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Abstract

The data model of independent component analysis (ICA) gives a multivariate probability
density that describes many kinds of sensory data better than classical models like Gaussian
densities or Gaussian mixtures. When only a subset of the random variables is observed, ICA
can be used for regression, i.e. to predict the missing observations. In this paper, we show that
the resulting regression is closely related to regression by a multi-layer perceptron (MLP). In
fact, if linear dependencies are 4rst removed from the data, regression by ICA is, as a 4rst-order
approximation, equivalent to regression by MLP. This theoretical result gives a new interpretation
of the elements of the MLP: The outputs of the hidden layer neurons are related to estimates of
the values of the independent components, and the sigmoid nonlinearities are obtained from the
probability densities of the independent components.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Independent component analysis (ICA) [2,11,6,13] is a recently developed statistical
model where we express observed random variables x1; x2; : : : ; xq as linear combinations
of unknown component variables, denoted by s1; s2; : : : ; sn. The components si are,
by de4nition, mutually statistically independent, and zero-mean. Let us arrange the
observed variables xi into a vector x=(x1; x2; : : : ; xq)T and the independent components
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si into a vector s, respectively; then the linear relationship is given by

x = As: (1)

Here, A is an unknown q× n matrix, called the mixing matrix. The basic problem of
ICA estimation is then to estimate the mixing matrix A, as well as the densities of the
si, using only observations of the mixtures xj. This means that we try to approximate
the joint density of x as precisely as possible by the densities of sums of independent
random variables. We assume here that n¿ q, in order to have a nonsingular joint
density.
Regression, i.e. prediction, is one of the fundamental problems in supervised learning.

In the general regression problem, the variables in x are divided into two parts, observed
and missing, that is, the predicting variables and the variables to be predicted. For
simplicity, we can arrange the variables in x so that the k 4rst variables form the
vector of the observed variables xo = (x1; : : : ; xk)T, and the remaining variables form
the vector of the missing variables xm =(xk+1; : : : ; xq)T. Thus the model can be written
as (

xo
xm

)
=
(
Ao
Am

)
s: (2)

The problem is now to predict xm for a given observation of xo. To be able to predict
the xm, we must use (an estimate of) the joint probability distribution of x. Of course,
we must have some previous observations of xm to be able to estimate the joint
probability distribution, that is, to be able to measure how the predicted (missing)
variables depend on the predicting (observed) variables. (This is the case for any
regression method.) The regression x̂m is conventionally de4ned as the conditional
expectation:

x̂m = E{xm|xo}: (3)

Since the data model of ICA describes well some aspects of many kinds of sensory
data [15], it would be natural to attempt to use ICA for regression for such data sets.
In fact, since the ICA data model gives (an approximation of) the joint probability
density of x, it is straightforward, at least in principle, to 4rst model the joint density
of x by ICA, and then, for a given sample of incomplete data, predict the missing
values in xm using the conditional expectation, which is well de4ned once the ICA
model has been estimated. Thus, we obtain

E{xm|xo}= Am
∫
Aos=xo

sp(s) ds: (4)

In the following, we shall call this generic idea “regression by ICA”.
Regression by ICA was already used in [14] to predict missing pixels in images.

In [5], the method was considered in a more general setting, and it was proposed that
instead of the conditional expectation, i.e. the minimum mean-square error estimator,
one could use the maximum a posteriori estimator, which is computationally much
simpler. A similar method was considered in [16], though the connection to ICA was
not mentioned.
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Regression by ICA is parametric, 1 yet nonlinear. It is, in fact, a direct generalization
of ordinary linear regression: if the independent components si were Gaussian, Eq. (1)
would simply give multivariate Gaussian distributions, and the conditional expectation
would be a linear function of xo. Regression by ICA is also closely connected to
projection pursuit regression [4], because it concentrates on those projections that are
the most non-Gaussian. It could therefore be expected to partially avoid the curse of
dimensions.
Thus, ICA gives us one approach to nonlinear regression. A vast literature on re-

gression exists, however, both in neural network and statistics literature, and it would
be most useful to know what is the connection between this regression by ICA and
classical regression methods. The purpose of this paper is to show that an intimate con-
nection exists between regression by ICA, and regression by multi-layer perceptrons
whose structure closely mimics the structure of the ICA model. A two-layer MLP
which has the same number of hidden units as the ICA model, and whose nonlinearity
is equal to the so-called score function of the independent components gives, as a
4rst-order approximation, the same regression as ICA. It is assumed here that linear
dependencies are removed as a preprocessing step. This result gives a new interpre-
tation of MLPs. Moreover, it shows clearly some further relations between regression
by ICA and other regression methods.
Some preliminary results were reported in [7].

2. Regression by ICA and by an MLP: the connection

Before announcing our main result, we must discuss the preprocessing of the data.
We assume here that the data is 4rst linearly preprocessed so that any linearly pre-
dictable part of xm is removed. In other words, the xm are replaced by the residuals
of linear regression. The result of this preprocessing step is that the xo and xm are
uncorrelated. Second, the vectors xo and xm are each separately whitened. Note that
these preprocessing steps cannot be replaced using ordinary whitening methods used
in ICA, because they confound the division to observed (predicting) and missing (pre-
dicted) variables. As is usual in ICA, this particular form of whitening implies that A
is an orthogonal matrix.
Our result is based on 4rst-order approximations whose accuracy depends on the

validity of some assumptions. First, the independent components must have distributions
that are not too far from the Gaussian distribution; this critical assumption is discussed
in Sections 4 and 5. Second, we assume that the dimension of xo is large when
compared to the dimension of xm; this assumption seems to be true in most practical
cases where multivariate regression is applied.
Let us denote the probability densities of the si by pi, and by gi(u)=p′

i(u)=pi(u)+cu
a function that equals the negative score function p′

i =pi of the probability density of si,

1 We assume here that the distributions of the independent components are either known or modelled
by a density family of a limited number of parameters. In general, if the distributions of the independent
components are not known, the regression would be semiparametric, though arguably weakly so.
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plus an arbitrary linear term, which is the same for all i. For example, the tanh function
is the score function of a mildly super-Gaussian (sparse) distribution [1]. Denote further
by g the multi-dimensional function that consists of applying gi on the ith component
of its argument, for every i. After the above preprocessing and assumptions we have
the following result (proven in Appendix A):

E{xm|xo} ≈ Amg(AToxo): (5)

In other words, the regression function for data modeled by ICA, is given by the output
of an MLP with one hidden layer. The weight vectors of the MLP are simple functions
of the mixing matrix, and the nonlinear activation functions of the MLP are functions
of the probability densities of the si.
To get insight into this approximation, let us consider super-Gaussian densities, in

which case we can take gi(u)=−tanh(u)+ u for all i. This is a shrinkage function [8]
that approximately reduces the value of its argument by a given constant, resembling
a soft-thresholding operation. Now, the vector AToxo can be interpreted as an initial
linear estimate of s. (In fact, due to whitening, A is orthogonal and therefore ATo is
equal to the pseudoinverse of Ao.) Thus, the nonlinear aspect of (5) consists largely
of thresholding the linear estimates of s, to obtain ŝ = g(AToxo). The thresholding can
be considered as a way of improving the linear estimate, in a manner similar to the
denoising method in [8]. The 4nal linear layer is basically a linear reconstruction of
the form xm = Am ŝ.

3. Relation to other methods

3.1. Projection pursuit regression

Our results make as well the connection of regression by ICA to projection pursuit
regression quite explicit. Assume that the dimension of the data is very high, and that
only certain projections of the data have non-Gaussian distributions. One variation of
projection pursuit regression [4] would then consist of 4nding the most non-Gaussian
projections, and using only those projections to construct the regression function. This
can be intuitively justi4ed as follows. Since all linear dependencies were removed as
a preprocessing step, and the optimal regression for Gaussian data is linear, Gaussian
projections of the data cannot give any new information that would be useful for
regression, and thus it is sensible to concentrate on the non-Gaussian projections.
In fact, if we assume that some of the independent components are Gaussian (say,

the last ones with indices i = l+ 1; : : : ; r), the regression function in (5) has the form

E{xm|xo} ≈
l∑
i=1

vigi(wTi xo); (6)

where wi is the ith column of the matrix Ao, and vi is the ith column of the matrix Am.
In this sum, only the l 4rst linear estimates wTi xo of the independent components are
used, i.e. only those corresponding to the non-Gaussian components. This is because
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the linear score function of the Gaussian independent components can be taken equal
to zero because of the possibility of adding an arbitrary linear term to the nonlinearities
gi. On the other hand, it is a well-known fact in the theory of ICA estimation that
the projections in the most non-Gaussian directions give estimates of the independent
components [6,11]. (This is not exactly true here, though, because we estimate the
independent components using a smaller number of observed variables.) Thus, we see
that the regression given in (5) is closely related to projection pursuit regression, both
consisting of using component-wise nonlinearities in the most non-Gaussian directions.

3.2. Wavelet shrinkage

Regression by ICA is also closely related to wavelet shrinkage [3]. In wavelet shrink-
age, the data is 4rst transformed into the wavelet domain. In the regression context,
any missing data points are treated as zeros. A thresholding operator is then applied
on the wavelet coeLcients, and the data is transformed back into the original domain.
Consider, for example, prediction (reconstruction) of missing pixels in image data. The
utility of such a reconstruction scheme can be intuitively seen in the following way:
The linear reconstructions of wavelet coeLcients are linear estimates of edges or bars;
thresholding them makes edges and bars sharper in the reconstructed image.
It has been shown that the independent components of image windows are quite

similar to the wavelet coeLcients; the wavelet transform can be thus considered as
an approximation of ICA [15,8]. As discussed above, the nonlinearity in the hidden
layer of the MLP can be taken to be a thresholding function when the independent
components are super-Gaussian, as usual with image data. Moreover, since the ICA
transform is orthogonal due to whitening, the linear estimation of the independent
components, as performed in the 4rst layer of the MLP is equivalent to estimating
the independent components as if the missing pixels were zero. Thus, we see that the
regression by ICA, according to the approximation in (5), is very closely related to
wavelet shrinkage for certain kinds of data, consisting of the same steps of transforming
to sparse or independent components, thresholding, and inversion of the transform.

4. Simulations

We performed simple simulations to validate the accuracy of the approximations
involved in our result. We generated arti4cially data according to the ICA model, and
compared the true ICA regression with our approximation.
Our simulation data was 100-dimensional and there were N =101 000 data samples.

The independent components, generated according to some probability density (see
below) were mixed using a randomly generated n× n mixing matrix. The mixtures x
were then divided into observed (xo) and missing (xm). The dimensionality of xo was
99 and the dimensionality of xm was 1. The latter was chosen to facilitate analysis
and visualization of results.
In the preprocessing phase, the value of the missing variable xm was 4rst predicted

by linear regression, and the residual of this regression was used in place of xm in
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the sequel. After this linear prediction, the variables in xo were uncorrelated and their
variance was set to one; similarly, the variance of xm was set to one. Thus the data
were whitened.
After the above preprocessing the data was divided in two sets, a training data set of

size 100 000 and a test data set of size 1000. The ICA estimation on the training data

set gave the estimated values for the source signals s and the mixing matrix A=
(
Ao
Am

)
.

The test data set was used to compute estimates for the missing variable xm. The
value of the missing variable xm was predicted either using numerical integration as in
(4), or using our approximation in (5). The success of the approximation was measured
by the correlation coeLcient between the two values. Furthermore, we computed the
correlation coeLcients between the true values of xm are the results of numerical
integration to see if the very principle of ICA regression is useful.
Three diMerent distributions for the independent components were used, and the

results were accumulated over 10 diMerent random seeds.
In the following results, xm denotes the true value of the missing variable, xnumm is

the estimated value computed by numerical integration, and xapprm is the value given by
our MLP-like approximation

4.1. Strongly super-Gaussian data

In the 4rst experiments the independent components s were generated according to
the following strongly super-Gaussian density [8]:

p(s) =
1
2d

(�+ 2)[�(�+ 1)=2]�=2+1

[
√
�(�+ 1)=2 + |s=d|]�+3 ; (7)

where parameter values �= 1 and d= 1 were chosen, giving

p(s) =
1
2

3
(1 + |s|)4 : (8)

The strong super-Gaussianity of this distribution is seen in the fact that the kurtosis is
in4nite. The score function of this probability density is

f′(s) =
(�+ 3)=d sign(s)√
�(�+ 1)=2 + |s=d| : (9)

The correlation coeLcient between the numerical integration result and our approx-
imation �(xnumm ; xapprm ) was equal to 0:9067, which shows that the approximation was
quite good. The scatterplot is shown in Fig. 1a. Interestingly, if we used the—tanh
nonlinearity instead of the true score function (not shown), the correlation coeLcient
increased to 0:9303, probably because this is numerically more stable, avoiding the
singularity at 0.
As for the success of the very principle of predicting the actual values of xm, the

correlation coeLcient between the true xm and the numerical integration �(xm ; xnumm )
was 0:9044, which shows that the very principle of ICA regression was feasible: using
the ICA model in the regression does indeed give a good regression. This seems to be
due to the strong super-Gaussianity of the si. The scatterplot is shown in Fig. 1b.
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Fig. 1. The results for strongly super-Gaussian data: (a) scatterplot of optimal regression by numerical
integration vs. regression using our approximation and (b) scatterplot of optimal regression by numerical
integration vs. true values of xm.

4.2. Laplace distributed data

In the second set of experiments the s were generated according to the Laplace
distribution:

p(s) =
exp(−√

2|s|)√
2

(10)

for which the score function is

f′(s) =
√
2 sign(s): (11)

The correlation coeLcient between the numerical integration result and our approx-
imation �(xnumm ; xapprm ) was equal to 0:9120, which shows that the approximation was
quite good (see Fig. 2a).
On the other hand, the estimator xnumm obtained by numerical integration correlates

rather poorly with the true value of the missing variable xm: the correlation coeLcient
is only 0:6489 (see Fig. 2b). Thus, ICA regression does not work that well in this case.
This is probably because its success depends on the non-Gaussianity of the si, and thus
requires the si to be strongly non-Gaussian. Likewise, the MLP-like approximation is
not very successful in predicting the true value of the missing variable, the correlation
coeLcient being 0:5843.

4.3. Very weakly super-Gaussian data

In the third set of experiments the latent variables s were generated according to the
Cosh distribution:

p(s) =
1
2

1

cosh2 s
(12)



218 A. Hyv.arinen, E. Bingham /Neurocomputing 50 (2003) 211–222

_ 2 _ 1 0 1 2 3
_ 3_ 3

_ 2

_ 1

0

1

2

3

Numerical integration

A
pp

r.
 u

si
ng

 th
e 

sc
or

e 
fu

nc
tio

n
Laplace distributed data

_ 2 _ 1 0 1 2 3
_ 4

_ 3

_ 3

_ 2

_ 1

0

1

2

3

4

Numerical integration

T
ru

e 
va

lu
e 

of
 x

m

Laplace distributed data

(a) (b)

Fig. 2. The results for Laplace (moderately super-Gaussian) data: (a) scatterplot of optimal regression by
numerical integration vs. regression using our approximation and (b) scatterplot of optimal regression by
numerical integration vs. true values of xm.
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Fig. 3. The results for weakly super-Gaussian data: (a) scatterplot of optimal regression by numerical integra-
tion vs. regression using our approximation and (b) scatterplot of optimal regression by numerical integration
vs. true values of xm.

for which the score function is

f′(s) = tanh s: (13)

With this weakly super-Gaussian data, our approximation of the regression function
was very good, the correlation coeLcient being 0:9965. This was in fact to be expected:
Our approximation was a 4rst-order approximation in the vicinity of the Gaussian
distribution for the si, and therefore it is not surprising that it works best when the si
have almost Gaussian distributions. The scatterplot is in Fig. 3a.
On the other hand, we see again that the principle of ICA regression itself does

not work well at all due to the weak non-Gaussianity of the data. The correlation
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coeLcient between the optimal regression computed by numerical integration and the
true values of xm was only 0:2969 (see Fig. 3b). Therefore, the approximating MLP
cannot really predict the xm, either, the correlation coeLcient was 0:2954.

4.4. Conclusion

Thus, we see that our approximation works reasonably well. If the distributions of
the independent components are close to Gaussian, it gives excellent results. If they are
strongly super-Gaussian, the approximation is less accurate but still quite reasonable in
the range we experimented with.
Another point is whether ICA regression in itself gives good regression results. Here

we consider the prediction of the residuals of linear regression, since linear regression
is a standard procedure and does not require the use of non-Gaussian structure. If the
data simply does not contain enough structure, even the optimal regression method
fails. We saw that the stronger the super-Gaussianity, the better the quality of the
regression. For strongly super-Gaussian components, the values can be predicted quite
well. In contrast, for weakly super-Gaussian components, ICA regression does not
really explain the data; this is natural since for Gaussian data any regression beyond
the linear one is impossible.

5. Discussion

We have shown a close connection between regression by ICA and regression by
MLPs. Instead of developing a new method either for ICA estimation or nonlinear re-
gression, our main contribution clearly lies in the theoretical insight on what multi-layer
perceptrons are doing.
We showed that the output of each hidden-layer neuron in an MLP corresponds to the

estimate of one independent component. This means that the problem of choosing the
number of hidden units is somewhat equivalent to choosing the number of independent
components in the ICA model. Thus, this classical problem in MLP research can
be seen as a problem of choosing the model order, which is a classical problem in
statistical modeling. Likewise, the choice of the nonlinearity is seen to be basically
a problem of estimating the probability densities of the independent components. 2

Further, overlearning in MLPs can be seen to correspond to modeling the data with
too many independent components, which is a form of overlearning typical of ICA [12].
To avoid overlearning, regularization is often used in MLPs, and similarly, regularizing
the mixing matrix in ICA could be most useful [10].
Regression by ICA is, in practice, computationally demanding, due to the (possi-

bly multi-dimensional) integration in (4). Our theoretical result might thus have some

2 Note that the nonlinearities given by the score functions need not be known a priori: they can be
estimated, just like the mixing matrix, by methods developed in ICA research, see [9]. The same is true
for the number of independent components, though this is a much more diLcult problem and satisfactory
solutions may not be available [9].
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practical signi4cance, since it shows that the integration may be approximated by the
computationally simple procedure of computing the outputs of an MLP.
It must be noted, however, that the equivalence we have shown is only true as a

4rst-order approximation, for weakly non-Gaussian independent components. Only ex-
periments can show whether this approximation is good enough in a given real-life
application. Our simulations indicate that the approximation might quite well be use-
ful. A second, independent question is, whether the very principle of ICA regression
is useful in practice. Again, our simulations indicate that this might be so, if the inde-
pendent components are strongly non-Gaussian, but assessing the utility in a real-life
situation needs real-life experiments. In fact, we have a kind of contradiction: the ap-
proximation is based on the assumption that the components are weakly non-Gaussian,
but the concept of regression by ICA seems to work only if the components are
strongly non-Gaussian. However, the simulations above seem to indicate that our ap-
proximation is not bad even for strongly non-Gaussian variables. The assumption of
weak non-Gaussianity could thus be considered as a technical assumption, allowing the
derivation of an approximation that seems to be valid even for the more relevant case
of strongly non-Gaussian components.
In conclusion, our result shows that the regression performed by MLPs, which is

conventionally considered as nonparametric or semiparametric, can be interpreted in
the framework of ICA as a model-based regression.

Appendix A. Proof of (5)

Denote hi(si) = s2i =2− 1
2 log 2�+ logpi(si). The variances of the si are equal to one

by de4nition. Due to the assumption of near-Gaussianity, hi(si) can thus be considered
in4nitesimal. We can write

E{xm|xo}= Am 1
(2�)n=2

∫
xo=Aos

s exp

(∑
i

[− s2i =2 + hi(si)]
)
ds: (A.1)

Now, let us do a 4rst-order approximation of
∑

i hi(si) in the vicinity of the point
AToxo, i.e. the linear estimate of the independent components. This point is a linear
approximation of the point where p(s|xo) is maximized. These approximations are
likely to be rather exact if the dimension of xo is large and the dimension of xm is
small. We obtain

E{xm|xo} ≈Am
1

(2�)n=2
·

∫
xo=Aos

s exp

(∑
i

[− s2i =2 + Hi(wTi xo) + h′i(wTi xo)(si − wTi xo)]

)
ds;

(A.2)

where wi denotes the ith column of Ao. Now we can use the fact that exp(hi(wTi xo))
is of order 1 + O(h). We can ignore this constant, since any change it could make
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would be in4nitesimal. Further, let us denote the constant exp(
∑

i−h′(wTi xo)wTi xo) by
c1. Thus we have

E{xm|xo} ≈Am
c1

(2�)n=2

∫
xo=Aos

s exp(−‖s‖2=2 + h′(AToxo)Ts]) ds

≈Am
c1c2
(2�)n=2

∫
xo=Aos

s exp
(
−1
2
‖s − h′(AToxo)‖2

)
ds; (A.3)

where h denotes the function where the hi are applied componentwise. Here we have
de4ned the constant c2 = exp(

∑
i h

′
i(w

T
i xo)

2).
Thus, we have only a Gaussian integral left. It can be evaluated by making a

norm-preserving variable change that parameterizes the space of the s such that xo=Aos.
This is given as AToxo + A

T
mu where u is not constrained. Thus we obtain

c1c2
(2�)n=2

∫
xo=Aos

s exp
(
−1
2
‖s − h′(AToxo)‖2

)
ds

=
c1c2
(2�)n=2

∫
u
[AToxo + A

T
mu] exp

(
−1
2
‖[AToxo + ATmu]− h′(AToxo)‖2

)
du

=
c1c2
(2�)n=2

∫
u
[AToxo + A

T
mu] exp

(
−1
2
[‖xo‖2 + ‖u‖2 + ‖h′(ATox)‖2

− 2h′(AToxo)
TAToxo − 2h′(AToxo)TATmu]

)
du

=
c1c2
(2�)n=2

exp(−‖xo‖2=2 + h′(AToxo)TAToxo) ·
∫
u
[AToxo + A

T
mu] exp

(
−1
2
‖u − Amh′(AToxo)‖2

)
du; (A.4)

where we have used the fact that the preprocessing implies that AmATo =0 and AmA
T
m=

AoATo =I. This can be evaluated by considering the Gaussian integral as an expectation
of a Gaussian random vector. Furthermore, note that c1 cancels the latter term in the
exponential that is before the integral sign. Somewhat less rigorously, we could also
assume that c2 is approximately cancelled by the 4rst term in that exponential; in any
case this is only a scalar scaling. Thus, we obtain

c1c2
(2�)n=2

∫
xo=Aos

s exp
(
−1
2
‖s − h′(AToxo)‖2

)
ds ≈ AToxo + A

T
mAmh

′(AToxo)

(A.5)

and we 4nally have

E{xm|xo} ≈ Amh′(AToxo); (A.6)

where we have again used the fact that the preprocessing implies that AmATo =0. Here,
h′i(u) is de4ned as h

′
i(u) = u+ (logpi)

′(u). On the other hand, AmATo = 0 implies that
addition of any linear function to h′ does not change the regression. Therefore, one
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can take h′i(u)= (logpi)
′(u)+ cu, i.e. h′i can be de4ned as the negative score function

of si plus any linear function. The linear function must be the same for all i.
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