5:)(vIx)x] (14)

for all components ¢ € 1, ..., m. The version for minimization
is simply obtained by subtracting the gradients instead of
adding them. After each gradient update, we project W to
the constraint set (orthonormality). This projection is

W= (WWT) /2w,

for details see [23], [20].

Finally, note that although we estimate parameters for
nonlinear functions s(x), our basis W was still defined as
orthonormal. This means that W is invertible, and that no
information is lost in the linear filtering stage, regardless of
the parameters the learning chooses.

The whole algorithm is summarized as pseudocode in
Figure 3. The matlab sources of the implementation will
be made publicly available, accessible from the first authors
homepage.

15)

III. EXPERIMENTAL SETUP

In our experiments we used the natural image dataset
provided by van Hateren and van der Schaaf [6]. This dataset

Whiten the data, possibly after reducing dimension;
Pick random, orthonormal initial W;
% Perform gradient ascent
while — converged do
foriel,...,mdo

Vi vi + Ex[g'(s)(w] x)x];
w; — w; + Ex[g'(s) V?X)X :

end

% Orthonormalize

W «— Re((WWT)~1/2)W;
end
Transform W to the original space;

Fig. 3. The used gradient ascent algorithm for maximization of the used
objective function as pseudocode. Minimizing version is obtained simply by
flipping the signs of the gradient updates.

contains over 4,000 grayscale images representing natural
scenes, each image having a size of 1024 x 1536. We used
the *.iml’ versions of the images, and cropped 4 pixels from
all sides of the images to avoid border anomalies present in
the data. Then, we performed 3 x 3 block averaging on each
image to reduce the effect of noise and sampling artifacts.
Finally, we applied a natural logarithm to each image to bal-
ance the very long right tail of the pixel intensity distribution,
effectively compressing the dynamic range of the images.
Both the averaging and the logarithm are commonly used to
address difficulties arising from using raw natural images in
computational modelling (e.g. [5], [6], [24]). It is also well-
known that retinal processing performs similar averaging and
compressive transform (see e.g. the references in [6]).
After preprocessing each image as a whole, we sampled
a training set of 200,000 small patches from the images,
each patch having a resolution of 16 x 16 pixels. We then
subtracted the local DC-component (mean intensity) from
each patch and removed the mean of the entire dataset (i.e.
each variable had zero mean). These patches then formed the
256-dimensional data we used to optimize our models. We
also prepared another set of 20, 000 patches similarly to use
as a test set. All objective functions and test measurements
related to the data in the section IV were computed using this
test set to avoid the reported results being due to overfitting.
Before applying the gradient method, the training data was
whitened by a linear transform through Principal Compo-
nents Analysis (PCA, see e.g. [20]), while retaining 200/256
of the most significant principal components for estimation
of 100 filter pairs. Note that whitening done in this way is a
standard procedure e.g. in Independent Component Analysis
in general [20] and similar processing is commonly used also
in low level visual modelling (e.g. [5], [11], [15]), and as
with the averaging and the compressive transform, whitening
also appears to have its counterpart in natural early visual
processing [25]. After learning the models in the whitened




space, we transformed them back to the original space for
visualization and analysis.

IV. RESULTS

Of the three objective functions we studied, the function
g1 = s2 appeared to require more examples than the other
two to reach similar behavior of the learned models, and yet
upon convergence the filter masks did not look as structured
as they did with the other choices. This is possibly due to
the lack of robustness in s?. Function g, = log cosh(s)
behaved well in maximization and produced very similar
results to g; = abs(s), but the results of log cosh did not
appear as good in the minimization setting. This may be
connected to log cosh behaving like s? near the origin. In
both maximization and minimization, abs performed well by
producing visually clear filters, and in the following account
of our empirical results, we only report those related to g .

It turned out that in our setting, both the maximization
and minimization of the objective function of eq. (4) create
meaningful but dual results. Figure 4 illustrates 64 of the
100 learned filter pairs obtained from the maximization of
the objective function. In each quadruple, the top two filters
correspond to filters w and v, and the bottom row filters to
a and b. Either of these two pairs is sufficient to compute
the pair response according to egs. (1) and (2). The actually
learned basis W would consists of the top row filters.
The 100 quadruples were sorted according to the increasing
objective function Ey|[|s|] as measured on the test set, after
which 64 components were selected for display by skipping a
little fewer than every second component in the sorted order.
The omitted components were similar to those shown.

Looking at Figure 4 shows that in the maximization case,
the features a and b are oriented, localized and bandpass,
resembling Gabor- or Haar-filters, not unlike those found in
numerous previous studies (e.g. [5], [6], [11], [17]). However,
filters w and v that were explicitly fitted are mixtures of these
properties. This situation gets reversed in the minimization
case (see Figure 5), where now filters w and v have the
familiar properties, whereas a and b are their mixtures.

If these learned nonlinear filters are used on images to
compute the responses s;(x) in a convolutive fashion, the
filters from the maximization case appear to behave as oppo-
nent orientation filters due to (b”'x)? getting subtracted from
(aTx)2, i.e. the component compares the response energy of
b against that of a, as can be seen from eq. (2). Figure 6A
shows a simple test image, and Figure 6B the response
behavior for the component that had the best objective value
in the maximization setting. In the minimization setting the
learned filters are instead highly specific and react strongest
when both responses w’ x and v7'x are high in magnitude,
as is apparent from eq. (1). This behavior can be seen in
Figure 6C, showing that the pair responds strongly only to a
right angle in a preferred orientation. Hence although in both
cases the participating filters in the pair may be arranged
similarly, there is a strong difference in the component
operation depending on the form where the filters appear

Fig. 4. Top, the 64/100 components learned in the maximization setting
for g1 nonlinearity. In each quadruple, the two upper filters are w and v, and
the lower filters a and b. Either pair is sufficient to compute the response
s. Notice that in this case, the vectors a and b resemble Gabor-filters. The
quadruples have been sorted according to the objective value on test set,
growing from left to right, top to bottom, indicating that the best pair in
terms of the objective is at the bottom right. Each quadruple has also been
scaled to [0, 1] range separately and the whole image has been contrast
enhanced for printing. The individual filters do not have a DC component,
the effect is due to the scaling. Bottom, close-up of three of the filters.

as Gabors: if its that of eq. (2), we have subtractive filters,
and in that of eq. (1), conjunctive.

An important question regards whether the learned pair-
ings reflect structure in the input data or not (which was
left an open question for conjunctive features learned with
another approach in [15]). The fact that the ordering of the
components by their objective values shows some structural
changes in the used pairings in figures 4 and 5 already
suggests that the pairings are non-arbitrary. Especially filters
arranged in right angles are preferably paired by both max-
imization and minimization, giving high and low objective
values, respectively. To further illustrate this structure, we
show histograms of the orientation differences of the paired
filters in Figure 7. We considered the component filters
in their Gabor-like forms and measured each filter angle
simply by finding the maximum of each filter masks Fourier
power spectrum and then obtaining the angle from polar
coordinate transform of the maximum location. As can be
seen, generally the angle differences between the filters



Fig. 5.
nonlinearity. The figure is read as Figure 4. Now vectors w and v resemble
Gabor-filters and since the task was minimization, the worst pair in terms
of minimization is at the bottom right. Bottom, close-ups of three of the
filters.

Top, the basis vectors learned in the minimization setting for g1

in both minimization and maximization setting appear to
be concentrated on right angles (+90° or +m/2 radians).
Curiously, similar angle bias has also been noted in the
macaque V2 [9] although there the majority of the cells found
preferred collinear receptive fields. As seen from Figure 7,
collinear filters appear to be totally absent from the results
of our current method, whereas collinear combinations have
been previously observed to emerge from a full quadratic
model setting with a different objective [15]. We are currently
studying the reason for this difference.

We also examined the possible arbitrariness of the pairings
by estimating what kind of global objective values could
be attained by simply making sets of random pairs out of
the learned filters (with the filters in their Gabor forms).
We selected all the filters learned by our method in either
maximization or minimization setting, and used as a pairing-
constraint that each filter can appear only in a single pair. We
evaluated 100,000 sets of random pairs against the method-
chosen pair set, and a pairing set made by greedy selection.
The greedy pairing was done by simply selecting the best
filter pair in terms of the objective function (on training data)
until no filters were left. Then the global objective value (as
in eq.(4)) of each set was evaluated on the patches of the

(9]

Fig. 6. Responses from filtering a test image with two of the learned filters.
A) The original image. B) An image resulting from filtering with the filter
having the best objective value in the maximization setting. This filter reacts
positively to horizontal edges and negatively to vertical edges. Hence the
filter implements opponent orientation behavior. C) An image resulting from
the best filter from the minimization framework. Now the filter reacts highly
only to co-occurrence of horizontal and vertical edges as positioned in the
lower left corner of the test image in A. The filter operation thus resembles
a corner detector. Note that both of the filters appear phase invariant.

test set. The histograms in Figure 8 show that the global
objective function values for the sampled sets commonly are
worse than those reached by either the gradient method or
by the greedy pairing, which have been marked onto the
histograms as dotted and continuous lines, respectively.

A simple hypothesis regarding our results is to suggest
that the method simply tries to keep the paired filters as
far away spatially from each other as possible, in the form
where they resemble Gabors (due to dependencies in natural
images typically decreasing with distance, see e.g. [26]). This
doesn’t seem to be trivially the case (or the gradient method
does not succeed in this). We examined this question by
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Fig. 7. Differences in orientations of the learned filter pairs when they
have been transformed into their Gabor-like form. A) Maximization case,
pairing filters a and b. B) Minimization case, pairing filters w and v.

computing the spatial Euclidean distances between the mass
centroids of the paired filters, and compared this distance
to the objective value of the component. This is illustrated
in Figure 9, and no clear dependency can be seen. The
correlation coefficient ¢ between the two quantities was ¢ =
0.07 for the maximization case (p > 0.50) and ¢ = —0.09
for minimization (p > 0.35), i.e. simple correlation between
mask distance and objective function value does not appear
to be supported by the data for the estimated filters. This
suggests that the method takes into account more complex
considerations than the simple spatial distances between the
paired filters.

Finally, we examined how close the objective of using g;
is to that of go in our setting. This is shown in Figure 10,
where we computed E|[go(s)] = E[s?] for each learned pair
on the test set, and then plotted it against the objective
function Flg1(s)] = Flabs(s)] with the same data. A
clear relationship can be seen, with the actual correlation
coefficient ¢ between the two quantities being ¢ = 0.61 for
the maximization case and ¢ = 0.76 for minimization, with
p < 0.01 for each. This shows some supportive evidence for
our use of g; as a robust alternative to go.

V. DISCUSSION

Learning quadratic models has typically led to compo-
nents that have simple or complex cell properties [11],
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Fig. 8. Histograms of average objective function values for a sample of
100, 000 sets of pairs made by arbitrarily pairing the filters learned by the
method. A dotted line marks the average objective function value for the
solution returned by the gradient method, with the continuous line giving
the objective for a set made by greedy pairing of the learned filters. In both
cases the pairing returned by the gradient method reaches objective function
values clearly better than those commonly obtainable by random pairing. A)
Maximization case, pairing filters a and b. B) Minimization case, pairing
filters w and v.

[12], [13], [14], [17]. Our results, together with those in
[15], demonstrate that very different but still seemingly
reasonable processing can be obtained by small alterations on
the objectives and constraints. Interestingly, both subtractive
(“orientation opponency”’) processing [18] and conjunctive
(corner detectors™) processing [7], [18], [8], [9] have been
noted in stages after V1, although the functional significance
of such processing appears an open question.

In the current context it seems possible to ask why
the models learned in our setting end up expressing such
behavior. Especially, why are the filters paired as they are,
and why do the models have an aspect of Gabor filters in
both minimization and maximization case, depending on the
representation of the model? Here we provide a preliminary
sketch that connects the used optimization to the objective
functions for the responses of the underlying linear filters.

First, we show how our objective function is connected to
the energy correlation of the paired linear filters. Assume that
we maximize the individual objective of eq. (3) for g(s) =
52, since this is technically the most tractable choice. Starting

from the definition of energy correlation for responses v’'x
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Fig. 9. Plots of the objective function value of component responses against
the Euclidean distances between the spatial mass centers of the filters paired
by the component. A) Maximization, correlation coefficient ¢ = 0.07,p >
0.50. B) Minimization, ¢ = —0.09,p > 0.35. A clear relationship is not
apparent in either case.

and wlx, we get

covy[(vIx)?, (wlx)?] (16)
— (V%) - B[(vTx)?)
(w'x)? — E[(w"x)?))] (17)
= B(VX)?-1((wTx)?—1) (8
— E(vx)*(w"x)?
—(vTx)? — (wI'x)? 4 1] (19)
= EvTx)*(wTx)?] -1 (20)
— Bdg(s) -1, @)

i.e. our objective function for a single component with an
unimportant additive constant. Above, we used the linearity
of expectation and E[(w’x)?] =1 and E[wTx] = 0 for all
w. These two latter properties are easy to show and are due
to the whitening of the data [20]. Thus, optimization in the
studied setting using gs nonlinearity equals optimizing filter
energy correlations of the paired filters.

Next, we provide a preliminary explanation why Gabor-
like filters emerge in both cases. Notice that we can turn the
representation of our model in eq. (1) to that of eq. (2) by the
choice of a = v+w and b = v—w, equal to v = 1/2(a+b)
and w = 1/2(a — b). Now we can represent our objective
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Fig. 10. Plots of the objective function value of individual components
Elabs(s)] against the energies E[s2] of the responses. A) Maximization,
correlation coefficient ¢ = 0.61,p < 0.01. B) Minimization, correlation
coefficient ¢ = 0.76,p < 0.01.

function with a and b as

Ex[(vTx)2(WTX)2] (22)
= Bd(y(a+b) %)% (a— b)) 23)
_ 1716147,([(:1&)4 + (bTx)* — 2(aTx)2 (bTx)%].(24)

Formulating our objective function this way now makes clear
that in the maximization case, we actually wish to maximize
terms closely resembling kurtosis (or the fourth moment) for
the responses of filters a and b, balanced with minimizing
their energy correlation. Further, by substituting a = v + w
and b = v — w to the last term on the right of eq. (24), and
manipulating, we get

By [(vIx)}(wlx)? (25)
1
= EEX[(aTX)4 + (bTx)4]
LB Tt 1 (w1, 26)

6

From the above expression it can be seen that in the mini-
mization case, it benefits the optimization to minimize kurto-
sis for the representation using a and b, while maximizing it
for the representation using v and w, with twice the weight.
In the maximization case, these roles are reversed. This
surprising dualism-like property between minimization and



maximization in our setting suggests why both optimization
directions learn Gabor-like filters from natural images: this
is due to the objective preferring fourth moment to be
maximized in both cases but for different representations
of the model. Such fourth moments for whitened data are
intimately connected to kurtosis, one possible objective to
use in Independent Component Analysis (see e.g. [20]), a
method that is known to produce Gabor-like filters on natural
images [6]. Clearly the shape of the function f(z) = x* also
suggests that the objective prefers heavy-tailed (or sparse)
distributions from its inputs, giving a connection to sparse
coding. However, a question still remains why the kurtosis
minimization in eq. (26) does not cancel the maximization
out and produce very different overall results. Our results
indicate that this could be due to the structure of natural
images and the dependencies between the two model repre-
sentations: using projections with high kurtosis appropriately
in eq. (26) allows for better objective function values in both
cases.

Our results allow us to speculate on an interesting pos-
sibility that the low-level processing elements in natural
systems resembling e.g. Gabor filters may be by-products
of higher-level non-linear mechanisms, and not necessarily
optimized for some low-level purpose per se. Subsequently
these mechanisms may be performing optimally for some dif-
ferent purpose than the one perceived from isolated studies of
the lower-level machinery. Our results present an interesting
contrast to the previous studies, as in our setting no explicit
sparseness of the response was optimized; on the contrary,
especially the maximization of energy could be seen as a
kind of anti-sparseness. Yet, due to the interaction of the
used function class and the objective function, kurtosis (or
sparseness) still appeared to emerge as a property that should
be optimized for the underlying linear filters.

We are currently working on formulating similar analytical
understanding for nonlinearities g1 = abs(s) and g, =
log cosh(s) as we demonstrated here for g, = s2. It remains
a possibility that the other two nonlinearities pose such
objectives for the underlying linear filter responses that are
different in some significant manner from those following

from s2.

VI. CONCLUSION

We have empirically shown that maximization or mini-
mization of output energy in a subclass of quadratic models
can lead to emergence of nonlinear filters expressing either
subtractive or conjunctive behavior, respectively. We then
analytically demonstrated that optimization of the square
objective function for the used model class can be explained
as optimization of filter energy correlations for paired linear
filters, but also that this objective has intimate connections
to optimization of individual fourth powers of each filter
response. Our results suggest a possibility that observed
conjunctive and subtractive processing in natural systems
or learned computational models may have a connection
to optimization of energy correlations for functions from a
suitable nonlinear model class.

Acknowledgments: This work was supported in part by
the IST Programme of the European Community, under the
PASCAL Network of Excellence, IST-2002-506778. This
publication only reflects the authors’ views.

REFERENCES

[1] E. P. Simoncelli. Statistical modeling of photographic images. In
A. Bovik, editor, Handbook of Image and Video Processing, 2nd
edition, pages 431-441. Academic Press, 2005.

[2] G. Felsen and Y. Dan. A natural approach to studying vision. Nature
Neuroscience, 8(12), 2005.

[3] D. Marr. Vision. Freeman, 1982.

[4] P. W. Glimcher. Decisions, Uncertainty, and the Brain: The Science
of Neuroeconomics. The MIT Press, 2003.

[5] B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete
basis set: A strategy employed by V1? Vision Research, 37(23):3311—
3325, 1997.

[6] J. H. van Hateren and A. van der Schaaf. Independent component
filters of natural images compared with simple cells in primary visual
cortex. Proc.R.Soc.Lond. B, 265:359-366, 1998.

[7]1 J. Hegdé and D. C. van Essen. Selectivity for complex shapes in
primate visual area V2. The Journal of Neuroscience, 20(5):RC61—
66, 2000.

[8] M. Ito and H. Komatsu. Representation of angles embedded within
contour stimuli in area V2 of macaque monkeys. J. Neuw.sci.,
24(13):3313-3324, 2004.

[9] A. Anzai, X. Peng, and D. C. van Essen. Neurons in monkey visual
area V2 encode combinations of orientations. Nature Neuroscience,
10(10):1313-1321, 2007.

[10] G. Krieger and C. Zetzsche. Nonlinear image operators for the
evaluation of local intrisic dimensionality. [EEE Transactions on
Image Processing, 5(6):1026—1042, 1996.

[11] A. Hyvirinen and P. O. Hoyer. Emergence of phase and shift invariant
features by decomposition of natural images into independent feature
subspaces. Neural Computation, 12(7):1705-1720, 2000.

[12] H. Bartsch and K. Obermayer. Second-order statistics of natural
images. Neurocomputing, 52-54:467-472, 2003.

[13] W. Hashimoto. Quadratic forms in natural images. Network: Compu-
tation in Neural Systems, 14(4):765-788, 2003.

[14] F. Theis and W. Nakamura. Quadratic independent component analy-
sis. IEICE Trans. Fundamentals, E87-A(9):2355-2363, 2004.

[15] J. T. Lindgren and A. Hyvérinen. Emergence of conjunctive visual
features by quadratic independent component analysis. In Advances
in Neural Information Processing Systems 19 (NIPS), pages 897-904,
2007.

[16] U. Koster and A. Hyvirinen. A two-layer ICA-like model estimated
by score matching. In Proc. Int. Conf. on Artificial Neural Networks
(ICANN2007), pages 798-807, 2007.

[17] P. Berkes and L. Wiskott. Slow feature analysis yields a rich repertoire
of complex cell properties. Journal of Vision, 5:579-602, 2005.

[18] 1. Motoyoshi I. and F. A. Kingdom. Orientation opponency in
human vision revealed by energy-frequency analysis. Vision Research,
43(9):2197-2205, 2003.

[19] N. Graham and S. S. Wolfson. Is there opponent-orientation coding
in the second-order channels of pattern vision? Vision Research,
44(27):3145-3175, 2004.

[20] A. Hyvérinen, J. Karhunen, and E. Oja.
Analysis. Wiley, 2001.

[21] N. Prins and F. A. Kingdom. Direct evidence for the existence of
energy-based texture mechanisms. Perception, 35(8):1035-1046, 2006.

[22] A. P. Johnson and C. L. Baker. First- and second-order information
in natural images: a filter-based approach to image statistics. Journal
of the Optical Society of America A, 21(6), 2004.

[23] D. Luenberger. Optimization by Vector Space Methods. Wiley, 1969.

[24] B. Willmore, P. A. Watters, and D. J. Tolhurst. A comparison
of natural-image-based models of simple-cell coding. Perception,
29:1017-1040, 2000.

[25] D. J. Graham, D. M. Chandler, and D. J. Field. Can the theory of
’whitening’ explain the center-surround properties of retinal ganglion
cell receptive fields? Vision Research, 46:2901-2913, 2006.

[26] D. L. Ruderman. Origins of scaling in natural images. Vision Research,
37:3358-3398, 1997.

Independent Component



