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Abstract

In signal restoration by Bayesian inference, one typically uses a parametric model of the
prior distribution of the signal. Here, we consider how the parameters of a prior model should
be estimated from observations of uncorrupted signals. A lot of recent work has implicitly
assumed that maximum likelihood estimation is the optimal estimation method. Our results
imply that this is not the case. We first obtain an objective function that approximates the
error occurred in signal restoration due to an imperfect prior model. Next, we show that in
an important special case (small gaussian noise), the error is the same as the score matching
objective function, which was previously proposed as an alternative for likelihood based on
purely computational considerations. Our analysis thus shows that score matching combines
computational simplicity with statistical optimality in signal restoration, providing a viable
alternative to maximum likelihood methods. We also show how the method leads to a new
intuitive and geometric interpretation of “structure” inherent in probability distributions.

1 Introduction

1.1 Empirical Bayes and signal restoration

An approach that has gained increasing acceptance in machine learning, computational neuroscience,
and signal processing is based on hierarchical Bayesian modelling. The typical setting for modelling
the observed multivariate continuous-valued data vector, denoted by x, is as follows. The vector x
follows a distribution with probability density function (pdf) p(x|s), where s is a vector of latent
variables or parameters. The vector s in its turn follows a prior distribution p(s|θ) where θ is a
vector of (hyper)parameters. Typically, x is a somehow corrupted or incomplete version of s which
is the real quantity of interest, and θ gives some kind of features. The joint probability is obtained
by concatenating these probabilities:

p(x, s,θ) = p(x|s)p(s|θ) (1)

where we assume a flat prior for θ.
The central idea is that in such methods, the hyperparameters or features θ are not set subjec-

tively, but estimated (learned) from the data. Methods in which the hyperparameters are estimated
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from the data x are usually called Empirical Bayes. In this paper, we consider a setting that is
slightly different from conventional Empirical Bayes. We assume that a separate sample of s, de-
noted by s(1), . . . , s(T ) can be observed, and the hyperparameters θ are estimated from such a
sample. The prior p(s|θ) is then used for Bayesian inference of s when an x is observed for unknown
s. (In what follows, we shall simply call p(s|θ) the “prior” and θ the “parameter” vector, omitting
the prefix “hyper”.)

There are many applications in which such a formalism with observed s has been applied. The
prime example is signal restoration, see e.g. (O’Ruanaidh and Fitzgerald, 1996; Chipman et al.,
1997; Johnstone and Silverman, 2005). The vector x corresponds to a corrupted version of a signal,
and s corresponds to the original uncorrupted signal. In many cases, we can observe a sample of
the distribution of p(s|θ) by measuring the signal under circumstances where the corrupting process
is not present. For example, when denoising natural images it is not a problem to find practically
noise-free natural images (Simoncelli and Adelson, 1996; Hyvärinen, 1999); the same applies for
restoration of audio signals (Godsill and Rayner, 1995). A prior estimated from noise-free signals
can then be used for denoising noisy signals.

Another application can be found in Bayesian perception, where the s correspond to some percep-
tual quantities of a scene (speed and direction of motion, depth etc.) that are sometimes difficult to
instantly infer from the data x that is measured by the retina (Knill and Richards, 1996). However,
if such scenes are observed for a longer period of time, and information from different perceptual
cues are combined, the perceptual system can often obtain virtually exact observations of those
latent quantities, and these can be used, in the long run, to learn the model parameters. The prior
with these parameters can then enhance the performance of the system in more difficult situations
where few cues are available and/or the observation period is very short.

1.2 Point estimates vs. full Bayesian treatment

The goal in such inference is typically to obtain a point estimate of s. This is because in practical
applications, the posterior must typically be output as a point estimate (e.g. a denoised image). The
typical, and computationally most feasible, point estimate to summarize the posterior of s is the
maximum a posteriori (MAP) estimator (see below).

If computational resources were not an issue, one could use the theoretically sound treatment
based on integrating out the parameters, considering their full posterior distributions. That is, the
full posterior p(θ|s(1), . . . , s(T )), given the separate sample of s, is used to compute the posterior of
s as in

p(s|x, s(1), . . . , s(T )) =
∫
p(x|s)p(s|θ)p(θ|s(1), . . . , s(T )) dθ /p(x) (2)

where the normalizing constant equals

p(x) =
∫
p(x|s)p(s|θ) ds dθ (3)

The problem is that the computation of (2) requires multidimensional integration which is computa-
tionally most demanding. In order to reduce the computational load by avoiding multidimensional
integration, many methods use a point estimate for θ. In the context of signal restoration, this means
fixing the signal features and other parameters to a single value, which is obviously a widespread
approach.

Thus, we consider here a computationally simplified setting where a point estimate θ̂ of parame-
ters is first obtained, and it is used in MAP estimation of s. MAP estimation simply means finding
the value that maximizes the posterior density of s, given an estimate θ̂:

ŝMAP (θ̂,x) = arg max
s
p(x|s)p(s|θ̂) = arg max

s
log p(x|s) + log p(s|θ̂) (4)
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where the notation with θ̂ and x in parentheses emphasizes that the estimate is a function of both the
observed data x and the (previously) obtained parameter estimate θ. Such a framework is often used
with very high-dimensional data where computational considerations are of central importance.1

1.3 Optimal approximation of prior

The question we attempt to answer in this paper is how the parameters in θ should be estimated
from a sample of uncorrupted signals s(1), . . . , s(T ) in this context.

Most work on Bayesian inference in signal restoration and computational neuroscience seems to
implicitly assume that maximum likelihood estimation (MLE) is the optimal way of estimating the
parameters. However, this does not follow from the classic optimality criteria of MLE. The main
justification for MLE is that it is, under certain assumptions, asymptotically Fisher-efficient, i.e.
gives asymptotically the most exact estimates for parameters, in terms of squared error (Schervish,
1995). In our case, this would mean that the error in the estimate of θ is a small as possible.

However, what we want to minimize here is rather the error in the MAP estimate of s, and not
the error in θ. It is possible that some estimation methods give a large error in θ, but this error does
not induce a large error in s. As a common example of a related situation consider multicollinearity
in prediction by linear regression: if the predicting variables are highly correlated, their individual
regression coefficients have large estimation errors; yet, the prediction might be quite good. So, if we
are not interested in the values of the parameters themselves, but only the quality of the Bayesian
inference that they provide, estimation errors in θ may be irrelevant, and there seems to be no
reason to consider MLE of θ optimal.

Furthermore, the prior model p(s|θ) might only be a rough approximation of the true prior
distribution of s; the real prior might not belong to the family p(s|θ). In such a case, which is
actually the target of the analysis in this paper, any considerations of squared error in θ may be
of little use and even ill-defined. In fact, the error in this case may not have anything to do with
Fisher-efficiency, because even in the limit of an infinite sample, when the variance of the estimator
goes to zero, the prior model will not be equal to the distribution of the data. Then, estimation of
θ should be based on a direct measure of how good the ensuing MAP estimation of s is.

Information theory provides another justification for MLE in terms of optimal compression, see
e.g. (Cover and Thomas, 1991). However, such considerations seem to be irrelevant if the goal is
Bayesian (MAP) inference of s.

In this paper, we analyze the performance of the MAP estimator of s. This is a function of the
parameter value θ̂ used in the prior, which are assumed to be estimated from a sample s(1), . . . , s(T ).
We derive a first-order approximation of the error, and show that it consists of two parts. Only one
of those parts depends on the θ̂. Optimal estimation of parameters should thus be based on mini-
mization of the objective function given by that part. Such an objective function is quite different
from likelihood. Interestingly, a special case of the objective function leads to the score matching
distance previously proposed in (Hyvärinen, 2005) based on a completely different motivation. Fur-
thermore, we give a geometric interpretation of the resulting estimation process and show how this
is related to a measure of “structure” of probability distributions.

2 Optimality criterion for estimation

2.1 Hierarchical data model

We shall first rigorously define the whole process of data generation and parameter estimation in a
hierarchical model where a separate sample of uncorrupted signals can be observed.

1Since the analysis developed below uses the mean-squared error, it might be suggested that the minimum mean-
squared error (MMSE) estimator should be used instead. The main justification for our choice of the MAP estimation
is that it is often much simpler computationally, and therefore much more widely used.
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1. Estimation of parameters: A sample s(1), . . . , s(T ) is generated from a prior distribution p0(s).
From this sample, we compute an estimate θ̂ for θ, using a method to be specified.

2. Generation of s underlying for observed data: A single vector s0 is generated from the prior
distribution p0(s).

3. Generation of observed data: A data vector x is generated from the data distribution p(x|s0).

4. MAP inference: Using θ̂ and x, an estimate ŝ for s0 is obtained by MAP estimation as in (4).

In step 4, the data generating process p(x|s) is assumed known; its estimation would be a completely
different problem. The prior distribution p0 is approximated by a parameterized family of pdf’s,
p(.|θ). We do not assume that p0 belongs to the family p(.|θ).

The goal is now to minimize the error ‖∆s‖ = ‖ŝ−s0‖ that is due to the error in the approxima-
tion of the prior p0(s) by p(s|θ̂). Even with a perfect estimate for the prior, there will, of course, be
an estimation error in ŝ due the randomness in the process of sampling the data from p(x|s0), which
corresponds to the process corrupting the signal. However, we will see below that it is possible to
separate these two kinds of errors.

2.2 Goals and limitations of the analysis

We emphasize that it is the error in ŝ and not in θ̂ that we fundamentally want to minimize. Actually,
the error in θ̂ is not even a properly defined quantity because the prior p0(s) need not belong to
the family p(s|θ) used in its approximation. Thus, we shall ultimately define the optimal method of
parameter estimation, or prior approximation, as the one that minimizes the error in ŝ.

An important choice we make in this analysis is that we completely neglect finite-sample effects,
in other words, we assume that we have an infinite sample of s. Thus, there is an error in the
approximation of p0 by our model p(.|θ) simply because p0 does not belong to the model family,
and not because of random fluctuations in the estimator θ̂. This approach is quite realistic in the
case of neural computation and signal processing, where the number of observations can often be
made arbitrarily large (e.g. by just sampling more image patches) but the distributions are extremely
complex and any model is only a rough approximation. This is, in fact, why we prefer to call this
problem “approximation” of signal priors instead of estimation.

A limitation that was already pointed out in the introduction is that we assume we can access
an uncorrupted sample of the original signals s. This may be easy in some cases, but impossible in
others. Many Empirical Bayes methods actually estimate parameters from corrupted signals, so our
analysis is not applicable to them. Some examples on this are methods based on Stein’s unbiased
risk estimation, see Section 4.3.

2.3 Analysis of estimation error

First, we need some notation. Denote the derivatives of the log-pdf of s given θ by

ψ(s|θ) =


∂ log p(s|θ)

∂s1
...

∂ log p(s|θ)
∂sn

 =

ψ1(s|θ)
...

ψn(s|θ)

 = ∇s log p(s|θ)

and the corresponding Hessian matrix by

H(s|θ) =


∂ log p(s|θ)

∂s1s1
. . . ∂ log p(s|θ)

∂s1sn

...
∂ log p(s|θ)

∂sns1
. . . ∂ log p(s|θ)

∂snsn

 = ∇sψ(s|θ)T
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Similary, denote by ψ(x|s) and H(x|s) the gradient and the Hessian matrix of log p(x|s), where
the differentiation is still done with respect to s, and denote by ψ0(s) and H0(s) the corresponding
gradient and Hessian of log p0(s). In the following, we use the shorter notation ŝ = ŝMAP (θ̂,x).

Our main result is given in the following theorem, proven in Appendix A:

Theorem 1 Assume that all the log-pdf’s in (4) are differentiable. Assume further that the estima-
tion error ∆s = ŝ− s0 is small. Then the first-order approximation of the error is

‖∆s‖2 = ‖E1 + E2‖2 + o(‖M−1∆s‖2) (5)

where

E1 = M−1
[
ψ0(s0)−ψ(s0|θ̂)

]
(6)

E2 = M−1 [ψ0(s0) +ψ(x|s0)] (7)

with
M = H0(s0) +H(x|s0) (8)

Now, the matrix M and the error vector in E2 are functions of s0 and x only, i.e. the data generating
parts (steps 3 and 4) above. Thus, they do not depend on our estimate for θ. In contrast, ψ0(s0)−
ψ(s0|θ̂) in E1 does depend on θ̂ which is a function of the sample s(1), . . . , s(T ) (step 2 above).

If the errors E1 and E2 were orthogonal, we could decompose the expected error as

E{‖∆s‖2} = E{‖E1‖2}+ E{‖E2‖2}+ o(‖∆s‖2) (9)

and we would see a clear decomposition of the error in two parts (definition of the expectation will
be specified later):

• The first part, E{‖E1‖2}, is the error in the estimate ŝ due to an error in our approximation
p(.|θ) of the prior p0. In fact, if the approximation of the prior is exact, ψ0(s0) = ψ(s0|θ̂) for
any s0, and this term is zero.

• The second part, E{‖E2‖2}, does not depend on the sample s(1), . . . , s(T ) or θ̂ at all. It is
related to the error that the MAP estimator has even when the prior p0 is known perfectly.
This can be seen from the fact that if s0 were equal to the MAP estimator using a perfect
prior model, E2 would be zero (because according to the definition of the MAP estimator, the
sum of these gradients has to be zero).

While the two errors do not seem to be orthogonal in general, we do have an orthogonality result
in an important special case, which is infinitesimal gaussian noise. This shall be treated in Section 4
and Theorem 3. Thus, we do have some justification for considering the two errors independently
from each other: E2 would be only dependent on the model and not on the estimator θ̂, in which
case computation of θ̂ should be based on E1 alone.

3 Proposal of optimal estimator

3.1 Direct minimization of approximate restoration error

Based on Theorem 1, we propose to minimize ‖E1‖2 in order to minimize the estimation (restoration)
error in s. Such an estimator should be optimal in the sense of minimizing squared error, at least if
the two errors in the Theorem are orthogonal enough.

One further problem is that ‖E1‖2 depends also on p0(s) via ψ0 and H0 whose estimation may
be very difficult. For reasons that will become apparent later, the occurrence of ψ0 is actually not
a problem. Regarding H0, we use a first-order approximation, replacing it by its estimate H(s|θ̂).
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Thus, taking the expected value of the error ‖E1‖2 over all s with respect to p0, we arrive at the
following objective function:

J (θ) =
1
2

∫
p0(s)‖ [H(s|θ) +H(x|s)]−1 [ψ0(s)−ψ(s|θ)] ‖2ds (10)

Since we have a sample of s, the practical estimation will use a sample version, which equals

J̃ (θ) =
1
2

T∑
t=1

‖ [H(s(t)|θ) +H(x|s(t))]−1 [ψ0(s(t))−ψ(s(t)|θ)] ‖2 (11)

So, we conclude that optimal estimation of the parameters is based, at least approximatively, on
minimization or J̃ with respect to θ

θ̂ = arg min
θ
J̃ (θ)

Basically, the objective function is a weighted squared error between the gradient of the log-
density ψ0 of the sample s(t) and the gradient of the log-density given by the model, ψ(.|θ̂). This
is actually rather natural because the definition of the MAP estimator (4) implies that the sum of
the gradients of the log-densities p(x|s) and p(s|θ̂) must be zero; only the latter gradient depends
on the parameter estimate θ̂. So, to minimize the error in the MAP estimator, one should find an
θ that gives an accurate model of that gradient.

3.2 Simple computation of objective function

It may seem that the objective function J̃ is computationally intractable because it uses ψ0(s(t))
which depends on the unknown prior p0. However, it turns out that the objective function is very
closely related to the “score matching” objective function proposed in (Hyvärinen, 2005), see also
(Pham and Garrat, 1997; Taleb and Jutten, 1999). Here, we present a generalization of the result
in (Hyvärinen, 2005) that allows simple computation of J̃ . This is given by the following Theorem:

Theorem 2 Denote the i, j-th element of the square MM of the pre-multiplying matrix [H(s|θ) +H(x|s)]−1

in (10) by Gij(s). Assume some regularity conditions on the Hessians.2 Then, the objective function
in (10) can be expressed as

J (θ) =
∫
p0(s)

∑
ij

∂iψi(s|θ)Gij(s) + ψi(s|θ)∂iGij(s) +
1
2
Gij(s)ψi(s|θ)ψj(s|θ)

}
ds

+ const. (12)

where ∂i denotes differentiation with respect to the i-th element, and the constant term does not
depend on θ. Moreover, this holds for any arbitrary functions Gij fulfilling the regularity constraints.

The Theorem is proven in Appendix B, see also (Dawid and Lauritzen, 2005) for a related result.
Obviously, the sample version of this expression for the objective function is obtained as

J̃ (θ) =
T∑

t=1

∑
ij

∂iψi(s(t)|θ)Gij(s(t)) + ψi(s(t)|θ)∂iGij(s(t)) +
1
2
Gij(s(t))ψi(s(t)|θ)ψj(s(t)|θ) (13)

where we have omitted the irrelevant constant. Here, we see the remarkable fact that this sample
version is easy to compute: it only contains sample averages of some functions which are all part
of the model specification and can be simply computed, provided that the model is defined using
functions log p(.|θ) whose derivatives can be given in closed form or otherwise simply computed.

2The regularity conditions are: Gij is differentiable and p0(s)Gij(s)ψi(s) vanishes when ‖s‖ → ∞ for all i, j, and
the integrals given in (51) are finite.
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3.3 Relationship to score matching

In fact, in (Hyvärinen, 2005) a special case of our estimation method was proposed based on purely
computational considerations. The problem considered in that paper was what to do if the normal-
ization constant of the pdf is not known. In other words, the prior pdf is defined using a function q
in a form that is simple to compute, but q does not integrate to unity. Thus, the pdf is given by

p(s|θ) =
1

Z(θ)
q(s;θ)

where we do not know how to easily compute Z which is given by an integral that is often analytically
intractable:

Z(θ) =
∫
q(s;θ) ds

Now, the derivatives of the log-density (“score functions”) with respect to the si do not depend on
Z at all, so the problem of computing the normalization constant disappears when we consider only
the score functions. It is natural to try to estimate the model by looking at the Euclidean distance
between the score function of the data and the score function given by the model. This leads to
a special case of the present objective function, where the matrix M is replaced by identity. In
(Hyvärinen, 2005), it was further proven that such an estimator is (locally) consistent.

Thus, we see that our proposed estimator combines statistical optimality, in the sense discussed
in this paper, with computational simplicity, in the sense that the prior model p(s|θ) does not need
to integrate to unity, as was originally shown in (Hyvärinen, 2005) for a special case. In the next
section, we will see that this special case emerges when we take a particular form for p(x|s).

4 Case of gaussian infinitesimally small noise

4.1 Simplification of the estimator

A very interesting special case is obtained when x is equal to s plus infinitesimally small gaussian
i.i.d. (white) noise:

log p(x|s) = − 1
2σ2

‖x− s‖2 − n

2
log 2πσ2 (14)

where n is the dimension of both x and s, and we consider the limit of

σ2 → 0 (15)

Such additive gaussian noise is an important practical case in signal processing and computational
neuroscience. It can also be considered a theoretical archetype of signal corruption. In this case the
matrix M is of the form

M = H0(s0)−
1
σ2

I (16)

Taking the limit of σ2 → 0, we see that M approaches the identity matrix multiplied by −1/σ2. Our
objective function is thus simplified to the Euclidean distance of the score functions, if we ignore the
scaling by 1/σ2. This simplifies the computations very much, and gives the original score matching
distance proposed in (Hyvärinen, 2005) and discussed in the preceding section. The sample version
of the objective function, in the present notation, is then given by

J̃ (θ) =
T∑

t=1

∑
i

∂iψi(s(t)|θ) +
1
2
ψi(s(t)|θ)2 (17)
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4.2 Exact orthogonality of errors

In the case of infinitesimal gaussian noise, we also have exact orthogonality of the two errors E1 and
E2 in Theorem 1. In Appendix C we prove the following:

Theorem 3 Assume that p(x|s) is as in (14–15). Then, we have for any s0:

Ex|s0{〈E1, E2〉} = 0 for all s0 (18)

That is, the two errors in Theorem 1 are orthogonal, and (9) holds when the expectations are taken
over x given any s0.

Thus, this theorem gives some justification for considering the E1 and E2 separately, and estimating
parameters by simply minimizing E1.

4.3 Relation to Stein’s unbiased risk estimator

In the case of infinitesimal gaussian noise, we also see an interesting connection to Stein’s unbiased
risk estimator (SURE).3

Let us consider the following problem: Assume that the random variable x follows a normal
distribution with unit variance and unknown mean µ. We consider estimators of µ of the following
form

µ̂ = x+ g(x) (19)

for some function g to be chosen. This can be interpreted in terms of denoising by considering µ to
be the original signal and x a noisy observation. Stein (1981) showed that in this case, an unbiased
estimator of the risk (i.e. expected squared error) of the estimator is obtained as

Ex{(x+ g(x)− µ)2} = 1 + Ex{g2(x) + 2g′(x)} (20)

To see the connection with our framework, assume that the estimator is obtained by MAP esti-
mation using a prior p(.|θ) for µ, with parameters θ. Further, assume that the noise is infinitesimal
with respect to the signal; since (20) assumes that noise variance is unity, this means that we assume
that the variance of µ is very large. Then, a first-order approximation of the MAP estimator gives
(Hyvärinen, 1999)

µ̂ = x− (log p)′(x|θ) (21)

In other words, MAP estimation leads to

gθ(x) = −(log p)′(x|θ) = −ψ(x|θ) (22)

where ψ(.|θ) is the derivative of the logarithm of the prior pdf of µ, which depends on the parameters
θ. Now, Stein’s risk estimator gives, when averaged over the distribution of µ:

EµEx{(x+ gθ(x)− µ)2} = 1 + EµEx{ψ2(x|θ) + 2ψ′(x|θ)} (23)

Since the variance of x is infinitesimal compared to the variance of µ, the expectation with respect
to x can be ignored, and we can simply take x = µ. Thus, minimization of this risk is equivalent to
minimizing

Eµ{
1
2
ψ2(µ|θ) + ψ′(µ|θ)} (24)

which is nothing else than the original score matching objective proposed in (Hyvärinen, 2005).
For notational simplicity, we considered here the one-dimensional case, but the result holds in n
dimensions because we simply need to take the sum of the errors (risks) in different dimensions.

3I’m grateful to an anonymous referee for pointing out this connection.
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Thus, SURE provides another way of deriving score matching estimation as the optimal prior in the
special case of infinitesimal gaussian noise.

SURE can be estimated from noisy samples; it assumes noise variance is known but this can
usually be estimated. It was applied for wavelet shrinkage by Donoho and Johnstone (1995) . The
connection between score matching and SURE was pointed out by (Raphan and Simoncelli, 2007)
in a rather different framework.

5 Interpretations as projection and structure

In this section, we will propose two intuitive interpretations of the estimation performed by score
matching. The interpretations is based on two ideas:

• Score matching estimator is obtained by minimizing a Euclidean distance, which leads to an
interpretation as projection.

• The amount of noise that can be removed from data is dependent on the amount of structure
inherent in the data vector. Such structure is often associated with information-theoretical
quantities such as (neg)entropy, but our analysis provides an alternative measure of structure.

The word “structure” is used loosely in what follows, intuitively it means a lack of complete
randomness in the data distribution. This is similar to the intuitive principle of information theory,
in which the structure present in the data distribution allows it to be represented more compactly,
i.e. compressed. Here, we show how the proportion of gaussian noise that can be removed from noisy
observations leads to a similar measure of structure.

5.1 Definition of geometry

We begin by defining basic geometrical concepts based on the score functions. Consider the space
S of probability density functions which are sufficiently smooth in the sense that the assumptions
given in the theorems above are fulfilled. Assume that ps in S is fixed once and for all. Given any
two pdf’s p1 and p2 in S, we define their dot-product as

〈p1, p2〉s =
∫
ps(ξ)

[
n∑

i=1

ψ1,i(ξ)ψ2,i(ξ)

]
dξ (25)

where ψ1,i denotes the i-th element in the score function of p1, and likewise for ψ2,i. (For a bit more
mathematical rigour, we use ξ as the integrating variable instead of s.) The norm of a pdf is then
given by

‖p1‖2
s = 〈p1, p1〉s =

∫
ps(ξ)

[
n∑

i=1

ψ1,i(ξ)2
]
dξ =

∫
ps(ξ)‖ψ1(ξ)‖2dξ (26)

where the notation ‖.‖, without a subscript, in the right-most integral denotes the ordinary Euclidean
norm.

The norm we have just defined is closely related to Fisher information. The multidimensional
Fisher information matrix is defined here as

IF (s) = E{ψ(s)ψ(s)T }. (27)

Strictly speaking, this is the Fisher information matrix w.r.t. a hypothetical location parameter.
Obviously, we have

‖ps‖2
s = tr(IF (s)) (28)
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Using the norm, we can also naturally define the distance:

dist2s(p1, p2) =
∫
ps(ξ)

[
n∑

i=1

(ψ1,i(ξ)− ψ2,i(ξ))2
]
dξ =

∫
ps(ξ)‖ψ1(ξ)−ψ2(ξ)‖2dξ (29)

Basically, we are defining something similar to a Hilbertian structure in the space of score functions
ψ. Now we proceed to show how these geometric concepts can be interpreted as measures of the
structure of a prior distribution in Bayesian inference.

5.2 Denoising capacity using perfect model

First of all, the norm ‖.‖s defined in (26) is closely related to denoising capacity. In previous work,
we proved the following:

Theorem 4 Assume that p(x|s) is a gaussian distribution with mean s and covariance σ2I. The
quadratic error of the MAP estimator ŝ, when the distribution ps is exactly known,is given by

tr(E{(s− ŝ)(s− ŝ)T }) = nσ2 − σ4‖ps‖2
s + terms of higher order in σ2 (30)

where σ2 is the noise level.

This is a simple corollary of Theorem 2 in (Hyvärinen, 1999).
Thus, we can interpret ‖ps‖2

s as the amount of structure that is present in the data vector s. It
determines the amount of noise reduction that we can achieve by MAP estimation when we have a
perfect model of the distribution of s. (The dominant term nσ2 does not depend on the distribution
of the data so it is irrelevant as a measure of structure.) The case of an imperfect model will
be considered in the next section. Now we show some examples of different distributions and the
amounts of structure they contain.

Example 1 A flat distribution
pf (ξ) = c for all ξ ∈ Rn (31)

has no information that could be used in denoising. In fact, it corresponds to a score function that
is identically zero, so the norm ‖pf‖s is zero.

Example 2 The gaussian distribution has minimum structure in the sense of ‖.‖s for a fixed co-
variance structure (Cover and Thomas, 1991). This holds for both our Fisher-information based
measure and the more widely used Shannon entropy.

Example 3 Take any s with smooth pdf. Consider the variable rescaled variable σs. When σ → 0,
the ‖ps‖s goes to infinity. The structure becomes infinitely “strong” in the sense that we then know
that s does not take any other values than zero. Conversely, if σ → ∞, ‖ps‖s goes to zero, because
the limit is the flat prior. On the other hand, translating the distribution as s + ν for a constant ν
does not change ‖.‖s.

5.3 Denoising capacity using imperfect model

In practice, we do not have a perfect model of ps. Denote by p̂ our approximation of ps. Simple
combination of the proofs of Theorems 1 and 4 gives the following general result

Theorem 5 Assume that p(x|s) is as in Theorem 4. Assume we use p̂ as the approximation of the
prior p(s|θ̂) in the MAP estimator defined in (4). The denoising error can then be decomposed as

tr(E{(s− ŝ)(s− ŝ)T }) = nσ2 − σ4‖ps‖2
s + σ4dist2s(p̂, ps) + terms of higher order in σ2 (32)
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We see that the error is increased proportionally to the distance dist2s(p̂, ps). Thus, it is this distance
between p̂ and ps that gives the reduction of denoising capacity due to an imperfect model. This
enables us to interpret this distance as the amount of structure of s which is not modelled by p̂.
Thus, the metric we have defined is the metric of optimal estimation if the purpose is to construct
a prior model of the data to be used in Bayesian inference such as denoising.

5.4 Orthogonal decomposition in exponential families

A particularly illustrative decomposition can be obtained for exponential families. Assume our
model comes from an exponential family, i.e.

log p(s|θ) =
k∑

i=1

θigi(s) + logZ(θ) (33)

where the parameter vector θ can take all values in Rk, and Z is a normalizing constant that makes
the integral equal to unity. The score functions are simply obtained:

ψ(s|θ) =
k∑

i=1

θi∇gi(s) (34)

which shows that the space of score functions in the model family is a linear subspace. This implies
that estimation by minimization of dist2s(p(.|θ), ps) is an orthogonal projection. In an orthogonal
projection, the residual is orthogonal to the result of the projection. Denote the estimator minimizing
‖.‖s by p̂. Then this orthogonality means

〈p̂− ps, p̂〉s = 0 (35)

and it also implies the following Pythagorean decomposition

‖ps‖2
s = dist2s(p̂, ps) + ‖p̂‖s (36)

This decomposition has a very interesting interpretation. We have by Theorem 5 and (36)

tr(E{(s− ŝ)(s− ŝ)T }) = σ2n+ σ4[dist2s(p̂, ps)− ‖ps‖s] + o(σ4) = σ2n− σ4‖p̂‖2
s + o(σ4) (37)

So, we see that the terms in (36) can be intuitively interpreted so that the decomposition reads

‖ps‖2
s = dist2s(p̂, ps) + ‖p̂‖2

s

Structure in data = Structure not modelled + Structure modelled (38)

The interpretation of the first two terms here has already been discussed. The third term in (38)
measures, according to (37), the denoising capacity when p̂ is used as a model of the data. This is
why, in general, we call it the amount of structure modelled. However, this decomposition is strictly
true only in the case of the exponential family.

6 Simulations

We performed some simulations to investigate the validity of the approximations made in deriving
our main Theorem (Theorem 1) and our estimation method. In our simulations, the one-dimensional
quantity s was corrupted by additive gaussian noise. Four different distribution p0(s) were used:

11



1. A gaussian mixture model with different probabilities for the two kernels:

p0(s) =
3
4
ϕ(s) +

1
4
ϕ(s− 5) (39)

where ϕ is the standardized gaussian pdf.

2. A second gaussian mixture model which has a strong peak due to small variance of one of the
kernels:

p0(s) =
1

2σ1
ϕ(s/σ1) +

1
2
ϕ(s− 5) (40)

where ϕ is the standardized gaussian pdf. The width of the first kernel was set to σ1 = 0.2.

3. A Chi-square distribution with 4 degrees of freedom.

4. The Laplacian (double-exponential) distribution of zero mean and unit variance, whose pdf is
given by

p0(s) =
1√
2

exp(
√

2|s|) (41)

All the four distributions were further standardized to zero mean and unit variance. All these
distributions were modelled (approximated) by a smoothened version of the Laplacian distribution
with a location parameter θ to be estimated:

log p(s|θ) = −
√

2
γ

log cosh(γ(s− θ))− Z(γ) (42)

which is a very good model for the Laplacian data, but not good in others. The parameter γ controls
the smoothness of the pdf: for γ = ∞, this distribution becomes the Laplacian distribution of unit
variance. We used the value γ = 10.

A sample of 10,000 data points was obtained from each of the four prior distributions. Thus, any
finite-sample effects were reduced to a minimum, and the effects investigated were almost exclusively
due to the fact that p0 does not belong to the model distribution family. The parameter θ was
estimated using score matching, as well as maximum likelihood for comparison.

Another sample of 20,000 data points was generated from each distribution, and Gaussian noise
of different variances was added to it, which gave the corrupted data x. The MAP estimator ŝMAP

for s was then computed, for the two estimates of θ given by score matching estimation (SME) and
maximum likelihood estimation (MLE), and for each of the 20,000 observed x’s. The squared errors
in the denoising inference were computed as (ŝ − s)2 for the two estimators. The procedure was
repeated four times with different noise levels.

In some cases, the difference between the errors for SME and MLE is so small that one might
doubt its statistical significance (it could be due to the limited sample used in the simulations). So,
we performed a t-test on the differences. (It was checked that the distributions are gaussian enough
for the t-test to be valid.) The test used the null hypothesis that the mean error in SME is larger
than the mean error in MLE. If the p-value is very small (< 0.01), SME is significantly better than
MLE, and if it is very large (> 0.99), MLE is significantly better than SME.

To get a better idea of the scale of the errors, we compared the obtained denoising errors with
the one obtained using a perfect prior, i.e. the true distribution s in the inference. We quantified the
denoising performance using a performance index which was the amount of noise removed (reduction
in squared error), based on either MLE or SME, as a proportion of the amount of noise removed
using the perfect prior, expressed in percentages:

Performance index = 100× Noise variance− Squared error using prior model p(s|θ̂)
Noise variance− Squared error using perfect prior model

(43)
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This performance index can also take negative values, which means that the denoising estimator is
so bad that it actually increases the noise in the data.

Table 1 shows the obtained results. First, we see that the estimates obtained for θ are quite
different for the two estimation methods. The only exception is the case of the Laplacian distribution,
because it is symmetric around the mean and both methods are consistent, eventually converging to
the real location value of 0. Note that because the (smoothed) Laplacian distribution p(s|θ) is only
a very rough approximation for the other three pdf’s, no “correct” value for θ is available for them,
so the values of θ̂ cannot be compared with any ground truth.

The squared errors in ŝ are what we essentially want to compare. For all the distributions except
the Laplacian, SME gives a smaller squared error for the smaller noise levels, and the difference
is statistically significant. The improvement is typically 5%-30% of the maximum noise reduction,
as measured by the performance index. In some cases, MLE gives such a bad approximation that
the noise is actually increased, which leads to a negative value for the performance index. For the
largest noise level, MLE gives a smaller error in some cases. This is because the theory developed in
this paper considers the limit of infinitesimal noise, and the first-order approximations used in the
analysis break down at large noise levels.

For the Laplacian distribution, the p-values were some cases close to significance, and in others
far from it: The difference in the errors is so small that even with the 20,000 samples hardly any
significant error can be seen. Actually, the p-values here are irrelevant from the viewpoint our
analysis, because in this case, the differences are completely due to finite-sample effects, since both
methods are consistent, and converge on the value θ = 0. This is the case where p0 belongs (up to a
small approximation error due to using (42) with finite γ) to the model family p(.|θ). A reservation
with respect to the applicability of our theorem is thus necessary: if p0 belongs to the model family
p(.|θ), any improvement obtained by SME is negligible. This is presumably because the error E1

then approaches zero in the limit of a large sample, whereas E2 does not. So, the contribution of E1

becomes negligible and its minimization has no real effect on the denoising error. Thus, our method
is interesting only when we are approximating the prior density p0, and the approximation does not
converge to the right data distribution even for an infinite sample.

The same results are shown in Table 2 for MMSE inference. That is, the parameter estimation was
done as above, but the denoising was performed by taking the mean of the posterior distribution
of p(s|x). The results are qualitatively quite similar to those of Table 1, although slightly less
favourable to SME, especially for the largest noise level. Note that there is no contradiction in
MMSE estimation being less favourable to SME, even though SME was shown to approximately
minimize mean squared error. This is because SME finds parameter values which minimize mean
squared error for MAP inference, which is different from minimizing mean squared error for MMSE
inference.

Thus, the simulations show that when 1) the data distribution is not very well approximated
by the model, and 2) noise level is small, the average errors corresponding to SME are significantly
smaller than average errors corresponding to MLE. The difference is significant statistically, and
possibly also in practice for some distributions. This confirms the utility of the approximation given
in Theorem 1: using θ̂ given by SME leads to smaller errors in the estimation of s. Nevertheless, it
could be argued that the advantage of SME is mainly of theoretical interest since the improvement is
rather small and limited to the smallest noise levels. Future research is needed to see if the difference
is important enough in some practical applications.

7 Conclusion

We considered the estimation problem encountered in Bayesian perception and signal processing:
the estimation of a prior model of a signal, based on a sample of such signals. Our analysis is based
on the assumption that we can observe a sample of uncorrupted signals to estimate the model.
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Denoise by MAP gauss mixt 1 gauss mixt 2 chi square Laplacian
SM: value of θ̂ -0.447 -0.961 -0.505 -0.027
ML: value of θ̂ -0.335 -0.385 -0.225 0.002
noise variance = 0.05
SM: squared error in ŝ 0.0451832 0.0437251 0.0475274 0.0458882
ML: squared error in ŝ 0.0458262 0.0539467 0.0481536 0.0458603
PP: error in s 0.0409871 0.0232552 0.0445455 0.0458615
p-value of difference 0 0 1.41838e-08 0.983707
SM: performance index 53.4441 23.4623 45.3304 99.3535
ML: performance index 46.3097 -14.757 33.8515 100.027
noise variance = 0.1
SM: squared error in ŝ 0.0872924 0.0862113 0.0905881 0.0884577
ML: squared error in ŝ 0.0889856 0.109962 0.0928176 0.0884553
PP: error in s 0.0765966 0.0491676 0.0840644 0.0884539
p-value of difference 0 0 2.22045e-16 0.534107
SM: performance index 54.298 27.1258 59.0617 99.967
ML: performance index 47.0631 -19.5983 45.071 99.9879
noise variance = 0.2
SM: squared error in ŝ 0.157888 0.175383 0.168148 0.163455
ML: squared error in ŝ 0.162068 0.214278 0.171554 0.163322
PP: error in s 0.141524 0.129202 0.153341 0.163327
p-value of difference 0 0 2.00357e-09 0.989493
SM: performance index 72.0148 34.7715 68.2662 99.6507
ML: performance index 64.8668 -20.1669 60.9658 100.014
noise variance = 0.5
SM: squared error in ŝ 0.359553 0.495427 0.353038 0.336505
ML: squared error in ŝ 0.363577 0.48297 0.344779 0.33623
PP: error in s 0.331788 0.45787 0.307364 0.336233
p-value of difference 0 0.999999 1 0.984166
SM: performance index 83.4939 10.8552 76.2902 99.8336
ML: performance index 81.1015 40.4231 80.5778 100.002

Table 1: Results for the simulations on denoising using MAP estimation. For each of the four
distributions, the estimates of θ are first given. Next, for each of the four noise levels, the errors
in estimation of s using θ̂ from score matching (SM) or from maximum likelihood (ML) are given.
For comparison, the error for MAP denoising using the perfect prior (PP) is shown. The p-value
is for the null hypothesis that the mean error for SME is larger than the mean error for MLE; at
the same time, it tests the opposite hypothesis, so that one minus the p-value is the p-value for the
null hypothesis that the mean SME error is smaller. The performance index shows the denoising
obtained as a percentage of the denoising using perfect prior.
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Denoise by MMSE gauss mixt 1 gauss mixt 2 chi square Laplacian
SM: value of θ̂ -0.447 -0.961 -0.505 -0.027
ML: value of θ̂ -0.335 -0.385 -0.225 0.002
noise variance = 0.05
SM: squared error in ŝ 0.0452207 0.045682 0.0470846 0.0457491
ML: squared error in ŝ 0.0457162 0.052363 0.0475836 0.0457327
PP: error in s 0.0406318 0.0227558 0.044132 0.0457332
p-value of difference 0 0 5.25571e-10 0.968615
SM: performance index 51.0166 15.8492 49.684 99.6284
ML: performance index 45.7274 -8.67333 41.1795 100.012
noise variance = 0.1
SM: squared error in ŝ 0.0879704 0.0915913 0.0890099 0.0878702
ML: squared error in ŝ 0.0891757 0.103574 0.090115 0.0878727
PP: error in s 0.0742282 0.0434066 0.0829422 0.087871
p-value of difference 0 0 6.7579e-10 0.446729
SM: performance index 46.6775 14.8582 64.4289 100.007
ML: performance index 42.0005 -6.31553 57.9501 99.9861
noise variance = 0.2
SM: squared error in ŝ 0.160096 0.185088 0.162824 0.159106
ML: squared error in ŝ 0.16198 0.192796 0.162506 0.159044
PP: error in s 0.128385 0.0957017 0.149551 0.159045
p-value of difference 0 0 0.805858 0.954085
SM: performance index 55.7204 14.2974 73.689 99.8501
ML: performance index 53.0903 6.90742 74.3201 100.002
noise variance = 0.5
SM: squared error in ŝ 0.346242 0.455679 0.328342 0.313556
ML: squared error in ŝ 0.343421 0.394174 0.313815 0.313384
PP: error in s 0.278469 0.26963 0.287739 0.313387
p-value of difference 1 1 1 0.979591
SM: performance index 69.4072 19.239 80.8715 99.9093
ML: performance index 70.6803 45.9376 87.7152 100.002

Table 2: Same as Table 1 but using MMSE estimator instead of MAP. The parameter estimates are
identical to Table 1 and repeated for convenience only.
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If the objective is to have a prior that is optimal in Bayesian inference, the optimal estimation
method is not maximum likelihood — at least not in the limit of very weak signal corruption
which we analyzed. Rather, it turns out to be a generalization of the “score matching” estimator
originally proposed purely on computational grounds in (Hyvärinen, 2005). Thus, we see that score
matching has also some statistical optimality properties in signal restoration, in addition to its
original motivation, which was computational simplicity. Our simulations confirmed that signal
restoration based on score matching estimation has smaller errors when compared to maximum
likelihood estimation, although the difference may be small in practice and mainly of theoretical
interest.

Moreover, the analysis leads to a new geometric interpretation of statistical estimation, as well
as a new approach to the measurement of how much “interesting structure” there is in a probability
distribution, based on the capacity of denoising using that structure.

A Proof of Theorem 1

Due to differentiablity of the functions, the gradient is zero at the point of MAP estimate. We
obtain by definition of MAP:

ψ(̂s|θ̂) +ψ(x|̂s) = 0 (44)

Trivially, this can be manipulated to give

ψ0(̂s) + [ψ(̂s|θ̂)−ψ0(̂s)] +ψ(x|̂s) = 0 (45)

We make a first-order Taylor expansion with respect to ŝ for the first and last terms on the left-hand
side of (45) to yield

ψ0(s0 + ∆s) + [ψ(̂s|θ̂)−ψ0(̂s)] +ψ(x|s0 + ∆s)

= ψ0(s0) +H0(s0)∆s + [ψ(̂s|θ̂)−ψ0(̂s)]
+ψ(x|s0) +H(x|s0)∆s + o(‖∆s‖) = 0 (46)

which gives, after reordering terms:

[H0(s0) +H(x|s0)]∆s = [ψ0(̂s)−ψ(̂s|θ̂)]− [ψ0(s0) +ψ(x|s0)] + o(‖∆s‖) (47)

Now, make a first-order approximation for the first term in brackets on the right-hand side:

ψ0(̂s)−ψ(̂s|θ̂) = ψ0(s0)−ψ(s0|θ̂) + o(‖∆s‖) (48)

Thus, we can solve the estimation error by multiplying both sides of (47) by M−1. Taking the norm
of both side then yields

‖∆s‖2 = ‖E1 + E2‖2 + o(‖M−1∆s‖2) (49)

with E1 and E2 as given by the theorem. This holds for a given estimate θ̂ and a given data sample
x, which then define the estimate ŝ.

B Proof of Theorem 2

From (10), we obtain simply

J =
1
2

∫
p0(s)

∑
ij

Gij(s)[ψ0,i(s)− ψi(s|θ)][ψ0,j(s)− ψj(s|θ)]ds (50)
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where ψ0,i denotes the i-th element of ψ0, i.e. the derivative of log p0 with respect to si. We will prove
the theorem in the general case, for any functions Gij that fulfill the regularity constraints. The proof
is a simple variant of the partial integration trick used in basic score matching (Hyvärinen, 2005)
based on earlier work by (Pham and Garrat, 1997; Taleb and Jutten, 1999). Simple manipulations
give

J = −
∫
p0(s)

∑
ij

Gij(s)ψ0,i(s)ψj(s|θ)ds +
1
2

∫
p0(s)

∑
ij

Gijψi(s|θ)ψj(s|θ)ds + const. (51)

where the constant only depends on p0 and not on θ. The latter term on the right-hand side of
(51) is clearly equal to the last term of J given in the theorem. What really needs to be proven is
that the first term on the right-hand side of (51) equals the sum of the first two terms of J in the
theorem. Now, we use partial integration as follows:∫

p0(s)Gij(s)ψ0,i(s)ψj(s|θ)ds =
∫
p0(s)

∂ip0(s)
p0(s)

ψj(s|θ)Gij(s)ds

=
∫
∂ip0(s)ψi(s|θ)Gij(s)ds

= p0(s)ψi(s|θ)Gij(s)|si=∞ − p0(s)ψi(s|θ)Gij(s)|si=−∞ −
∫
p0(s)∂i(ψi(s|θ)Gij(s))ds

= −
∫
p0(s)[(∂iGij(s))ψi(s|θ) +Gij(s)∂iψi(s|θ)]ds (52)

where the disappearance of the two terms evaluated at infinity is due to the regularity assumptions
of the theorem. (A more rigorous justification for this partial integration element-by-element is given
in Lemma 4 of (Hyvärinen, 2005)). In (51), we have a sum of such terms over i and j. When we take
the sum, we obtain the first two terms in curly brackets in (12). Thus we have shown the theorem.

C Proof of Theorem 3

Actually, the theorem holds even for gaussian noise that is not i.i.d. We shall prove the theorem in
this general case where

ψ(x|s0) = −Σ−1(x− s0) (53)

which implies H(x|s0) = −Σ−1. We assume that Σ−1 grows infinitely large with respect to some
matrix norm, which is a generalization of σ2 → 0. We have

〈E1, E2〉 =
[
ψ0(s0)−ψ(s0|θ̂)

]T

[H0(s0) +H(x|s0)]
−2 [ψ0(s0) +ψ(x|s0)]

−→
[
ψ0(s0)−ψ(s0|θ̂)

]T

(Σ−1)−2
[
−Σ−1(x− s0)

]
(54)

because the terms with Σ−1, i.e. H(x|s0) and ψ(x|s0) grow to be infinitely large with respect to the
other terms. Now, we can take the expectation with respect to x, given s0, to obtain

Ex|s0{〈E1, E2〉} −→
[
ψ0(s0)−ψ(s0|θ̂)

]T

Σ2
[
−Σ−1(s0 − s0)

]
= 0 (55)

because E{x|s0} = s0 and no other term except for x in the second brackets depends on x, i.e. the
sampling of the observed data. Thus we have proven the orthogonality.
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