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Abstract

A generalization of projection pursuit for time series, i.e. signals with time structure, is introduced.
The goal is to find projections of time series that have interesting structure. We define the interestingness
using criteria related to Kolmogoroff Complexity or coding length: Interesting signals are those that
can be coded with a short code length. We derive a simple approximation of coding length that takes
into account both the nongaussianity and the autocorrelations of the time series. Also, we derive a
simple algorithm for its approximative optimization. The resulting method is closely related to blind
separation of nongaussian, time-dependent source signals.

1 Introduction

In multivariate statistics, a central problem is to find 1-D projections of the data vector which reveal
interesting aspects of the data. Denoting by x = (21,2, ...,2,)7 the n-dimensional random vector corre-
sponding to the observed data, such projections are defined by a constant vector w = (wy,ws, ...,w,)? as
the linear combination w’x = > wiz;. A classical method for finding such projections is to compute the
principal components (Oja, 1982; Jolliffe, 1986) of the data vectors. The first principal component gives
a projection that optimally approximates the data vector in the sense of mean square error. The second
principal component gives the optimal approximation of the residual of the approximation given by the
first principal component, and so forth.

Recently, however, it has been argued that the projections given by the principal components do not
describe the data in a meaningful way in many cases. This is because principal component analysis ne-
glects important aspects of the data such as clustering and higher-order independence. This has lead to
development of methods that are not based on mean-square error, but rather on higher-order statistics.
This means using other information than that contained in the covariance matrix.

An important method using higher-order information is projection pursuit (Friedman and Tukey, 1974).
In basic (1-D) projection pursuit, we try to find directions w such that the projection of the data vector
in that direction, w’x, has an “interesting” distribution in the sense of displaying some structure. It
has been argued by Huber (1985) and by Jones and Sibson (1987) that the Gaussian distribution is the



least interesting one, and that the most interesting directions are those that show the least Gaussian
distribution. An information-theoretic justification for this is that the Gaussian distribution has maximum
entropy among all distributions of unit variance. Entropy can be considered a measure of disorder, i.e. lack
of (interesting) structure.

Projection pursuit is closely related to independent component analysis (ICA) (Jutten and Herault, 1991;
Comon, 1994). ICA is a statistical model where the observed data is expressed as a linear transformation
of latent variables that are nongaussian and mutually independent. We may express the model as

x = As (1)

where x = (21,22, ...,2,)7 is the vector of observed random variables, s = (s1, 82, ...,5,)7 is the vector of
the latent variables called the independent components or source signals, and A is an unknown constant
matrix, called the mixing matrix. Exact conditions for the identifiability of the model were given in (Comon,
1994). Note that we assumed, for simplicity, that the dimension of x equals the dimension of s, but this
need not necessarily be the case. If nongaussianity is measured suitably, finding maximally nongaussian
directions gives one method of estimating ICA (Delfosse and Loubaton, 1995; Hyvérinen and Oja, 1997;
Hyvérinen, 1999a). Thus we obtain independent components as the projection pursuit directions s; = wiTx,
and the w; correspond to estimates of the rows of A~1.

In many cases, projection pursuit and ICA are applied on data sets that are not simply random vectors,
but multivariate time series, i.e. signals with time dependencies. However, these two methods in their basic
forms completely ignore any time structure and use only the marginal distributions of the projections.
Interestingly, it has been shown that under some restrictions, the time dependency information alone is
sufficient to estimate independent components (Tong et al., 1991; Belouchrani et al., 1997; Matsuoka et al.,
1995; Molgedey and Schuster, 1994). Results obtained by these methods are likely to improve if one exploits
all the available information on the interestingness of the projections. It would be most useful, therefore, to
define a more general method that finds interesting projections of time series using both the nongaussianity
and the time-structure of the projections.

In this paper, we propose a generalization of projection pursuit that takes into account the time structure
of the projections as well. This is based using the coding complexity of the projection. In our “complexity
pursuit”, we search for projections that can be easily coded. This is a general-purpose measure of structure,
closely related to using Kolmogoroff Complexity as a criterion for finding a representation (Pajunen, 1998a),
and is probably connected to information-processing principles used in the brain (Atick, 1992; Hochreiter
and Schmidhuber, 1999; Pajunen, 1998a). We develop simple approximations of coding complexity, and
derive an algorithm for (approximative) minimization of the complexity approximations. This algorithm can
be seen as a principled combination of algorithms using the criteria of nongaussianity and autocorrelation
as in projection pursuit, ICA and source separation. Moreover, it can be interpreted as maximum likelihood
estimation of the ICA model, assuming time-correlated models for the independent components.

This paper is organized as follows. The basic principle of complexity pursuit is introduced in Sec. 2.
Suitable approximations of complexity are developed in Sec. 3. An algorithm for minimizing the complexity
approximation is given in Sec. 4. Relation to other methods is discussed in Sec. 5, simulation results are
given in Sec. 6, and, finally, conclusions are drawn in Sec. 7.

2 Complexity and time series

Projection pursuit and ICA, in their classic forms, consider the observed data x to be a multivariate random
vector. In many cases, however, the observed data is a multivariate time series x(¢), i.e. a vector of time



signals. A time signal has much more structure than a random variable. This structure is completely
neglected in projection pursuit. In some ICA methods, it is taken into account, but such ICA methods
typically neglect the marginal distribution of the data. A unifying theoretical framework for using both
kinds of information is given by Kolmogoroff Complexity (Pajunen, 1998a).

Kolmogoroff Complexity is based on the interpretation of coding length as structure. Suppose that we
want to code a signal s(t),t = 1,...,T. For simplicity, let us assume for the moment that the signal is
binary, so that every value s(t) is 0 or 1. In general, it is not possible to code this signal with less than
T bits, so that every bit in the code gives the value of s(t) for one . However, most natural signals have
redundancy, i.e. parts of the signal can be efficiently predicted from other parts. Such a signal can be
coded, or compressed, so that the code length is shorter than the original code length. It is well-known
that audio or image signals, for example, can be coded so that the code length is decreased considerably.
This is because such natural signals are highly structured. For example, image signals do not consist of
random pixels, but of such higher-order regularities as edges and contours.

We could thus measure the amount of structure of the signal s(¢) by the amount of compression that is
possible in coding the signal. For signals of fixed length 7', the structure could be measured by the length of
the shortest possible code for the signal. Note that the signal could be compressed by many different kinds
of coding schemes (the coding theory literature is full of them), but we are here considering the shortest
code possible, thus maximizing the compression over all possible coding schemes. This is a non-rigorous
definition of Kolmogoroff Complexity; for a more rigorous definition of the concept, see (Pajunen, 1998a;
Pajunen, 1998b). Kolmogoroff Complexity is usually defined for binary signals, but it could be applied on
continuous-valued signals as well after a suitable quantization.

Thus we arrive at the following theoretical definition of Complezity Pursuit. The goal is to find projec-
tions wl'x(t) such that the Kolmogoroff Complexity of the projection is minimized. We must also fix the
scale of the projection, since otherwise taking w = 0 would give a projection that is trivially structured.
Thus we constrain the variance of the projection to be unity, as usual in projection pursuit.

Kolmogoroff Complexity is a theoretical measure, since its computation involves finding the best coding
scheme for the signal. The number of possible coding schemes is infinite, so this optimization in intractable.
Therefore, in practice approximations must be used.

If the signals have no time structure, their Kolmogoroff Complexities are given (approximately) by
their entropies (Pajunen, 1998a). In this case, we rediscover ordinary projection pursuit. Furthermore, in
(Pajunen, 1998a; Pajunen, 1999) it was shown how to approximate Kolmogoroff Complexity by criteria
using the autocorrelations of the signals, in which case we rediscover a method closely related to the source
separation methods in (Tong et al., 1991; Belouchrani et al., 1997; Molgedey and Schuster, 1994). In the
next section, we introduce a more general framework for approximating Kolmogoroff Complexity.

3 Approximation of complexity

In this section, we derive an approximation of the Kolmogoroff Complexity of a scalar signal y(¢),t = 1,...,T.
For simplicity, the signal is assumed to have zero mean and unit variance.
3.1 General formulation by predictive coding

Consider predictive coding of the signal. The value y(t) is predicted from the preceding values by some
function f to be specified:

9(t) = fy(t —1),y(t - 2),..9(1)). ()



To code the actual value y(t), the residual

dy(t) = y(t) — §(t) 3)

is coded by a scalar quantization method. The point is that in many cases, it is easier to code the residual
than the original value y(t), if the predictor f is suitably chosen so that it gives a reasonable prediction of
y(t). This coding stategy is used for y(t) at all time points ¢. Thus the whole signal is coded by coding the
residuals (and the initial value(s) of y(t) for ¢ near 1). The residuals are coded independently from each
other, neglecting any dependencies.

According to the basic principles of information theory (Cover and Thomas, 1991), the length of this
code is asymptotically approximated by the sum of the entropies H of the residuals. We use this as an
approximation of the coding complexity:

K(y) =) H(éy(t)) (4)
t

Assuming that the residual is stationary and ergodic, that the predictor uses a history of bounded length,
and ignoring border effects, we have the simpler version

A

K(y) = TH(dy) (5)

where Jy denotes a random variable with the marginal distribution of the residual. Note that we made
here the assumption that the signal is stationary. In the case of a non-stationary signal, more sophisticated
models for the signal need to be developed, in which the function f is changing in time (Matsuoka et al.,
1995).

3.2 Using linear models for prediction

To use the approximation in (5) in practice, we need to fix the structure of the predictor f, and find an
approximation of the entropy of dy.
We use here a computationally simple predictor structure, given by a linear autoregressive model:

i) =S ary(t—7) (6)

7>0

To optimize the performance of the predictor, the parameters «, should ideally be estimated so that the
entropy of the residual Jy is minimized. This is equivalent to estimating the autoregressive model by
the method maximum likelihood, taking into account the true distribution of the residual. Alternatively,
to simplify the computations, the a, could be estimated by a least-squares method, i.e. minimizing the
variance of the residual. Note that in practice, the sum in (6) is taken over a finite, possibly very small set
of lag indices 7.

3.3 Approximation of the entropy of residual

To approximate the entropy of dy, many different methods could be devised. In particular, it is a good idea
to standardize the variable to unit variance to decouple the effects of scale and nongaussianity. Denoting
by o} the variance of the residual, we have by the well-known scaling property of entropy:

1(59) = H(2) +1og s (7)



The estimation of the entropy of the standardized version H(dy/os) could be done, for example, using
the general entropy approximation introduced in (Hyvérinen, 1998b). We adopt here a simpler method,
however, which is possible by assuming that we have prior knowledge on the distribution of the residual.
We assume that we know a good approximation of the (negative) logarithm of the probability density of the
residual, denoted by G. Then we can plug this into the definition of entropy, and obtain the approximation

H(oy) ~ E{G(i—i)} +logas. (8)
In ICA, it is well-known that the exact form of the non-quadratic function used to probe higher-order
statistics is not very important (Cardoso and Laheld, 1996; Hyvirinen and Oja, 1998; Cardoso, 2000).
Likewise, in (Hyvérinen, 1998b) it was shown that entropy can be well approximated using a fixed non-
quadratic function. We may therefore optimistically assume that the exact form of the function G is not
very important here either, as long as it is qualitatively similar enough. The simulations in Sec. 6 give
some support for this assumption.
In particular, in many cases we can assume that the residuals are supergaussian, which seems to be the
preponderant case in natural data (Hyvérinen, 1999b; Vigario et al., 2000). Then we can use the negative
log-density of a generic supergaussian random variable, say

G(oy) = 3 log2+ vy (9)

The additive constant in (9) is immaterial and can be omitted.

4 Finding minimum complexity directions

Using the approximation given in the preceding section, we can formulate a practical method for complexity
pursuit. To find the “most interesting” directions w7 x(t), use the approximation of complexity introduced
in the preceding section and find its minima.

4.1 Formulating the criterion

Let us consider what kind of practical criterion we obtain using the above approximation of complexity for

y(t) = wTx(t). First note that the values of o, and o4 are functions of w only. To emphasize this, we

write a,(w) and o5(w). Thus we can express the approximation of complexity as a function of w only:

K(w"x(t)) = B{G( w(x(t) = D ar (W)x(t — 7))} +log os(w). (10)

gé (W) 7>0

As mentioned above, we must fix the scale of w?x(#) to gain direct access to the higher-order structure.
Thus we constrain

E{(w"x(t))’} =1 (11)

The terms in the approximation in (10) have intuitive interpretations. The first one measures the
contribution of the nongaussianity to the entropy of the residual of the linear predictor. The argument of
G is normalized to unit variance, so this non-quadratic function measures the nongaussianity in the same



way as the one-unit contrast function in (Hyvédrinen and Oja, 1998; Hyvérinen, 1999a). Minimizing this
term alone amounts to finding direction in which the residual is as nongaussian as possible.

The second term measures the contribution of the variance of the residual to its entropy. Minimization
of this term alone amounts to finding a projection that has maximum autocorrelations, i.e. maximum time-
dependencies. This principle is closely related to those used in blind source separation methods in (Tong
et al., 1991; Molgedey and Schuster, 1994; Belouchrani et al., 1997), as will be seen in the Discussion.

Thus, our criterion uses simultaneously the two most widely used criteria for ICA and related methods:
nongaussianity and autocorrelations. Moreover, Kolmogoroff Complexity leads to another modification of
ordinary projection pursuit: It is the nongaussianity of the residuals of predictive coding that is measured,
instead of the nongaussianity of the original signals.

4.2 Deriving the algorithm

4.2.1 The gradient

To find the minima of the approximation of complexity, we can use a simple gradient descent. The gradient
of K in (10) with respect to w can be obtained straight-forwardly as

Vo K (whx(t)) = _06(1 )= 3 an(w)x(t - T))g(%(l )= Y ar(w)x(t — 7))}
>0 >0
ﬂmem——i—mvamew%m—ﬂm—i— ) =Y ar(wix(t— )} (12)
os(W) 55 o5 (W) >0

where g is the derivative of G, and f is defined as

B= ——[1— ——B{w (x(t) = 3 ar(wx(t — )g( ~ S a,(wyx(t - )} (13)

75(W) 75(W) >0 75(W) >0

To simplify the resulting algorithm we use the following approximation of the gradient, which is quite
accurate. Assume that w?x(t) is really generated by the autoregressive model that is used to predict it,
and that G is the negative log-density of the residual. Consider the following lemma:

Lemma 1 For any random variable x with a smooth density p, and satisfying E{x} = 0, we have

B2®y = (14)

Proof of lemma: by partial integration we obtain

z)dx = /a:p'(x)da: =0- / 1 x p(z)dz = -1 (15)
Applying this lemma for the residual (normalized to unit variance), we have
1
E{— a‘r t_T))g( aT t_T)))}:L (16)
™ 0 2 ™ 0~ 2

which 1mphes that 8 = 0. Moreover, the quantity }° . ,(Vwa,(w))w”x(t — 7) depends only on the past
values of w”x(t). Therefore, it is 1ndependent from the residual w’ (x(t) — }° . o (w)x(t — 7)) that has
the role of the innovation process here. Thus the third term in the gradient vanishes as well.



Thus we have the following approximation of the gradient

Vo R (wTx(t)) ~ — =3 ar(w)x(t — )l

06( 7>0

- D ar(w)x(t - )} (17)

06( 7>0

To further simplify the resulting algorithm, we can use the fact that the factor 1/05(w) multiplying the
gradient is less important, since it does not change the direction of the gradient. Thus it can be omitted.
Furthermore, the same factor multiplying the argument of g could be omitted in many cases without
changing the point where the gradient vanished. This is because for homogenous g, for example g(u)
sign(u) or g(u) o u®, this constant does not change the direction of the gradient, either, and could be
omitted as well. In practice, we often use g that is a good approximation of a homogenous function (e.g.
the tanh function as given below).

4.2.2 The algorithm

Thus we can use a simple (approximative) gradient descent for updating w. To begin with, we can simplify
the algorithm by first whitening the zero-mean data x(t), for example by:

a(t) = Vx(t) = (B{x(t)x(t)"})7"/*x(t). (18)

Now, the constraint of unit variance of w’'x(t) can be replaced by the constraint of unit norm of w. This
is a standard procedure in ICA and projection pursuit (Comon, 1994; Friedman, 1987).

Denote by z(t) the whitened data, and by u a learning rate. The algorithm is then as follows. At every
step, first estimate the autoregressive constants ., (w) in (6) for the time series given by w’z(t),t =1, ..., T.
Then do the the gradient descent and normalization:

w <+ w — uE{(=z ZaT z(t — 7))g ZaT z(t — 7))} (19)

7>0 7>0
W w/|[w| (20)

The function g should be chosen as in ordinary ICA, but according to the probability distribution of the
residual instead of the actual component w”z(t). If the residual is supergaussian, g(u) = sign(u) is suitable.
This could also be approximated by a smoother function g(u) = tanh(au) where a > 1 is a suitable constant
(Bell and Sejnowski, 1995; Hyvérinen, 1999a). For subgaussian residuals, one could use g(u) = u — tanh(u)
(Girolami, 1998), or g(u) = u?, for example. For almost gaussian residuals, a linear g could be used.
Obviously, any scaling constants multiplying g can be dropped, although they are needed, in principle, to
insure that —G is actually a log-density of unit variance.

To estimate several projections, one can simply use a deflation scheme (Delfosse and Loubaton, 1995;
Hyvéarinen and Oja, 1997). This means that after estimating m components, the new one is found by
projecting w, after every step of the algorithm, on the subspace orthogonal to the one spanned by the already
estimated components. A simple Gram-Schmidt orthogonalization scheme accomplishes this (Hyvéirinen
and Oja, 1997; Hyvirinen, 1999a). Symmetric orthogonalization may be used as well, in which case the
algorithm is more akin to ICA than projection pursuit (see next section).

4.2.3 Simple special case

A simple special case of the method is obtained when the autoregressive model has just one predicting
term:

§(t) = ary(t - 1). (21)



The lag need not be equal to 1, but this is the basic case. This method may be very useful in practice since
it takes into account the most basic form of autocovariance in the same way as the algorithms in (Tong
et al., 1991; Molgedey and Schuster, 1994); additional terms may not provide much extra information in
many applications. The parameter a; in the algorithm can then be estimated very simply by a least-squares
method as

a = wlE{z(t)z(t — 1)T }w. (22)

5 Discussion

5.1 Connection to independent component analysis

We have proposed an algorithm for finding interesting 1-D projections of multivariate time series, as mea-
sured by an approximation of Kolmogoroff Complexity. Finding interesting projections of random vectors,
as measured by nongaussianity, is closely connected to ICA estimation, and therefore one might expect
that our method is closely connected to ICA as well.

In fact, well-known ICA methods can be found as special cases of our method. First, assume that the
signal has no (linear) time dependencies, which implies that the residual equals the signal itself. Then our
algorithm reduces to

w  w — pE{z(t)g(w" z(t))} (23)
w <+ w/||w||. (24)

This is in fact the algorithm proposed in (Hyvéirinen and Oja, 1998) for finding one independent component.
In particular, if G is chosen as the negative log-density of the residual (here: component), the results in
(Hyvérinen and Oja, 1998) show that the algorithm converges to one of the independent components.
Most well-known algorithms for estimating ICA for nongaussian components are closely related to this
deflationary method (Amari et al., 1996; Bell and Sejnowski, 1995; Cichocki and Unbehauen, 1996; Cardoso
and Laheld, 1996; Hyvérinen and Oja, 1997; Hyvérinen, 1999a; Karhunen et al., 1997; Oja, 1997).

As another special case, assume that the data is gaussian. Then the function g can be taken linear, and
the method reduces to something that is closely related to minimization of lagged cross-correlations as in
(Belouchrani et al., 1997). To see this more clearly, assume that we use the AR(1) predictor. Denoting by

C, = %[E{z(t)z(t — )7} + E{z(t — 1)z(t)"}] (25)

a symmetric version of the lagged covariance matrix, we have
E{(z(t) — enz(t — 1)g(w" (2(t) — axz(t — 1))} = [(1 — a])I — 2aC_1]w (26)
and the algorithm takes the form

w — w— u[(1 —a?)I - 2aC_4]w (27)
w e w/|lw| (28)

The algorithm can be considered as a power method for computing the dominant eigenvector of C_;.
In (Tong et al., 1991) it was proposed that the independent components could be estimated by finding



the eigen-value decomposition of C_; = EDE”. The eigenvectors e; thus found give the independent
components as el z(t). This was motivated by the fact that such a decomposition gives signals that are
uncorrelated in the usual way, as well as uncorrelated with the lag, i.e. E{(eiTz(t))(e]Tz(t —1))} =0 for
i # j. In a deflationary scheme, where we estimate one component using our algorithm, then remove it
from the data, and iterate such extraction steps, our algorithm estimates the same eigenvectors of C_;, and
gives the same decomposition. It is interesting to note that minimizing delayed cross-correlations is thus
seen to correspond to finding signals with maximum autocorrelations, not unlike in PCA where directions
of maximum variance are found by a decorrelating eigen-value decomposition.

The connection to ICA estimation can be made even more explicit by considering an ICA model as in
(1) where the independent components are modelled using a autoregressive model:

si(t) = Z st —1)+6 (29)

7>0

where ¢ is a nongaussian random variable. Denote by W = (w1, ..., w,,)T the inverse of A. The likelihood
of such a model can be formulated as

T n
log L(w;,a;;i=1,...,N,7 >0) = ZZlogpi(wiTx(t) — Z o wlx(t — 7)) + T'log | det W]
t=1 =1 >0 (30)

Now, assume that the estimation of the autoregressive coefficients is decoupled from the estimation of the
w;. In other words, the ol are estimated for fixed w;, and then the w; are estimated for fixed o, and so
on. Assume further that the data is whitened and that W is constrained to be orthogonal, as is usual in
ICA (Cardoso and Laheld, 1996; Hyvérinen and Oja, 1997; Hyvirinen, 1999a). Then the term log | det W/|
is constant, and what is left is essentially an approximation of the sum of the negative entropies of the
residuals (the p; should here be adapted so that they correspond to the log-densities of the residuals).
Maximization of the likelihood is thus essentially equivalent to minimizing the sum of the approximations
of complexity of the n projection w’x(t). Thus our algorithm can be seen as a one-unit version of this
ICA estimation problem.

5.2 Related algorithms

Another algorithm that combines nongaussianity and time-correlations was proposed for ICA estimation
in (Miiller et al., 1999). This was constructed heuristically by combining two estimation criteria, one
measuring nongaussianity and another one measuring time-correlations. Using Kolmogoroff Complexity,
we find here a principled way of combining these criteria. In particular, we find the optimal weight that
we should give to the part measuring nongaussianity with respect to the part measuring time-correlations.

Moreover, our method uses the nongaussianity of the residuals, instead of the nongaussianity of the
components. This is in line with the arguments advanced in (Hyvédrinen, 1998a) where it was proposed
that ICA should be applied on the innovation process instead of the original signals. The innovation
process coincides in the present framework with the residual of an optimal (possibly nonlinear) predictor.
In (Hyvérinen, 1998a) it was argued that the innovation process is likely to be more nongaussian and to
have components that are mode independent than the original data, and thus ICA algorithms should give
better estimation results when applied on the innovation process. Thus, measuring the nongaussianity of
the residuals should improve the separation results.

A final point of difference between our method and that proposed in (Miiller et al., 1999) is that our
algorithm allows for deflationary estimation of components in the spirit of projection pursuit.



Finally, it is worth mentioning another ICA algorithm that combines time-structure with nongaussianity
(Attias, 2000). This algorithm models the time structure in a very different way, using a hidden Markov
model with discrete states. A potential drawback of this approach is that it leads to quite complicated
computations. In contrast, using autocorrelations allows computationally much simpler methods.

6 Simulation results

We created four signals using an AR(1) model, with 5000 time points. The signals #1 and #2 were created
with supergaussian innovations, and the signals #3 and #4 with gaussian innovations; all innovations had
unit variance. The signals #1 and #3 had identical autoregressive coefficients (0.25), and therefore identical
autocovariances; the signals #2 and #4 had identical coefficients (0.5) as well.

To be able to validate the results, we performed source separation experiments. The signals were mixed
as in ICA, using random mixing matrices. The step size u was taken equal to 1. The nonlinearity was
chosen as g(u) = tanh(u).

Ordinary ICA or blind source separation methods based on nongaussianity would not be able to separate
the two gaussian signals from each other. On the other hand, methods based on autocovariances would not
be able to separate signals with identical autocovariances. Thus practically all ICA or source separation
algorithm would fail with this data. The only exception, to our knowledge, is the algorithm in (Miiller
et al., 1999), as discussed in Section 5.2.

Figure 1 shows the convergence of our algorithm, using the same nonlinearity (tanh) for all components.
The graph shows results for symmetric orthogonalization. For deflationary orthogonalization, we obtained
similar results. In both cases, the algorithm correctly estimated the independent components, in around
10-15 iterations. Note that a single generic nonlinearity that corresponds to supergaussian residuals was
able to separate both gaussian and supergaussian signals, which indicates that the method is robust with
respect to the choice of nonlinearity in the much same way as ICA.

7 Conclusion

We introduced an extension of projection pursuit, in which the time structure of a time-series (time-
dependent signal) is taken into account, instead of using the marginal distribution only. This is based on
finding directions in which the coding complexity of the signal is minimized. This also provides a principled
method for (possibly deflationary) estimation of independent components that are time-dependent. The
coding complexity can be approximated by a combination of the nongaussianity and the variance of the
residual of a linear autoregressive model, leading to a computationally simple algorithm.
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