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Abstract

In ordinary independent component analysis, the components are assumed to be completely independent, and
they do not necessarily have any meaningful order relationships. In practice, however, the estimated “independent”
components are often not at all independent. We propose that this residual dependence structure could be used
to define a topographic order for the components. In particular, a distance between two components could be
defined using their higher-order correlations, and this distance could be used to create a topographic representation.
Thus we obtain a linear decomposition into approximately independent components, where the dependence of two
components is approximated by the proximity of the components in the topographic representation.

1 Introduction

Indendent component analysis (ICA) (Jutten and Herault, 1991) is a statistical model where the observed data is
expressed as a linear transformation of latent variables that are nongaussian and mutually independent. The classic
version of the model can be expressed as

x = As (1)

where x = (x1,x2, ...,xn)
T is the vector of observed random variables, s = (s1,s2, ...,sn)

T is the vector of the inde-
pendent latent variables (the “independent components”), and A is an unknown constant matrix, called the mixing
matrix. The problem is then to estimate both the mixing matrix A and the realizations of the latent variables si,
using observations of x alone. Exact conditions for the identifiability of the model were given in (Comon, 1994);
the most fundamental is that the independent components si must be nongaussian (Comon, 1994). A considerable
amount of research has been recently conducted on the estimation of this model, see e.g. (Amari et al., 1996; Bell
and Sejnowski, 1995; Cardoso and Laheld, 1996; Cichocki and Unbehauen, 1996; Delfosse and Loubaton, 1995;
Hyvärinen and Oja, 1997; Hyvärinen, 1999a; Karhunen et al., 1997; Oja, 1997; Pajunen, 1998).

In classic ICA, the independent components si have no particular order, or other relationships. It is possible,
though, to define an order relation between the independent components by such criteria as nongaussianity or contri-
bution to the observed variance (Hyvärinen, 1999c); the latter is given by the norms of the corresponding columns of
the mixing matrix as the independent components are defined to have unit variance. Such trivial order relations may
be useful for some purposes, but they are not very informative in general.
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The lack of an inherent order of independent components is related to the assumption of complete statistical
independence. In practical applications of ICA, however, one can very often observe clear violations of the indepen-
dence assumption. It is possible to find, for example, couples of estimated independent components such that they
are clearly dependent on each other. This dependence structure is often very informative, and it would be useful to
somehow estimate it.

Estimation of the “residual” dependency structure of estimates of independent components could be based, for
example, on computing the cross-cumulants. Typically these would be higher-order cumulants since second-order
cross-cumulants, i.e. the covariances, are typically very small, and are in fact forced to be zero in many ICA esti-
mation methods, e.g. (Comon, 1994; Hyvärinen and Oja, 1997; Hyvärinen, 1999a). A more information-theoretic
measure for dependence would be given by mutual information. Whatever measure is used, however, the problem
remains as to how such numerical estimates of the dependence structure should be visualized or otherwise utilized.
Moreover, there is another serious problem associated with simple estimation of some dependency measures from
the estimates of the independent components. This is due to the fact that often the independent components do not
form a well-defined set. Especially in image decomposition (Bell and Sejnowski, 1997; Olshausen and Field, 1996;
Olshausen and Field, 1997; Hyvärinen, 1999b), the set of potential independent components seems to be larger than
what can be estimated at one time, in fact the set might be infinite. A classic ICA method gives an arbitrarily chosen
subset of such independent components, corresponding to a local minimum of the objective function. (This can be
seen in the fact that the basis vectors are different for different initial conditions.) Thus, it is important in many
applications that the dependency information is utilized during the estimation of the independent components, so
that the estimated set of independent components is one that can be ordered in a meaningful way.

In this paper, we propose that the residual dependency structure of the “independent” components, i.e. depen-
dencies that cannot be cancelled by ICA, could be used to define a topographic order between the components.
The topographic order is easy to represent by visualization, and has the usual computational advantages associated
with topographic maps that will be discussed below. We propose a modification of the ICA model that explicitly
formalizes a topographic order between the components. This gives a topographic map where the distance of the
components in the topographic representation is a function of the dependencies of the components. Components that
are near to each other in the topographic representation are relatively strongly dependent in the sense of higher-order
correlations, or mutual information. This gives a new principle for topographic organization. Furthermore, we derive
a learning rule for the estimation of the model. Experiments on image feature extraction and blind separation of
magnetoencephalographic data demonstrate the usefulness of the model.

This paper is organized as follows. First, topographic ICA is motivated and formulated as a generative model
in Section 2. Since the likelihood of the model is intractable, a tractable approximation is derived in Section 3. A
gradient learning rule for performing the estimation of the model is then introduced in Section 4. Discussion on the
relation of our model to some other methods, as well as on the utility of topography is given in Section 5. Simulations
and experiments are given in Section 6. Finally, some conclusions are drawn in Section 7.

2 Topographic ICA Model

2.1 Dependence and topography

In this section, we define topographic ICA using a generative model that is a hierarchical version of the ordinary
ICA model. The idea is to relax the assumption of the independence of the components si in (1) so that components
that are close to each other in the topography are not assumed to be independent in the model. For example, if the
topography is defined by a lattice or grid, the dependency of the components is a function of the distance of the
components on that grid. In contrast, components that are not close to each other in the topography are independent,
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at least approximately; thus most pairs of components are independent. Of course, if independence would not hold
for most component pairs, any connection to ICA would be lost, and the model would not be very useful in those
applications where ICA has proved useful.

2.2 What kind of dependencies should be modelled?

The basic problem is then to choose what kind of dependencies are allowed between near-by components. The most
basic dependence relation is linear correlation1. However, allowing linear correlation between the components does
not seem very useful. In fact, in many ICA estimation methods, the components are constrained to be uncorrelated
(Cardoso and Laheld, 1996; Comon, 1994; Hyvärinen and Oja, 1997; Hyvärinen, 1999a), so the requirement of
uncorrelatedness seems natural in any extension of ICA as well.

A more interesting kind of dependency is given by a certain kind of higher-order correlation, namely correlation
of energies. This means that

cov (s2
i ,s

2
j) = E{s2

i s2
j}−E{s2

i }E{s2
j} 6= 0 (2)

if si and s j are close in the topography. Here, we assume that this covariance is positive. Intuitively, such a correlation
means that the components tend to be active, i.e. non-zero, at the same time, but the actual values of si and s j are
not easily predictable from each other. For example, if the variables are defined as products of two zero-mean
independent components zi,z j and a common “variance” variable σ:

si = ziσ (3)

s j = z jσ (4)

then si and s j are uncorrelated, but their energies are not. In fact the covariance of their energies equals E{z2
i σ2z2

j σ2}−
E{z2

i σ2}E{z2
jσ2}= E{σ4}−E{σ2}2, which is non-negative because it equals the variance of σ2 (we assumed here

for simplicity that zi and z j are of unit variance). Energy correlation is illustrated in Fig. 1.
Using this particular kind of higher-order correlation could be initially motivated by mathematical and conceptual

simplicity. Correlation of energies is arguably the simplest and most intuitive kind of higher-order dependency
because it can be interpreted as simultaneous activation. The variable σ in (3-4) can be considered as a higher-order
component controlling the activations of the components si and s j. This kind of higher-order correlation is therefore
relatively easy to analyze and understand, and likely to have applications in many different areas.

Moreover, an important empirical motivation for this kind of dependency can be found in image feature ex-
traction. In (Simoncelli and Schwartz, 1999), it was shown that the predominant dependence of wavelet-type filter
outputs is exactly the strong correlation of their energies; this property was utilized for improving ordinary shrinkage
denoising methods. Similarly, in (Hyvärinen and Hoyer, 2000), a subspace version of ICA was introduced (to be
discussed in more detail in Sec. 5.2) in which the components in each subspace have energy correlations. It was
shown that meaningful properties, related to complex cells, emerge from natural image data using this model.

2.3 The generative model

Now we define a generative model that implies correlation of energies for components that are close in the topo-
graphic grid. In the model, the observed variables x = As are generated as a linear transformation of the components
s, just as in the basic ICA model in (1). The point is to define the joint density of s so that it expresses the topography.
The topography is defined by simultaneous activation as discussed in the previous subsection.

1In this paper, we mean by correlation a normalized form of covariance: corr(s1,s2) = [E{s1s2}−E{s1}E{s2}][var (s1)var (s2)]
−1/2
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Figure 1: Illustration of higher-order dependencies. The two signals in the figure are uncorrelated but they are not
independent. In particular, their energies are correlated. The signals were generated as in (3-4), but for purposes of
illustration, the random variable σ was replaced by a time-correlated signal.
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We define the joint density of s as follows. The variances σ2
i of the si are not constant, instead they are assumed to

be random variables, generated according to a model to be specified. After generating the variances, the variables si
are generated independently from each other, using some conditional distributions to be specified. In other words, the
si are independent given their variances. Dependence among the si is implied by the dependence of their variances.
According to the principle of topography, the variances corresponding to near-by components should be (positively)
correlated, and the variances of components that are not close should be independent, at least approximatively.

To specify the model for the variances σ2
i , we need to first define the topography. This can be accomplished by a

neighborhood function h(i, j), which expresses the proximity between the i-th and j-th components. The neighbor-
hood function can be defined in the same ways as with the self-organizing map (Kohonen, 1995). Neighborhoods can
thus be defined as one-dimensional or two-dimensional; 2-D neighborhoods can be square or hexagonal. Usually, the
neighborhood function is defined as a monotonically decreasing function of some distance measure, which implies
among other things that it is symmetric: h(i, j) = h( j, i), and has constant diagonal: h(i, i) = const. for all i. A simple
example is to define a 1-D neighborhood relation by

h(i, j) =

{

1, if |i− j| ≤ m

0, otherwise.
(5)

The constant m defines here the width of the neighborhood: The neighborhood of the component with index i
consists of those components whose indices are in the range i−m, ..., i + m. The neighborhood function h(i, j) is
thus a matrix of hyperparameters. In this paper, we consider it to be known and fixed. Future work may provide
methods for estimating the neighborhood function from the data.

Using the topographic relation h(i, j), many different models for the variances σ2
i could be used. We prefer here

to define them by an ICA model followed by a nonlinearity:

σi = φ(
n

∑
k=1

h(i,k)uk) (6)

where ui are the “higher-order” independent components used to generate the variances, and φ is some scalar non-
linearity. This particular model can be motivated by two facts. First, taking sparse ui, we can model sparse local
activations, that is, the case where activation is limited to a few regions in the map. This is what seems to happen in
image features. Second, the model is mathematically quite simple, and in particular, it enables a simple approxima-
tion of likelihood that will be derived in Sec. 3.

In the model, the distributions of the ui and the actual form of φ are additional hyperparameters; some suggestions
will be given below. It seems natural to constrain the uk to be non-negative. The function φ can then be constrained
to be a monotonic transformation in the set of non-negative real numbers. This ensures that the σi’s are non-negative.

The resulting topographic ICA model is summarized in Fig. 2. Note that the two stages of the generative model
can be expressed as a single equation, analogously to (3-4), as follows:

si = φ(∑
k

h(i,k)uk)zi (7)

where zi is a random variable that has the same distribution as si given that σ2
i is fixed to unity. The ui and the zi are

all mutually independent.

2.4 Basic Properties of the Topographic ICA model

Here we discuss some basic properties of the generative model defined above.
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1. All the components si are uncorrelated. This is because according to (7) we have

E{sis j}= E{zi}E{z j}E{φ(∑
k

h(i,k)uk)φ(∑
k

h( j,k)uk)}= 0 (8)

due to the independence of the uk from zi and z j. (Recall that zi and z j are zero-mean.) To simplify things, one
can define that the marginal variances (i.e. integrated over the distibution of σi) of the si are equal to unity, as
in ordinary ICA. In fact, we have

E{s2
i }= E{z2

i }E{φ(∑
k

h(i,k)uk)
2}, (9)

so we only need to rescale h(i, j) (the variance of zi is equal to unity by definition). Thus the vector s can be
considered to be sphered, i.e. white.

2. Components that are far from each other are more or less independent. More precisely, assume that si and s j

are such that their neighborhoods have no overlap, i.e. there is no index k such that both h(i,k) and h( j,k) are
non-zero. Then the components si and s j are independent. This is because their variances are independent, as
can be seen from (6). Note, however, that independence need not be strictly true for the estimated components,
just as independence does not need to hold for the components estimated by classic ICA.

3. Components si and s j that are near to each other, i.e. such that h(i, j) is significantly non-zero, tend to be active
(non-zero) at the same time. In other words, their energies s2

i and s2
j are usually positively correlated. This

property cannot be strictly proven in general, since it depends on the form of φ and the distributions of the ui.
However, the following intuitive argument can be made. Calculating

E{s2
i s2

j}−E{s2
i }E{s2

j}
= E{z2

i }E{z2
j}[E{φ2(∑

k

h(i,k)uk)φ2(∑
k

h( j,k)uk)}−E{φ2(∑
k

h(i,k)uk)}E{φ2(∑
k

h( j,k)uk)}] (10)

we see that the covariance of the energies of si and s j is equal to the covariance of σ2
i and σ2

j . The covariance
of the sums ∑k h( j,k)uk and ∑k h( j,k)uk can be easily evaluated as ∑k h(i,k)h( j,k)var uk. This is clearly
positive, if the components si and s j are close to each other. Since we constrained φ to be monotonic in the
set of nonnegative real numbers, φ2 is monotonic in that set as well, and we therefore conjecture that the
covariance is still positive when the function φ2 is applied on these sums, since this amounts to computing the
covariance of the nonlinear transforms. This would imply that the covariance of σ2

i and σ2
j is still positive, and

this would imply the result.

4. An interesting special case of topographic ICA is obtained when every component si is assumed to have a
gaussian distribution when the variance is given. This means that the marginal, unconditional distributions of
the components si are continuous mixtures of gaussians. In fact these distributions are always supergaussian,
i.e. have positive kurtosis. This is because

kurt si = E{s4
i }−3(E{s2

i })2 = E{σ4
i z4

i }−3(E{σ2
i z2

i })2 = 3[E{σ4
i }− (E{σ2

i })2] (11)

which is always positive because it is the variance of σ2
i multiplied by 3. Since most independent components

encountered in real data are supergaussian (Bell and Sejnowski, 1997; Hyvärinen, 1999b; Olshausen and Field,
1996; Vigário, 1997), it seems realistic to use a gaussian conditional distribution for the si.

5. Classic ICA is obtained as a special case of the topographic model, by taking a neighborhood function h(i, j)
that is equal to the Kronecker delta function, h(i, j) = δi j.

6



u

Σ

Σ

Σ

2

3

1

x

x

x

A

3

φ

φ

φ

u

u

1

2

s

s

s

2

3

1

σ

σ1

σ

2

3

Figure 2: An illustration of the topographic ICA model. First, the “variance-generating” variables ui are gener-
ated randomly. They are then mixed linearly inside their topographic neighborhoods. (The figure shows a one-
dimensional topography.) The mixtures are then transformed using a nonlinearity φ, thus giving the local variances
σ2

i . Components si are then generated with variances σ2
i . Finally, the components si are mixed linearly to give the

observed variables xi.

3 Approximating the likelihood of the model

In this section, we discuss the estimation of the topographic ICA model introduced in the previous section. The
model is a missing variables model in which the likelihood cannot be obtained in closed form. However, to simplify
estimation, we derive a tractable approximation of the likelihood.

The joint density of s, i.e. the topographic components, and u, i.e. the “higher-order” independent components
generating the variances, can be expressed as

p(s,u) = ∏
i

ps
i (

si

φ(∑k h(i,k)uk)
)

pu
i (ui)

φ(∑k h(i,k)uk)
(12)

where the pu
i are the marginal densities of the ui and the ps

i are the densities of ps
i for variance fixed to unity. The

marginal density of s could be obtained by integration:

p(s) =

∫

∏
i

ps
i (

si

φ(∑k h(i,k)uk)
)

pu
i (ui)

φ(∑k h(i,k)uk)
du (13)

and using the same derivation as in ICA (Pham et al., 1992), this gives the likelihood as

L(W) =
T

∏
t=1

∫

∏
i

ps
i (

wT
i x(t)

φ(∑k h(i,k)uk)
)

pu
i (ui)

φ(∑k h(i,k)uk)
|detW|du (14)

where W = (w1, ...,wn)
T = A−1, and the x(t), t = 1, ...,T are the observations of x. It is here assumed that the

neighborhood function and the nonlinearity φ as well as the densities pu
i and ps

i are known.
The problem with (14) is that it contains an intractable integral. One way of solving this problem would be

to use the EM algorithm (Dempster et al., 1977), but it seems to be intractable as well. Estimation could still be
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performed by Monte Carlo methods, but such methods would be computationally expensive. Therefore, we prefer
to approximate the likelihood by an analytical expression. To simplify the notation, we assume in the following that
the densities pu

i are equal for all i, and likewise for ps
i .

To obtain the approximation, we first fix the density psi = ps to be gaussian, as discussed in Section 2.4, and we
define the nonlinearity φ as

φ(∑
k

h(i,k)uk) = (∑
k

h(i,k)uk)
−1/2 (15)

The main motivation for these choices is algebraic simplicity that makes a simple approximation possible. Moreover,
the assumption of conditionally gaussian si, which implies that the unconditional distribution of si supergaussian, is
compatible with the preponderance of supergaussian variables in ICA applications.

With these definitions, the marginal density of s equals:

p(s) =

∫

1√
2πn exp(−1

2 ∑
i

s2
i [∑

k

h(i,k)uk])∏
i

pu(ui)
√

∑
k

h(i,k)uk du (16)

which can be manipulated to give

p(s) =

∫

1√
2πn exp(−1

2 ∑
k

uk[∑
i

h(i,k)s2
i ])∏

i
pu(ui)

√

∑
k

h(i,k)uk du. (17)

The interesting point in this form of the density is that it is a function of the “local energies” ∑i h(i,k)s2
i only. The

integral is still intractable, though. Therefore, we use the simple approximation:
√

∑
k

h(i,k)uk ≈
√

h(i, i)ui. (18)

This is actually a lower bound, and thus our approximation will be an lower bound of the likelihood as well. This
gives us the following approximation p̃(s):

p̃(s) = ∏
k

exp(G(∑
i

h(i,k)s2
i )) (19)

where the scalar function G is obtained from the pu by:

G(y) = log
∫

1√
2π

exp(−1
2

uy)pu(u)
√

h(i, i)u du. (20)

Recall that we assumed h(i, i) to be constant.
Thus we obtain finally the following approximation of the log-likelihood:

log L̃(W) =
T

∑
t=1

n

∑
j=1

G(
n

∑
i=1

h(i, j)(wT
i x(t))2)+T log |detW|. (21)

This is a function of local energies. Every term ∑n
i=1 h(i, j)(wT

i x(t))2 could be considered as the energy of a neigh-
borhood, possibly related to the output of a higher-order neuron as in visual complex cell models (Hyvärinen and
Hoyer, 2000). The function G has a similar role as the log-density of the independent components in classic ICA.

The formula for G in (20) can be exactly evaluated only in special cases. One such case is obtained if the uk

are obtained as squares of standardized gaussian variables. Straight-forward calculation then gives the following
function

G0(y) =− log(1+ y)+
1
2

logπ2h(i, i). (22)
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In ICA, it is well-known that the exact form of the log-density does not affect the consistency of the estimators, as
long as the overall shape of the function is correct. This is probably true in topographic ICA as well. The simulations
and experiments that we have performed support this conjecture, see Sec. 6. If the data is sparse, i.e. supergaussian,
convergence seems to be obtained by almost any G(y) that is convex for non-negative y, like the function in (22).
Therefore, one could use many other more or less heuristically chosen functions. For example, one could use the
function proposed in (Hyvärinen and Hoyer, 2000):

G1(y) =−α1
√

y+β1, (23)

This function is related to the exponential distibution (Hyvärinen and Hoyer, 2000). The scaling constant α1 and the
normalization constant β1 are determined so as to give a probability density that is compatible with the constraint of
unit variance of the si, but they are irrelevant in the following. In practice, a small constant may be added inside the
square root for reasons of numerical stability:

G∗1(y) =−α1
√

ε+ y+β1, (24)

Another possibility would be a simple polynomial that could be considered as a Taylor approximation of the real
Gi:

G2(y) = α2y2 +β2, (25)

where the first-order term is omitted because it corresponds to second-order statistics that stay constant if the decom-
position is constrained to be white. Again, the constants α2 and β2 are immaterial.

One point that we did not treat in the preceding was the scaling of the neighborhood function h(i, j). As shown
in Sec. 2.4, to obtain unit variance of the si, h(i, j) has to be scaled according to (9). However, since the functions
in (23) and (25) are homogenic, i.e. any scalar multiplying their arguments is equivalent to a scalar multiplying the
functions themselves, any rescaling of h(i, j) only multiplies the log-likelihood by a constant factor. (We ignored
here the irrelevant constants βi.) Therefore, when using (23) and (25), the si can be considered to have unit variance
without any further complications. This is not the case with (22), however. In practice, however, this complication
does not seem very important, and was completely ignored in our simulations and experiments.

4 Learning rule

In this section, we derive a learning rule for performing the maximization of the approximation of likelihood derived
in the previous section. The approximation enables us to derive a simple gradient learning rule.

First, we assume here that the data is preprocessed by whitening

z = Vx = VAs (26)

where the whitening matrix V can be computed as V = (E{xxT})−1/2, for example. The inverse square root is here
defined by the eigenvalue decomposition of E{xxT} = EDET as V = (E{xxT})−1/2 = ED−1/2ET . Alternatively,
one can use PCA whitening V = D−1/2ET , which also allows one to reduce the dimension of the data.

Then we can constrain the wT
i , which here denote the estimates of the rows of the new separating matrix (VA)−1,

to form an orthonormal system (Comon, 1994; Hyvärinen and Oja, 1997; Hyvärinen, 1999a; Cardoso and Laheld,
1996). This implies that the estimates of the components are uncorrelated. Such a simplification is widely used in
ICA, and it is especially useful here since it allows us to concentrate on higher-order correlations.

Thus we can simply derive (see Appendix) a gradient algorithm in which the i-th (weight) vector wi is updated
as

∆wi ∝ E{z(wT
i z)ri)} (27)
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where

ri =
n

∑
k=1

h(i,k)g(
n

∑
j=1

h(k, j)(wT
j z)2). (28)

The function g is the derivative of G, defined, e.g. as in (23) or (25). Note that rigorously speaking, the expectation in
(27) should of course be the sample average, but for simplicity, we use this notation. Of course, a stochastic gradient
method could be used as well, which means omitting the averaging and taking only one sample point at a time. Due
to our constraint, the vectors wi must be normalized to unit variance and orthogonalized after every step of (27).
The orthogonalization and normalization can be accomplished, e.g., by the classical method involving matrix square
roots,

W← (WWT )−1/2W (29)

where W is the matrix (w1, ...,wn)
T of the vectors. For further methods, see (Hyvärinen and Oja, 1997; Hyvärinen,

1999a).
In a neural interpretation, the learning rule in (27) can be considered as “modulated” Hebbian learning, since the

learning term is modulated by the term ri. This term could be considered as top-down feedback as in (Hyvärinen and
Hoyer, 2000), since it is a function of the local energies which could be the outputs of higher-order neurons (complex
cells).

After learning the wi, the original mixing matrix A can be computed by inverting the whitening process as

A = (WV)−1 = V−1WT (30)

On the other hand, the rows of the inverse of A give the filters (weight vectors) in the original, not whitened space.

5 Discussion

5.1 Comparison with some other topographic mappings

Our method is different from ordinary topographic mappings in several ways.
The first minor difference is that whereas in most topographic mappings a single weight vector represents a single

point in the data space, every vector in topographic ICA represents a direction, i.e. a one-dimensional subspace. This
difference is not of much consequence, however. For example, there are versions of the Self-Organizing Map (SOM)
(Kohonen, 1995) that use a single weight vector in much the same say as topographic ICA.

Second, since topographic ICA is a modification of ICA, it still attempts to find a decomposition into components
that are independent. This is because only near-by components are not independent, at least approximately, in the
model. In contrast, most topographic mappings choose the representation vectors by principles similar to vector
quantization and clustering. This is the case, for example, with the SOM, the Generative Topographic Mapping
(GTM, Bishop et al, 1997 ) and related models, e.g. (Kiviluoto and Oja, 1998).

Most interestingly, the very principle defining topography is different in topographic ICA and most topographic
maps. Usually, the similarity of vectors in the data space is defined by Euclidean geometry: either the Euclidean
distance, as in the SOM and the GTM, or the dot-product, as in the “dot-product SOM” (Kohonen, 1995). In
topographic ICA, the similarity of two vectors in the data space is defined by their higher-order correlations, which
cannot be expressed as Euclidean relations. It could be expressed using the general framework developed in (Goodhill
and Sejnowski, 1997), though. For another non-Euclidean topographic mapping that uses proximity information, see
(Graepel and Obermayer, 1999).

In fact, the topographic similarity defined in topographic ICA could be seen as a higher-order version of the
dot-product measure. If the data is prewhitened, the dot-product in the data space is equivalent to correlation in the
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original space. Thus, topography based on dot-products could be used to define a “second-order” topography, where
components near to each other in the topography have larger linear correlations. As explained above, one can con-
strain the components to be uncorrelated in ICA, and thus also in topographic ICA. Then any statistical dependency
that could be used to create the topographic organization must be obtained from higher-order correlations, and this is
exactly what happens in topographic ICA.

5.2 Connection to Independent Subspace Analysis

Our approximation of the likelihood shows clearly the connection to another modification of the classic ICA model:
Independent Subspace Analysis (Hyvärinen and Hoyer, 2000). In that model, as in topographic ICA, the compo-
nents si were not assumed to be all mutually independent. Instead, it was assumed that the si can be divided into
couples, triplets or in general n-tuples, such that the si inside a given n-tuple could be dependent on each other, but
dependencies between different n-tuples were not allowed. Related relaxations of the independence assumption were
proposed in (Cardoso, 1998; Lin, 1998).

Inspired by Kohonen’s principle of feature subspaces (Kohonen, 1996), the probability densities for the n-tuples
of si were assumed in (Hyvärinen and Hoyer, 2000) to be spherically symmetric, i.e. depend only on the norm. In
other words, the probability density pq(.) of the n-tuple with index q∈ {1, ...,Q}, could be expressed as a function of
the sum of the squares of the si, i ∈ Sq only, where we denote by Sq the set of indices of the components si that belong
to the q-th n-tuple. (For simplicity, it was assumed further that the pq(.) were equal for all q, i.e. for all subspaces.)
In this model, the logarithm of the likelihood can thus be expressed as

logL(W) =
T

∑
t=1

Q

∑
q=1

G( ∑
i∈Sq

(wT
i x(t))2)+T log |detW| (31)

where G(∑i∈Sq s2
i ) = log pq(si, i ∈ Sq) gives the logarithm of the probability density inside the q-th n-tuple of si. Thus

the likelihood is a function of the norms of the projections of the data onto the subspaces spanned by the wi in each
n-tuple.

It is to be expected that the norms of the projections on the subspaces represent some higher-order, invariant
features. The exact nature of the invariances has not been specified in the model but will emerge from the input data,
using only the prior information on their independence.

The independent subspace model introduces a certain dependence structure for the independent components.
Consider two variables generated with a common variance as in (3-4). If the original variables z1,z2 are gaussian, the
joint distribution of s1 and s2 is spherically symmetric, which is obvious by symmetry arguments. As was proven in
connection with Eq. (3-4), the two variables then have positive correlation of energies. This shows that the higher-
order correlation structure in independent subspace analysis is closely connected to that found in topographic ICA.

In fact, topographic ICA can be considered a generalization of the model of independent subspace analysis. The
likelihood in (31) could be expressed as a special case of the approximative likelihood (21) with a neighborhood
function of the form

h(i, j) =

{

1, if ∃q : i, j ∈ Sq

0, otherwise.
(32)

It is also easy to see that the generative model obtained from topographic ICA using this neighborhood generates
spherically symmetric densities, if conditionally gaussian si are used.

This connection shows that topographic ICA is closely connected to the principle of invariant-feature subspaces.
In topographic ICA, the invariant-feature subspaces, which are actually no longer independent, are completely over-
lapping. Every component has its own neighborhood, which could be considered to define a subspace. Each of the
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local energies ∑n
i=1 h(i, j)(wT

i x)2 could be considered as the square of the (weighted) norm of the projection on a
feature subspace. Thus the local energies, possibly after a nonlinear transform, give the values of invariant features.
In fact, this connection is one of the motivations for our approximation of the likelihood. In vision science, compu-
tation of local energy is a widely used mechanism, and has some biological plausibility (Mel et al., 1998; Emerson
et al., 1992; Gray et al., 1998). The wiring diagram for such higher-order feature detectors is shown in Fig. 3.

5.3 Utility of topography

A valid question at this point is: What could be the utility of a topographic representation as opposed to the unordered
representation given by ordinary ICA.

The first well-known utility is visualization (Kohonen, 1995). In exploratory data analysis, topography shows the
connections between the different components, and this may give a lot of additional information. This is probably
the main benefit of topography when our model is applied on blind source separation.

When the model is applied on feature extraction, arguments advanced in computational neuroscience may be
used. The utility of a topographic representations in the cortex has been discussed in detail by several authors, for
a review see (Kohonen, 1995; Swindale, 1996). The most relevant argument in connection to topographic ICA may
be that centered on minimal wiring length (Durbin and Mitchison, 1990). The pooling into complex cell responses,
i.e. computation of local energies requires that the squares of the si are summed, and this requires some wiring
or information channels. To minimize the total length of the wiring, it would be most useful that the units whose
responses are to be pooled would be as close to each other as possible. For detailed neuroanatomical arguments
linking complex cell pooling and topography, see (Blasdel, 1992; DeAngelis et al., 1999).

The minimal wiring length argument is not restricted to the pooling required for complex cells. It is applicable
for any operations performed on the si; it is reasonable to assume that such operations require mostly interactions
between components that are statistically related to each other. Gain control (Heeger, 1992) is one such operation.
Topographic ICA minimizes wiring length in this more general case as well. A related benefit of topography may
be minimizing communication load in a parallel processing environment (Nelson and Bower, 1990). It has to be
admitted, though, that these arguments are quite speculative.

One may wonder if the redundancy introduced by the topographic ordering is in contradiction to the general
principle of reducing the redundancy of a representation, which has been used to justify the application of ICA for
feature extraction (Olshausen and Field, 1996; Bell and Sejnowski, 1997). Here we must stress that introduction of
topography does not seem to increase the redundancy of the components by any significant amount: Measuring the
mutual information between the components of ICA and topographic ICA shows only a small increase in redundancy.
2 Rather, topographic ICA makes explicit the redundancy that cannot be cancelled in a linear decomposition.

Making the redundancy explicit by topography may in fact help further processing stages to reduce the redun-
dancy of their components. Whether topography helps in reducing redundancy or not, it is reasonable to assume that
there is some utility of the estimated dependency structure in further processing. How exactly the topography could
be used is a question for future research; some speculation can be found in (Blasdel and Obermayer, 1994).

2We investigated change in the mutual information in the feature extraction experiments reported in Section 6.2. Mutual information cannot
be easily computed in itself. However, since the weight vectors are orthogonal in the whitened space, the mutual information is given by the
difference of an unknown constant and the sum of the negentropies of the components (Comon, 1994; Hyvärinen, 1999a). Therefore, we can
compare the sums of negentropies, which can be much more easily approximated. Approximating the negentropies with the method in (Hyvärinen,
1998), we obtained that the topographic ICA (3× 3 neighborhood, see Sec. 6.2) had a sum of negentropies that was approximately 2% larger
than in ordinary ICA. This is to be compared with the 50% increase when moving from ICA to PCA. Likewise, we computed by nonparametric
histogram estimation the average mutual information of two components in the three component sets (using only 100 pairs of components for
computational reasons). The decrease was approximately 30% when comparing PCA either to topographic ICA or ordinary ICA; the difference
in the two cases could not be made statistically significant with a reasonable amount of computational resources.
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Figure 3: The wiring diagram of the higher-order feature detectors given by the local energies in topographic ICA,
for a two-dimensional topography. These feature detectors are a generalization of independent feature subspaces,
and could be interpreted as complex cells. The local energies are computed by first taking the squares of the outputs
of linear filters, and then summing these squares inside a topographic neighborhood. A square root may be taken for
normalization.
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6 Simulations and experiments

6.1 Validating the likelihood approximation

Our algorithms are based on the approximation of the likelihood given in Sec. 3. To see whether this approximation
is valid in practice, we generated data according to the generative model, and then estimated the model using the
approximation.

To generate data according to the model, the variables ui were first generated by taking absolute values of gaussian
variables. A 1-D neighborhood function in a 20-dimensional space was defined by convolving the vector of the form
(...,0,0,0,1,1,1,1,1,0,0,0, ....) (with 5 ones) three times with itself. The topography was ring-like, i.e. without
borders. The si were then generated as in Section 3, with a random mixing matrix. The approximation of likelihood
in Section 3 was used with G defined as in (24), with ε = 0.005. This was maximized by gradient ascent as in (27),
using an adaptive step size. The neighborhood in the algorithm was the same one as was used to generate the data,
and was assumed known.

A typical resulting matrix WVA is depicted in Fig. 4 a). (For simplicity, the absolute values of the elements of
this matrix are shown). This matrix is a permutation matrix (up to irrelevant signs), which shows that the components
si were estimated correctly. In fact, if the data were generated by ordinary ICA and the estimation were performed by
ordinary ICA methods, the fact that we have a permutation matrix would show that the method performs adequately.
But in contrast to ordinary ICA, the matrix WVA is here such that it completely preserves the topographic structure
of the components.

Several other random initial values were used, and they all converged in equivalent results, one is shown in Fig. 4
b). Likewise, using the different nonlinearities given in (22) and (25) did not change the convergence significantly,
as shown in Fig. 4 c) and d). The best results were obtained with (24), though. Experimenting with different
neighborhood sizes in the algorithm, it was found that if the neighborhood used in the algorithm is smaller that the
neighborhood used in generating the data, the convergence deteriorates: the global topography is not found, only a
local patchy topography. In contrast, if the algorithm used a neighborhood that was somewhat larger than the one in
the generation, the convergence was improved, which was rather unexpected.

Thus, these simulation results supports the validity of our approximation of the likelihood. Moreover, they
support our conjecture that the exact form of nonlinearity G is not important.

6.2 Experiments with image data

A very interesting application of topographic ICA can be found with image data. Image patches (windows) can be
analyzed as a linear superposition of basis vectors, as in the ICA and topographic ICA models. This gives a useful
description on a low level where we can ignore such higher-level nonlinear phenomena as occlusion.

6.2.1 Data and methods

The data was obtained by taking 16× 16 pixel image patches at random locations from monochrome photographs
depicting wild-life scenes (animals, meadows, forests, etc.). The images were taken directly from PhotoCDs, and
are available on the World Wide Web3. The image patches were then converted into vectors of length 256. The
mean gray-scale value of each image patch (i.e. the DC component) was subtracted. The data was then low-pass
filtered by reducing the dimension of the data vector by principal component analysis, retaining the 160 principal
components with the largest variances, after which the data was whitened by normalizing the variances of the prin-
cipal components. These preprocessing steps are essentially similar to those used in (Hyvärinen and Hoyer, 2000;

3WWW address: http://www.cis.hut.fi/projects/ica/data/images/
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a) b)

c) d)

Figure 4: Validation of the approximation of the likelihood. Data was artificially generated according to the model,
and the (inverse of the) mixing matrix A was estimated by maximizing the approximation of the likelihood by a
gradient method as in Eq. (27), giving W. The plots a) - d) shows the matrix WA. a) and b) were estimated using
the nonlinearity in (24) and two different initial values. c) and d) were estimated using nonlinearities (22) and (25),
respectively; the initial values were different from the previous ones. The matrices in the plots are all permutation
matrices, which shows that the components were estimated correctly. Moreover, any neighboring components remain
neighboring after multiplication with this matrix, which shows that the topographic structure was preserved.
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Olshausen and Field, 1996; van Hateren and van der Schaaf, 1998). In the results shown below, the inverse of these
preprocessing steps was performed. The fact that the data was contained in a 160 dimensional subspace meant that
the 160 basis vectors now formed an orthonormal system for that subspace and not for the original space, but this did
not necessitate any changes in the learning rule.

As the topography we chose a 2-D torus lattice (Kohonen, 1995). The choice of a two-dimensional grid was here
motivated by convenience of visualization only; further research is needed to see what the “intrinsic dimensionality”
of natural image data could be. The torus was chosen to avoid border effects. We used three different neighborhood
sizes. The first one was defined so that every neighborhood consisted of a 3× 3 square of 9 units. In other words,
we defined the neighborhood function h(i, j) so that it equals one if the components i and j are adjacent in the 2-D
lattice, even obliquely; otherwise, it equals zero. The second one was defined similarly, but this this time with a 5×5
neighborhood. The third neighborhood function was defined by taking only the five non-obliquely adjacent elements
in the neighborhood.

We used the three different functions in (22), (24), with parameter ε fixed at 0.001, and (25). The approximation
of likelihood in Eq. (21) for 50,000 observations was maximized under the constraint of orthonormality of the filters
in the whitened space, using the gradient method in (27).

6.2.2 Results

We show the two basic results, using 3× 3 and 5× 5 neighborhoods with the nonlinearity in (24). The obtained
basis vectors, i.e. columns of the mixing matrix A, are shown in Fig. 5 for the smaller neighborhood and in Fig. 6
for the larger one. In both cases, the basis vectors are similar to those obtained by ordinary ICA of image data
(Olshausen and Field, 1996; Bell and Sejnowski, 1997). In addition, they have a clear topographic organization.
The topographic organization is somewhat different in the two cases. With the smaller neighborhood, the spatial
frequency is an important factor, whereas with the larger neighborhood, it has little influence and is overridden by
orientation and location. Furthermore, the basis vectors are slightly different: with the larger neighborhood, more
elongated features are estimated.

The results for the nonlinearity (25) are not reported since they are not satisfactory. This was to be expected since
using (25) is related to using kurtosis, and kurtosis gives poor results in image decomposition due to its adverse sta-
tistical properties (Hyvärinen, 1999a). The results for the two nonlinearities (22) and (24) were essentially identical,
so we only show the results for (24). On the other hand, results for the third neighborhood are not reported since
the resulting topographic ordering was too weak; this neighborhood seemed to be too small, and we obtained results
closer to ordinary ICA.

The topographic organization was investigated in more detail by computing the correlations of the energies of
the components, for the whole input data set (with 3× 3 neighborhood). In Fig. 7, the correlations of the energies
are plotted as a function of the distance on the topographic grid. The results are shown for the smaller neighborhood.
One can see that the correlations are decreasing as the distance increases. This result was predicted by the model.
After a certain distance, however, the correlations no longer decrease, reaching a constant value. According to the
model, the correlations should continue decreasing and reach zero, but this does not happen exactly because image
data does not exactly follow the model. It is probable, however, that for a much larger window size, the correlations
would go to zero.

We also investigated the distributions of the higher-order components ui in the generative model. It is not possible
to definitively estimate these, since they are not observed directly. However, we were able to find distributions that
generated distributions for the si that were very close to those observed in the data. The family of distribution for ui

that we used is as follows:
ui = tρ

i ,where p(ti) = λexp(−λti). (33)
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In other words, the variables in this family are obtained as the ρ:th power of an exponential variable with parameter λ.
Thus we have a two-parameter family of densities, where λ can be considered as a scale parameter, and ρ determines
the sparsity of the distribution. We estimated the parameters ρ and λ from the distribution of a typical si, and obtained
the parameter values λ = 0.09 and ρ =−1.8. This provided a very good fit to the observed distibution, see Fig. 8.
The important point is that this distribution has a pdf that is monotonically decreasing and has a very heavy tail; in
other words, it is very sparse. This seems to be the essential requirement for the distribution of the ui.

6.2.3 Complex cell interpretation

The connection to independent subspace analysis (Hyvärinen and Hoyer, 2000), which is basically a complex cell
model, can also be found in these results. Two neighboring basis vectors in Fig. 5 tend to be of the same orientation
and frequency. Their locations are near to each other as well. In contrast, their phases are very different. This means
that a neighborhood of such basis vectors, i.e. simple cells, functions as a complex cell: The local energies that are
summed in the approximation of the likelihood in (21) can be considered as the outputs of a complex cell, possibly
after a nonlinear transformation like the square root (Hyvärinen and Hoyer, 2000). Likewise, the feedback ri in the
learning rule could be considered as coming from complex cells.

The complex cell interpretation was investigated in more detail using the same methods as in (Hyvärinen and
Hoyer, 2000). We compared the responses of topographic neighborhoods with the responses of the underlying linear
filters wi, for different stimulus configurations. The results for the two bases shown were not very satisfactory,
probably because the dimension of the data was too small to allow the basis vectors to change smoothly enough as
a function of position. Therefore, we computed the basis from much larger windows: 32×32 pixels. The data size
was 50,000, and the dimension was reduced by PCA to 625 dimensions. The toroidal topology was thus 25× 25
units, and the neighborhood was 5×5. The nonlinearity was as in (24).

First, an optimal stimulus, i.e. the one that elicits maximum response, was computed for each neighborhood
and linear filter in the set of Gabor filters. The response of topographic neighborhoods was computed as the local
energy. The response of linear filters was computed as the absolute value of the dot-product. One of the stimulus
parameters was changed at a time to see how the response changes, while the other parameters were held constant at
the optimal values. Some typical simuli are depicted in Fig. 9. The investigated parameters were phase, orientation,
and location (shift). The response values were normalized so that the maximum response for each neighborhood or
linear filter was equal to 1. Fig. 10 shows the median responses of the whole populations, together with the 10%
and 90% percentiles. (Plotting individual response curves as in (Hyvärinen and Hoyer, 2000) gave similar results.)
In Fig. 10 a), the responses are given for varying phase. The top row shows the absolute responses of the linear
filters, and in the bottom row the corresponding results for the neighborhoods are depicted. The figures show that
phase invariance is a rather strong property of the neighborhoods: the minimum response was usually at least half
of the maximum response. This was not the case for the linear filters. Fig. 10 b) shows the results for location
shift. The “receptive field” of a typical neighborhood is larger and more invariant than that of a typical linear filter.
As for orientation, Fig. 10 c) and depicts the corresponding results, showing that the orientation selectivity was
approximately equivalent in linear filters and neighborhoods.

Thus we see that invariances with respect to translation and especially phase, as well as orientation selectivity,
are general properties of the neighborhoods. This shows that topographic ICA shows emergence of properties similar
to those of complex cells. These results are very similar, qualitatively as well as quantitatively, to those obtained by
independent subspace analysis in (Hyvärinen and Hoyer, 2000). Thus we have a connection in both of these models
between natural image statistics and the most basic properties of complex cells. Complex cells have many other
properties as well, and it remains to be seen which of them can be explained by natural image statistics.
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Figure 5: Topographic ICA of natural image data. Neighborhood size 3× 3. The model gives Gabor-like basis
vectors for image windows. Basis vectors that are similar in location, orientation and/or frequency are close to each
other. The phases of nearby basis vectors are very different, giving each neighborhood properties similar to those of
complex cells (see Fig. 10).

18



Figure 6: Topographic ICA of natural image data, this time with neighborhood size 5× 5. With this bigger neigh-
borhood, the topographic order is more strongly influenced by orientation.
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Figure 7: Analysis of the higher-order correlations of the components estimated from image data. The plot shows the
covariances of energies (in log-scale) of the components as a function of the relative position on the topographic grid.
The covariances were averaged over all components. The plot shows that the covariances are a decreasing function
of distance.
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Figure 8: Distribution of the independent components obtained by the distribution in (33), compared to the one
observed in image data. The fit is very good.
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Figure 9: Typical stimuli used in the experiments in Fig. 10 below. The middle column shows an original Gabor
stimulus. One of the parameters was varied at a time. Top row: varying phase. Middle row: varying location (shift).
Bottom row: varying orientation.
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Figure 10: Statistical analysis of the properties of the neighborhoods, with the corresponding results for linear filters
given for comparison. In all plots, the solid line gives the median response in the population of all neighborhoods
(or linear filters), and the dotted lines give the 90% and 10% percentiles of the responses. Stimuli were as in Fig. 9.
Top row: responses (in absolute values) of linear filters (simple cells). Bottom row: responses of neighborhoods
(complex cells), given by local energies. a) Effect of varying phase. b) Effect of varying location (shift). c) Effect of
varying orientation.
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6.3 Experiments with magnetoencephalographic recordings

An application of topographic ICA that is very different from feature extraction can be found in blind separation of
artifacts in magnetoencephalographic recordings.

6.3.1 Data and methods

Two minutes of magnetoencephalographic (MEG) data was collected using a 122-channel whole-scalp neuromagne-
tometer device. The sensors measured the gradient of the magnetic field in two orthogonal directions at 61 distinct
locations. The measurement device and the data are described in detail in (Vigário et al., 1998). The test subject was
asked to blink and make horizontal eye saccades in order to produce typical ocular artifacts and bite the teeth for 20
seconds in order to create myographic artifacts. This 122 dimensional input data was first reduced to 20 dimensions
by PCA, in order to eliminate noise and "bumbs", which appear in the data if the dimensionality is not sufficiently
reduced (Hyvärinen et al., 1999). Then a band-pass filtering was performed with the pass band between 0.5 and
about 45 Hz. This eliminated most of the powerful low-frequency noise and the effect of the power grid at 50 Hz.

The topographic ICA algorithm was then run on the data using a one dimensional ring-shaped topography. The
neighborhood was formed by convolving a vector of three ones with itself four times. The nonlinearity G was as in
(24).

6.3.2 Results

The resulting separated signals are shown in Fig. 11. The signals themselves are very similar to those found by
ordinary ICA in (Vigário et al., 1998). As for the topographic organization, we can see that

1. The signals corresponding to bites (#9-#15) are now adjacent. When computing the field patterns correspond-
ing to these signals, one can also see that the signals are ordered according to whether they come from the left
or the right side of the head.

2. Two signals corresponding to eye artifacts are adjacent as well (#18 and #19). The signal #18 corresponds to
horizontal eye saccades and the signal #19 to eye blinks. A signal which seems to relate to eye activity has
been separated into #17.

We can also see signals that do not seem to have any meaningful topographic relations, probably because they are
quite independent form the rest of the signals. These include the heart beat (signal #7), and a signal corresponding
to a digital watch which was at a distance of 1 m from the magnetometer (signal #6). Their adjacency in the results
shown seems to be a pure coincidence, and was not consistently found when repeating the estimation with different
initial values. In contrast, the cluster related to muscle artifacts emerged practically always, and the cluster related to
eye activity emerged quite often.

Thus we see that topographic ICA finds largely the same components as those found by ICA in (Vigário et al.,
1998). Using topographic ICA has the advantage, however, that signals are grouped together according to their
dependencies. Here we see two clusters, one created by the signals coming from the muscle artifact, and the other
by eye muscle activity.

7 Conclusion

We introduced topographic ICA, which is a generative model that combines topographic mapping with ICA. As in all
topographic mappings, the distance in the representation space (on the topographic “grid”) is related to the distance
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Figure 11: The source signals found by topographic ICA from MEG data.
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of the represented components. In topographic ICA, the distance between represented components is defined by the
mutual information implied by the higher-order correlations, which gives the natural distance measure in the context
of ICA. This is in contrast to most existing topographic mapping methods, where the distance is defined by basic
geometrical relations like Euclidean distance or correlation, as in e.g. (Kohonen, 1995; Bishop et al., 1998; Goodhill
and Sejnowski, 1997). In fact, our principle makes it possible to define a topography even among a set of orthogonal
vectors, whose Euclidean distances are all equal.

To estimate the model in practice, we considered maximum likelihood estimation. Since the likelihood of the
model is intractable in general, we derived an approximation (actually, a lower bound) of the likelihood. The ap-
proximation makes it possible to derive a simple gradient learning rule for estimation of the model. This leads to an
interesting form of Hebbian learning, where the Hebbian term is modulated by top-down feedback.

An interesting application of this novel model of topographic organization is found with natural image data,
where topographic ICA gives a linear decomposition into Gabor-like linear features. In contrast to ordinary ICA, the
higher-order dependencies that linear ICA could not remove define a topographic order such that near-by cells tend
to be active at the same time. Also, the topographic neighborhoods resemble complex cells in their responses. Our
model thus shows simultaneous emergence of topographic organization and properties similar to those of complex
cells. On the other hand, when applying the model to blind separation of MEG artifacts, we can separate more or less
the same artifacts as with ICA, with an additional topographic ordering that can be used for visualizing the results.
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A Derivation of learning rule

Here we derive (27). Consider our approximation of the likelihood:

log L̃(W) =
T

∑
t=1

n

∑
j=1

G(
n

∑
i=1

h(i, j)(wT
i z(t))2)+T log |detW|, (34)

where the data z is whitened. A first point to note is that when we constrain the weight matrix W to be orthogonal,
the term T log |detW| is zero, since the absolute value of the determinant of an orthogonal matrix is always equal to
one. Thus this term can be omitted.

The computation of the gradient is essentially reduced to computing the gradient of

Fj(W) = G(
n

∑
i=1

h(i, j)(wT
i z(t))2) (35)

27



Denote by wl
k the l-th component of wk. By the chain rule, we obtain

∂Fj

∂wl
k

= g(
n

∑
i=1

h(i, j)(wT
i z(t))2)[

n

∑
i=1

2h(i, j)δik(w
T
i z(t))zl(t)]

= g(
n

∑
i=1

h(i, j)(wT
i z(t))2)2h(k, j)(wT

k z(t))zl(t). (36)

This can be written in matrix form:

∇wk Fj = 2g(
n

∑
i=1

h(i, j)(wT
i z(t))2)h(k, j)(wT

k z(t))z(t). (37)

Thus, we obtain

∇wk (log L̃(W)) =
T

∑
t=1

n

∑
j=1

∇Fj =
T

∑
t=1

n

∑
j=1

2g(
n

∑
i=1

h(i, j)(wT
i z(t))2)h(k, j)(wT

k z(t))z(t)

= 2
T

∑
t=1

z(t)(wT
k z(t))

n

∑
j=1

h(k, j)g(
n

∑
i=1

h(i, j)(wT
i z(t))2) (38)

Now, we can replace the sum over t by the expectation, and switch the indices i, j, and k, which is merely a notational
change. Furthermore, we can omit the constant 2 which does not change the direction of the gradient, and denote the
latter sum as in (28). Thus we obtain (27).
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