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In independent component analysis, prior information on the distributions
of the independent components is often used; some weak information is
in fact necessary for succesful estimation. In contrast, prior information
on the mixing matrix is usually not used. This is because it is consid-
ered that the estimation should be completely blind as to the form of the
mixing matrix. Nevertheless, it could be possible to find forms of prior
information that are sufficiently general to be useful in a wide range of
applications. In this paper, we argue that prior information on the spar-
sity of the mixing matrix could be a constraint general enough to merit
attention. Moreover, we show that the computational implementation of
such sparsifying priors on the mixing matrix is very simple since in many
cases they can be expressed as conjugate priors. The property of being
conjugate priors means that essentially the same algorithm can be used
as in ordinary ICA.
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1 Introduction

Indendent component analysis (ICA) [15] is a statistical model where the
observed data is expressed as a linear transformation of latent variables that
are nongaussian and mutually independent. The classic version of the model
can be expressed as

x = As (1)

where x = (21,9, ...,7,)T is the vector of observed random variables, s =
(81, 82, ..., 8»)T is the vector of the independent latent variables (the “indepen-
dent components”), and A is an unknown constant matrix, called the mixing
matrix. The problem is then to estimate both the mixing matrix A and the
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realizations of the latent variables s;, using observations of x alone. Exact
conditions for the identifiability of the model were given in [7]; the most fun-
damental is that the independent components s; must be nongaussian [7]. A
considerable amount of research has been recently conducted on the estimation
of this model, see e.g. [1,2,4-6,8,12].

We thus have some prior knowledge on the distribution of the independent
components: they are assumed to be nongaussian. Nongaussian variables can
be roughly divided into two groups: supergaussian and subgaussian variables,
although slightly different definitions exist. In many cases, it is further as-
sumed that we know the nature of the independent components: whether
they are subgaussian or supergaussian. This is the case, for example, in image
feature extraction [18,3,9], in which the components are usually assumed to
be supergaussian, or sparse. This is not an arbitrary assumption, but a sim-
ple consequence of the fact that the independent components estimated from
image data are supergaussian with few exceptions.

On the other hand, no prior knowledge on the mixing matrix is used in the
basic ICA model. This has the advantage of giving the model great generality.
In many application areas, however, information on the form of the mixing
matrix is available. Using prior information on the mixing matrix is likely to
give better estimates of the matrix for a given number of data points. This
is of great importance in situations where the computational costs of ICA
estimation are so high that they severely restrict the amount of data that can
be used, as well as in situations where the amount of data is restricted due to
the nature of the application.

This situation can be compared to that found in regression, where overlearn-
ing is a very general phenomenon. The classical way of avoiding overlearning
in regression, i.e. overfitting, is to use of regularizing priors, which typically
penalize regression functions that have large curvatures, i.e. lots of “wiggles”.
This makes it possible to use regression methods even when the number of
parameters in the model as very large compared to the number of observed
data points. In the extreme theoretical case, the number of parameters in in-
finite, but the model can still be estimated from finite amounts of data by
using prior information. Thus suitable priors can reduce overlearning [14].

One example of using prior knowledge that predates modern ICA methods is
the literature of beamforming (see the discussion in [5]), where a very specific
form of the mixing matrix is represented by a small number of paramters. In
investigations on application of ICA to magnetoencephalogaphy [21], it has
been found that the independent components can be modelled by the classic
dipole model, an information that could be used to constrain the form of the
mixing coefficients [16]. The problem with these methods is, however, that
they may be applicable to a few data sets only, and lose the generality that is



one of the main factors in the current flood of interest in ICA.

In this paper, we introduce a form of prior information on the mixing ma-
trix that is both general enough to be used in many applications and strong
enough to increase the performance of ICA estimation. First we investigate
the possibility of using two simple classes of priors for the mixing matrix A:
Jeffreys’ prior and quadratic priors. We come to the conclusion that these two
classes are not very useful in ICA. Then we introduce the concept of sparse
priors. These are priors that enforce a sparse structure on the mixing matrix.
In other words, the prior penalizes mixing matrices with a larger number of
significantly non-zero entries. Thus this form of prior is similar to the prior
knowledge on the sparseness of the independent components. In fact, due to
this similarity, sparse priors are so-called conjugate priors, which implies that
estimation using this kind of priors is particularly easy: Ordinary ICA meth-
ods can be simply adapted to using such priors. Sparse priors are particularly
useful in image feature extraction, where a link to sparsely connected networks
can be made.

Preliminary results were reported in [11].

2 Background: Jeffreys’ and quadratic priors

In the following, we assume that the estimator B of the inverse of the mixing
matrix A is constrained so that the estimates of the independent components
y = Bx are white, i.e. decorrelated and of unit variance: E{yy”} = I. This
restriction facilitates greatly the analysis. For its justification, see e.g. [7,12].
We concentrate here on formulating priors for B = A~!. Completely analogue
results hold for priors on A.

2.1 Jeffreys’ prior

The classical prior in Bayesian inference is Jeffreys’ prior. It is considered a
maximally uninformative prior, which already indicates that it is probably not
useful for our purpose.

Indeed, it was shown in [19] that Jeffreys’ prior has the form:
p(B) o< |det B™| (2)

Now, the constraint of whiteness of the y = Bx means that B can be ex-
pressed as B = UV, where V is a constant matrix, and U is restricted to
be orthogonal. But we have det B = det Udet V = det V, which implies that



Jeffreys’s prior is constant in the space of allowed estimators (i.e. decorrelat-
ing B). Thus we see that Jeffreys’ prior has no effect on the estimator, and
therefore cannot reduce overlearning.

2.2 Quadratic priors

In regression, the use of quadratic regularizing priors is very common. It would
be tempting to try to use the same idea in the context of ICA. Especially in
feature extraction, we could require the columns of A, i.e. the features, to be
smooth in the same sense as smoothness is required of regression functions. In
other words, we could consider every column of A as a discrete approximation
of a smooth function, and choose a prior that imposes smoothness for the
underlying continuous function. Similar arguments hold for priors defined on
the rows of B, i.e. the filters corresponding to the features.

The simplest class of regularizing priors is given by quadratic priors. We will
show here, however, that such quadratic regularizers, at least the simple class
that we define below, do not change the estimator.

Consider priors that are of the form

logp(B) = > _ b Mb; + const. (3)

i=1

where the bl are the rows of B = A~! and M is a matrix that defines
the quadratic prior. For example, for M = I we have a “weight decay” prior
logp(B) = 3, ||b;||?. Alternatively, we could include in M some differential
operators so that the prior would measure the “smoothnesses” of the b;, in
the sense explained above. The prior can be manipulated algebraically to yield

znj b Mb; = zn: tr(Mb;b!) = tr(MB”B) (4)

Quadratic priors have little significance in ICA estimation, however. To see
this, let us constrain the estimates of the independent components to be white
as above. This means that we have

E{yy"} = E{Bxx"B"} = BCB" =1 (5)

in the space of allowed estimates, which gives after some algebraic manipula-
tions B'B = C~!. Now we see that

n

> b/ Mb; = tr(MC™") = const. (6)

=1



In other words, the quadratic prior is constant. The same result can be proven
for a quadratic prior on A. Thus, quadratic priors are of little interest in ICA.

3 Sparse priors on the mixing matrix

3.1 Motiwwation

A much more satisfactory class of priors is given by what we call sparse pri-
ors. This means that the prior information says that most of the elements of
each row of B are zero. The motivation for considering sparse priors is both
empirical and algorithmic.

Empirically, it has been observed in feature extraction of images that the ob-
tained filter tend to be localized in space. This implies that the distribution
of the elements b;; of the filter b; tends to be sparse, i.e. most elements are
practically zero. A similar phenomenon can be seen in analysis of magne-
toencephalography, where each source signal is usually captured by a limited
number of sensors. This is due to the spatial localization of the sources and
the sensors.

The algorithmic appeal of sparsifying priors, on the other hand, is based on
the fact that sparse priors can be made to be conjugate priors. This is a special
class of priors, and means that estimation of the model using this prior requires
only very simple modifications in ordinary ICA algorithms.

Another motivation for sparse priors is their neural interpretation. Biological
neural networks are known to be sparsely connected, i.e. only a small pro-
portion of all possible connections between neurons are actually used. This is
exactly what sparse priors model. This interpretation is especially interesting
when ICA is used in modelling of the visual cortex [3,10,18].

3.2 Measuring sparsity of mizing matriz

Sparsity of a random variable, say s, can be measured by expectations of the
form E{G(s)}, where G is a non-quadratic function, for example the following

G(s) = —lsl- (7)

The use of such measures requires that the variance of s is normalized to a
fixed value, and its mean is zero.



Let us assume that the data x is whitened as a preprocessing step (this assump-
tion will be discussed in detail below). This means that the data is linearly
transformed into z = Vx so that the covariance of the whitened data equals
identity: E{zz”} = I. Denote by W the separating matrix applied to the
whitened data.

Now, constraining the estimates y = Wz of the independent components to
be white implies that W is orthogonal, which implies that the sum of the
squares of the elements }°; w;; is equal to one for every i. The elements of
each row of W can be then considered a realization of a random variable of
zero mean and unit variance. This means we could measure the sparsities of
the rows of W using a sparsity measure of the form (7).

Thus, we can define a sparse prior of the form
logp(W) = > > G(wij) + const. (8)
i=1j=1

where G is the logarithm of some supergaussian density function (up to some
additive constant), and again w; = (wj, ..., w;,) are the rows of A=, The
function G in (7) is such log-density, so we see that we have here a measure
of sparsity of the w;.

The prior in (8) has the nice property of being a conjugate prior. Let us assume
that the independent components are supergaussian, and for simplicity, let us
further assume that they have identical distributions, with log-density G. Now
we can take that same log-density as the log-prior density G in (8). Then we
can write the prior in the form

n n

logp(W) =YY" G(w] e;) + const. 9)

i=1j=1

where we denote by e; the canonical basis vectors, i.e. the i-th element of e;
is equal to one, and all the others are zero.

Assume now that we have T whitened observations z(t),t = 1,...,7. The
likelihood of W' that is constrained to be orthogonal is simply given by [13]

log L(W) =) iG(W;FZ(t)) + const. (10)

t=1i=1
Thus the posterior distribution has the form:
n T n

logp(Wlz) = Y[>° G(wla(t) + . G(wle)] + const. (1)

i=1 t=1 j=1



This form shows that the posterior distribution has the same form as the prior
distribution (and, in fact, the original likelihood). Priors with this property
are called conjugate priors in Bayesian theory. The usefulness of conjugate
priors resides in the property that the prior can be considered to correspond
to a “virtual” sample. The posterior distribution in (11) has the same form as
the likelihood of a sample of size 7' 4+ n which consists of both the observed
z(t) and the canonical basis vectors e;. In other words, the posterior in (11)
is the likelihood of the augmented (whitened) data sample

2(t) = {z(t), if1<e<T (12)

e, IfT<t<T+n.

Thus, using conjugate priors has the additional benefit that we can use exactly
the same algorithm for maximization of the posterior as in ordinary maximum
likelihood estimation of ICA. All we need to do is to add this virtual sample
to the data; the virtual sample is of same size n as the dimension of the data.

3.3  Modifying prior strength

The conjugate priors given above can be generalized by considering a family
of supergaussian priors given by

logp(W) =YY" aG(w]e;) + const. (13)
i=1j=1

Using this kind of prior means that the virtual sample points are weighted by
some parameter «. This parameter expresses the degree of belief that we have
in the prior. A large « means that the belief in the prior is strong. Also, the
parameter « could be different for different ¢, but this seems less useful here.
The posterior distribution has then the form:

n

logp(Wlz) =Y [3 G(w]z(t)) + i aG(w] e;)] + const. (14)

i=1 t=1 j=1

The above expression can be further simplified in the case where the assumed
density of the independent components is Laplacian, i.e. G(y) = —|y|. In this
case, the o can multiply the e; themselves:

n T

logp(Wz) = S[3° (wla()] = 3 [w! (o) + const. (15)

=1 t=1

which is simpler than (14) from the algorithmic viewpoint: It amounts to the
addition of just n virtual data vectors of the form ae; to the data. This avoids



all complications due to the differential weighting of sample points in (14), and
ensures that any conventional ICA algorithm can be used by simply adding
the virtual sample to the data. In fact, the Laplacian prior is most often used
in ordinary ICA algorithms, sometimes in the form of the log cosh function
that can be considered as a smoother approximation of the absolute value
function.

3.4 Priors and whitening

Above, we assumed that the data is preprocessed by whitening. It should be
noted that the effect of the sparse prior is dependent on the whitening matrix.
This is because sparseness is imposed on the separating matrix of the whitened
data, and the value of this matrix depends on the whitening matrix. There
is an infinity of whitening matrices, so imposing sparseness on the whitened
separating matrix may have different meanings.

On the other hand, it is not necessary to whiten the data. The above framework
can be used for non-white data as well. If the data is not whitened, the meaning
of the sparse prior is somewhat different, though. This is because every row
of b; is not constrained to have unit norm for general data. Thus our measure
of sparsity does not anymore measure the sparsities of each b;. On the other
hand, the developments of the preceding section show that the sum of squares
of the whole matrix 3°;; b;; does stay constant. This means that the sparsity
measure is now measuring rather the global sparsity of B, instead of the
sparsities of individual rows.

In practice, one usually wants to whiten the data for technical reasons. Then
the problems arises: How to impose the sparseness on the original separating
matrix even when the data used in the estimation algorithm needs to be
whitened? The above framework can be easily modified so that the sparseness
is imposed on the original separating matrix. Denote by V the whitening
matrix and by B the separating matrix for original data. Thus, we have WV =
B and z = Vx by definition. Now, we can express the prior in (9) as

n n

logp(B) =YY G(bje;) + const. = > G(w; (Ve;)) + const. "
i=1j=1 i=1j=1 16

Thus, we see that the virtual sample added to z(t) now consists of the columns
of the whitening matrix, instead of the identity matrix.

Incidentally, a similar manipulation of (9) shows how to put the prior on
the original mixing matrix instead of the separating matrix. We always have
VA = (W) ! = WT. Thus, we obtain al e; = a] VI(V1)Te; = wl (V1)Te;.
This shows that imposing a sparse prior on A is done by using the virtual



sample given by the rows of the inverse of the whitening matrix. (Note that
for whitened data, the mixing matrix is the transpose of the separating matrix,
so the fourth logical possibility of formulating prior for the whitened mixing
matrix is not different from using a prior on the whitened separating matrix.)

In practice, the problems implied by whitening can often be solved by using
a whitening matrix that is sparse in itself. Then imposing sparseness on the
whitened separating matrix is meaningful. In the context of image feature
extraction, a sparse whitening matrix is obtained by the zero-phase whitening
matrix (see [3] for discussion), for example. Then it is natural to impose the
sparseness for the whitend separating matrix, and the complications discussed
in this subsection can be ignored.

4 Connection to spatiotemporal ICA

When using sparse priors, we actually make rather similar assumptions on
both the independent components and the mixing matrix. Both are assumed
to be generated so that the values are taken from independent, typically sparse,
distributions. In the limit, we might develop a model where the very same as-
sumptions are made on the mixing matrix and the independent components.
Such a model was introduced in [20], independently from us, and called “spa-
tiotemporal” ICA since in a way, it does ICA both in the temporal domain
(if the independent components are considered time signals), and in the spa-
tial domain (which corresponds to the spatial mixing defined by the mixing
matrix).

In spatiotemporal ICA, the distinction between independent components and
the mixing matrix is completely abolished. To see why this is possible, con-
sider the data as a single matrix of the observed vectors as its columns:
X = (x(1),...,x(T)), and likewise for the independent components. Then the
ICA model can be expressed as

X = AS. (17)
Now, taking a transpose of this equation, we obtain
X" =8TA. (18)

Now we see that the matrix S is like a mixing matrix, with A giving the
realizations of the “independent components”. Thus, by taking the transpose,
we flip the roles of the mixing matrix and the independent components.

In the basic ICA model, the difference between s and A is due to the statistical
assumptions made on s, which are the independent random variables, and on



A, which is a constant matrix of parameters. But with sparse priors, we made
assumptions on A that are very similar to those usually made on s. So, we
can simply consider both A and S as being generated by independent random
variables, in which case either one of the mixing equations (with or without
transpose) are equally valid. This is the basic idea in spatiotemporal ICA.

There is an important difference between S and A, though. The dimensions
of A and S are typically very different: A is square whereas S has much more
columns than rows. This difference can be abolished in spatiotemporal ICA
by considering that there A has much less columns than rows, that is, there
is some redundancy in the signal. In this paper, however, we consider A to be
square, which makes our model different from spatio-temporal ICA.

The estimation of the spatiotemporal ICA model can be performed in a man-
ner somewhat similar to using sparse priors. In [20], it was proposed to form
something similar to a virtual sample where the data consists of two parts, the
original data and the data obtained by transposing the data matrix. The di-
mensions of these data sets must be strongly reduced and made equal to each
other by principal component analysis or related methods. This is possible
because it is assumed that both A and ST have the same kind of redundancy:
much more rows than columns. In [20] the infomax criterion [2,17] was ap-
plied on this estimation task. The exact connection between estimation of
spatio-temporal ICA and our sparse priors is an important problem for future
work.

5 Experiments

We performed experiments in image feature extraction to explore the appli-
cability of sparse priors.

The basic idea is as in [3,18,9]. The data was obtained by taking 20 x 20 pixel
image patches at random locations from monochrome photographs depicting
wild-life scenes (animals, meadows, forests, etc.). The patches were normalized
to unit norm. The data was whitened by the zero-phase whitening filter, which
means multiplying the data by C~'/2, where C is the covariance of the data.
see e.g. [3]. In the results shown above, the inverse of these preprocessing steps
was performed.

The sample size was fixed at 20 000. This is insufficient for such a large window
size. The estimated basis vectors are shown in Fig. 2 (For reasons of space,
only 200 of the 400 basis vectors are shown; these were randomly selected).
Using prior information with the parameter « fixed at 25, we obtained a much
better basis. This basis is shown in Fig. 3. Visually, one sees that the features
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Fig. 1. Sparsities as function of prior information strength «. A suitable value for «
gives sparser components than ordinary ICA.

are much better.

To validate the prior quantitatively, we computed the sparsities of the bases
corresponding to different values of the parameter o, which correspond to dif-
ferent strengths given to the prior information. The sparsity is here measured
as the (negative) expectation of the absolute value of the estimated indepen-
dent components: This is essentially an approximation of the likelihood. The
sparsity was measured using a test set that was separate from the training
set used in learning the basis vectors. This is plotted in Fig. 1. The values
of sparsity can be seen to increase with increasing «, i.e. increasing strength
placed on prior information. At a certain value, the sparsity has a maximum
and starts decreasing. This is natural because too large a value for @ means
that only prior information is used, and the data is neglected.
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6 Conclusion

We introduced sparse priors on the mixing matrix. We argued that such priors
may be useful in a wide area of applications. Computationally they are very
convenient because they are conjugate priors, which means that many existing
ICA algorithms can be directly used by simply introducing a virtual sample.
Experiments show that sparse priors can be succesfully used in image feature
extraction.
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Fig. 2. Estimation of the image features with no prior information. The sample size
was insufficient to give useful estimates.

Fig. 3. Estimation of the image features with suitable prior information. The esti-
mation was succesful even with this small sample size.
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