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In many multivariate time series, the correlation structure is nonstation-
ary, thatis, it changes over time. The correlation structure may also change
as a function of other cofactors, for example, the identity of the subject in
biomedical data. A fundamental approach for the analysis of such data
is to estimate the correlation structure (connectivities) separately in short
time windows or for different subjects and use existing machine learning
methods, such as principal component analysis (PCA), to summarize or
visualize the changes in connectivity. However, the visualization of such
a straightforward PCA is problematic because the ensuing connectivity
patterns are much more complex objects than, say, spatial patterns. Here,
we develop a new framework for analyzing variability in connectivities
using the PCA approach as the starting point. First, we show how to ana-
lyze and visualize the principal components of connectivity matrices by
a tailor-made rank-two matrix approximation in which we use the outer
product of two orthogonal vectors. This leads to a new kind of transfor-
mation of eigenvectors that is particularly suited for this purpose and
often enables interpretation of the principal component as connectivity
between two groups of variables. Second, we show how to incorporate
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the orthogonality and the rank-two constraint in the estimation of PCA
itself to improve the results. We further provide an interpretation of these
methods in terms of estimation of a probabilistic generative model re-
lated to blind separation of dependent sources. Experiments on brain
imaging data give very promising results.

1 Introduction

Estimation of nonstationary covariances, correlations, or other kinds of sta-
tistical connectivities is a topic of great interest in machine learning (Xuan
& Murphy, 2007; Robinson & Hartemink, 2009; Kolar, Song, Ahmed, &
Xing, 2010; Robinson & Priebe, 2012; Liu, Quinn, Gutmann, & Sugiyama,
2013) and neuroimaging (Kiviniemi et al., 2011; Allen et al., 2012; Leonardi
et al., 2013; Monti et al., 2014). Such analysis would complement widely
used analysis methods for stationary (nonchanging) connectivity. For ex-
ample, spatial independent component analysis (ICA) is often used in fMRI
(Kiviniemi, Kantola, Jauhiainen, Hyvarinen, & Tervonen, 2003; van de Ven,
Formisano, Prvulovic, Roeder, & Linden, 2004; Beckmann, DeLuca, De-
vlin, & Smith, 2005) to find networks that have strong connectivities be-
tween the nodes (voxels). In addition to such ICA, it would be very
useful to find networks that have strongly changing connectivities in
terms of either internetwork or intranetwork connectivity, possibly ignor-
ing networks where the connectivity is strong all the time and does not
change.

It is important that in addition to estimation of nonstationary connec-
tivities, we can summarize and visualize the nonstationarity of the system
in an intuitively appealing way. A simple way of summarizing nonstation-
ary behavior would be to compute some kind of connectivity statistics for
different time segments and then perform PCA (Leonardi et al., 2013) or
clustering (Allen et al., 2012) in the space of those connectivity statistics.
The statistics of one segment could consist of all the elements of the covari-
ance (or correlation) matrix computed inside that segment, for example. In
a similar vein, network science researchers have developed methods for
detection and tracking of communities in dynamically evolving networks
(Greene, Doyle, & Cunningham, 2010; Tantipathananandh & Berger-Wolf,
2011).

The problem with applying existing unsupervised machine learning
methods on the set of connectivity matrices is that they may not lead to
very easily interpretable results due to the particularly high-dimensional
and complex nature of the connectivity data. For example, the weight vec-
tors of principal components, as well as cluster center points, are of the same
form as the connectivity matrices. This means they are much more difficult
to visualize than spatial patterns, which can be visualized like vectors in the
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data space. Such a principal component (or center point) contains weights
for all possible connections, and it is not clear how to summarize it verbally,
for example, in terms of “connectivity between brain area A and brain area
B.” Imposing sparsity as in sparse PCA (Journée, Nesterov, Richtarik, &
Sepulchre, 2010) may help but does not qualitatively change the problem.
Alternatively, using the spatial 2D structure of image data as in 2D PCA
(Yang, Zhang, Frangi, & Yang, 2004) can simplify the results in some cases,
but does not seem to be very suitable for connectivity data.

Here we develop a framework for analyzing the variability of connec-
tivities in terms of spatial patterns, that is, linear functions of the original
data variables. In particular, we attempt to find pairs of components of the
original data (i.e., pairs of spatial patterns) that have maximally variable
connectivity, in the sense that the connectivity between the components is
changing as strongly as possible. The connectivity between such a pair of
spatial components then gives an approximation of a principal component
of connectivity statistics. Such pairs are easier to interpret and visualize in
most cases since we can simply visualize the two spatial patterns (e.g., brain
areas).

The method takes a set of connectivity matrices as input and does not
make any explicit assumptions on how those connectivities are obtained;
in particular, they do not have to be from different time windows. They
could come, for example, from different subjects or different experimental
conditions.

Our method is based on developing a tailor-made low-rank approxima-
tion of connectivity matrices or their principal components. We approxi-
mate a principal component of connectivity by the outer product of two
orthogonal vectors, motivated by the goal to model changes in connectiv-
ities between two different groups of variables. This is in stark contrast to
conventional methods directly based on the eigenvalue decomposition (and
closely related to a second-stage PCA) in which we take the outer product of
an eigenvector with itself. We further develop a method that combines such
a low-rank approximation with the computation of the connectivity-space
PCA itself. The resulting method can also be interpreted as an estimation
of the probabilistic generative model, related to blind separation of linearly
correlated sources.

This article is structured as follows. A new theory of low-rank matrix
approximation by two orthogonal vectors is motivated and presented in
section 2. Objective functions and learning algorithms incorporating the
orthogonal matrix approximation as a constraint in PCA are developed in
section 3. A probabilistic generative model is proposed in section 4. Sim-
ulations are presented in section 5 and experiments on real brain imaging
data in section 6. Connections to related methods are discussed in section 7,
and section 8 concludes the article. Preliminary results were presented by
Hyvarinen, Hirayama, and Kawanabe (2014).
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2 Orthogonal Rank-Two Approximation of Connectivity Component
Matrix

2.1 Motivation for New Matrix Approximation. Denote by C,, t =
1, ..., k a number of connectivity matrices obtained by some well-known
connectivity measures. For example, the C, can be covariance matrices
or correlation matrices. Typically the different matrices could be obtained
from different time segments of a multivariate time series. However, for
the methods developed in this article, it does not really matter what the
difference between the connectivity matrices is; the index t could just as
well refer to different subjects, in which case we are analyzing interindi-
vidual differences or different experimental conditions. For simplicity of
exposition, we usually consider the case of time segments, which leads to
analysis of nonstationarity.

A basic approach for analyzing such matrices is to perform PCA on the
vectorized forms of the matrices, collapsing each matrix into a vector by
scanning it column by column. We consider the vectorized form of C, an
observation at time point r and performing PCA in the usual way (this is
called matrix PCA in the following). Thus, we obtain a number of principal
component matrices that have the same form as C, . Let us denote a principal
component thus obtained by K in the following.

A major problem is that such simple application of PCA leaves open the
question of how to further analyze or visualize the obtained K. In particular,
visualization of such a component is often very difficult.

A low-rank approximation of K could be used to analyze its structure. A
well-known approach is to use a rank-one approximation of K given by the
dominant eigenvector. In such an approach, a single eigenvector is mainly
able to represent a single clique (i.e., a group of closely connected vari-
ables) such that the correlations between those variables (within the clique)
change together. Using many eigenvectors, we can represent many cliques,
but interactions between the cliques (e.g., brain areas) are not explicitly
represented.

Such a conventional low-rank analysis is useful in many cases, but here
we wish to develop further analytical methods for several reasons:

1. The principles of rank-one approximation are already well known,
as are the principles of successive (deflationary) rank-one approxi-
mations by the dominant eigenvectors, which are all accomplished
simply by the eigenvalue decomposition of K.

2. What would be very interesting in many applications (e.g., in brain
imaging) would be to find two groups of variables such that the
connectivity between the two groups is changing strongly. This needs
more than conventional rank-one or rank-two approximations, as
will be seen below.
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Figure 1: Illustration of a prototypical eigenspectrum of a matrix obtained by
PCA of connectivities. This is from the first principal component of the func-
tional connectivity MRI matrices analyzed in section 6. The spectrum is charac-
terized by two dominant eigenvalues of opposite signs.

3. We have found empirically that the K in real data often cannot be
meaningfully represented by a conventional low-rank approxima-
tion. An example of an eigenspectrum of K for a real data set is given
in Figure 1, which shows an interesting pattern of two dominant
eigenvalues with opposite signs. The intuitive and practical mean-
ing of such an eigenstructure needs to be understood and properly
interpreted. The goal of the developments below is to explain the
meaning of such an eigenstructure. We will see that it is in fact closely
connected to point 2 above: modeling changing connectivity between
two groups of variables.

On the other hand, it is clear that we should try to improve the method
by incorporating such low-rank constraints in the optimization problem
itself. We do this in section 3.

2.2 Definition by Two Optimization Problems. Assume we are given
a matrix K that has the same dimensions as a connectivity matrix ob-
tained by a PCA of the connectivity matrices or some similar method. Next,
we consider how to develop a low-rank approximation suitable for this
purpose.

Denote by w and v two vectors in the data space that define brain areas or
something similar. As an important departure from conventional analysis,
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let us also assume that w and v are orthogonal. This is because we want
to analyze connectivities between two different groups of variables (e.g.,
two different brain areas). In conventional rank one approximation, we
would take the outer product of w with itself, and we would be analyzing
connectivity inside a group of variables (those corresponding to nonzero
entries in w); a conventional rank-two approximation ww’ + vv’ simply
analyzes connections inside two groups separately from each other.

Thus, we use the outer product of w and v to model a pattern of con-
nectivity between two regions. Due to the symmetry of the connectivity
matrices, we further use a symmetrized version. This leads to an optimiza-
tion problem in which we attempt to find w and v by minimizing

min |K — (vw! +wv))|?, (2.1)
wlv=0

where the norm is the Frobenius norm. This is a rather unconventional
low-rank approximation since it uses the outer products of two orthogonal
vectors. We call it the orthogonal rank-two approximation.!

The optimization problem can be related to a graph-theoretic problem
where K is a zero-one adjacency matrix and w, v are indicator functions
of two sets of nodes. Orthogonality of w, v then means that the two sets
are disjoint. The optimization problem means that we approximate the
graph by one whose connections consist exactly of all possible connections
between the two sets. What we consider here is a (rather strongly) relaxed
version of such a combinatorial problem, reminiscent of spectral clustering
methods.

Some interpretations of the outer products in terms of nonstationarity in
brain imaging are shown in Figure 2. In the most basic case, Figure 2a, we
can think of w and v as zero-one indicator functions of two brain regions or
other groups of variables. Then the idea is that it is the connectivity between
those two areas that changes, possibly from zero to a positive value, as in
this illustration. This is the simplest possible interpretation and could be
considered approximately correct even if there are some weakly negative
values in w and v. If one of the vectors, say v, has really significant negative
values, what we are modeling is a more complicated connectivity pattern
where the negative values correspond to a change of connectivity of the
opposite sign. For example, this could mean a switching of connectivity. In
some parts of the data, there is strong connectivity between the area defined
by w and the area defined by the positive values of v, while in other parts
of the data, the strong connectivity is between the areas defined by w and

IThe solution is clearly defined only up to a rescaling (and changing the signs) of the
v and w, since if we multiply v by a nonzero constant, dividing w with the same constant
will lead to the same approximation error.
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Figure 2: Tllustration of different connectivity pattern changes modeled by the
orthogonal rank-two framework in the case of brain imaging. In each panel, the
left side gives an illustration of connectivities in terms of brain areas: each oval is
the brain being analyzed, boxes are brain areas, and red lines are connectivities.
The right side shows the matrix produced as an outer product of w and v
(without symmetrization), with the vectors w and v given as the line plots at
the left and lower edges; black is negative, white positive, gray zero. (a) If both
w and v are nonnegative, we are modeling the change of connectivity between
two groups of variables; in the simplest case, the connectivity could be zero
for some 7 and positive for others. (b) If one of the vectors, say v, has negative
values as well, we could be modeling a case where the connectivity from w
switches between the two brain areas, defined by the positive and negative
entries in v, respectively.

&

the negative parts of v. This simple case is illustrated in Figure 2b.? In the
most general case, where w and v have both positive and negative values,
the interpretation is more complex, and the most meaningful interpretation
may be obtained by assuming that at least some of the negative values are
small and insignificant.

The optimization problem in equation 2.1 is closely related to the follow-
ing problem:

w!Kv. (2.2)

Iwl=lv=1,wTv=0

In the following, we study these two simple optimization problems, and
their connection.

2However, the exact interpretation depends on the baseline of connectivities, the in-
terpretation above assuming that the connectivity principal component (dot product
between K and C_) has the same sign (or is zero) for all 7. If the connectivity component
fluctuates around zero, the connectivity would be switching in the sense that sometimes
the connection between the area defined by w has connectivities of the same sign as the
signs of entries in v and sometimes of the opposite sign.
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2.3 Theory of Orthogonal Rank Two Approximation. To solve the op-
timization problem in equation 2.2, we have the following theorem. (While
most proofs are given in the appendix, we prove this theorem here since
the idea of the proof is important for the rest of the article.)

Theorem 1. Assume that K is a symmetric (real-valued) matrix and the largest
and smallest eigenvalues of K are distinct. (Here, “largest” and “smallest” mean
according to ordinary sorting, not using absolute values.) Then a solution of the
optimization problem, equation 2.2, is given by

1 1

w= E(emux te ﬁ(emux

—e (2.3)

min)

min)’

where e, and e, are the eigenvectors corresponding to the smallest and largest
eigenvalues of K. The whole set of solutions is given by {(w,v), (—w, —v),
(v, w), (—v, —w)}. Denoting by A, and X, the largest and smallest eigenvalues

of K, the value of the objective at optimum is equal to (X, — A

max min )

Proof. Make the change of variables

1

ﬁ(w—l—v), b= L(w—v), (2.4)

N

a
which changes the optimization problem to

1
max  -[a’Ka—b'Kb], 2.5)
llall=[Ibl|=1,a"b=0 2

where we have used the equality

2wl Kv = %(w +)TKw+v) — %(w —v)TKw-v)

=a’'Ka — b"Kb. (2.6)

To maximize this without the orthogonality constraint, it is clear that we
need to choose a so that it is the eigenvector corresponding to the largest
eigenvalue and b so that it is the eigenvector corresponding to the smallest
eigenvalue. Furthermore, these two vectors are necessarily orthogonal, so
they maximize the objective even with the orthogonality constraint. The
inverse of the transformation in equation 2.4 is given by

_ b
V2

!
V2

w (a+Db), v (a—Db), (2.7)
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which gives equation 2.3. The value of objective function is then clearly
given by half of the difference of eigenvalues. The whole set of solutions
comes from considering the indeterminacy of the sign of normalized eigen-
vectors and the symmetry between w and v.

The optimization theorem applies for practically any connectivity struc-
ture since there is no assumption on the rank of the matrix K or the signs
of its eigenvalues. However, the theorem is certainly more interesting in
the case where the largest and smallest eigenvalues are very different (e.g.,
having different signs), so that the objective function obtains a relatively
large value.

If the matrix has rank two, the whole structure of the matrix can be
explained by two eigenvectors. We could analyze the variance explained
by the orthogonal rank-two approximation, which should be large if the
matrix is close to rank two. The following theorem provides the basis for
such analysis and shows the connection between the two optimization
problems, equations 2.1 and 2.2; they are essentially equivalent.

Theorem 2. Consider the problem of approximating a symmetric matrix by a
symmetrized outer product of two orthogonal vectors in equation 2.1 where the
norm is the Frobenius norm. Make the assumptions of theorem 1. Then,

1. The set of optimizing w and v is the same, up to scaling constants, as the
set of optimizing w and v in the optimization problem, equation 2.2, treated

in theorem 1.

2. The value of the objective at optimum is equal to K[> — (A0 — Aypin)
3. The objective is zero iff K has rank two and A,,;,, = —A,,,,,-

The proof is given in the appendix.

Note that in theorem 2, we cannot approximate every rank-two matrix
exactly because we do not have separate scaling coefficients for the two
eigenvectors. In a conventional rank-two approximation, we would have
the two eigenvalues as such scaling coefficients, and we would be able
to exactly approximate any rank-two matrix. Here, we obtain an exact
approximation only if the two eigenvalues have opposite signs but equal
absolute values. Thus, our approximation is exact precisely for matrices
with the special plus-minus structure mentioned in section 2.1.

The important implication of the theory presented is that in our opti-
mization problem, we do not use the eigenvectors themselves. This is in
stark contrast to conventional low-rank approximations, which are based
on using the outer products of the eigenvectors with themselves. Thus, in
conventional methods, the eigenvectors themselves are supposed to give
the interesting components in the data space. Here, we have shown that we
need to transform the eigenvectors to have meaningful components in the
low-rank approximation.
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Note that our rank-two approximation is not positive semidefinite in gen-
eral. As in ordinary PCA, we are mainly interested in modeling deviations
from the mean, which precludes any constraints related to nonnegativity.

3 Constrained PCA Learning

The analysis in the preceding section gives new insight into the results ob-
tained by applying PCA to the set of connectivity matrices C_, as performed,
for example, by Leonardi et al. (2013). Next, we propose to directly inte-
grate the orthogonal rank-two assumption into a PCA objective function. In
particular, matrix PCA clearly suffers from the problem that if two eigenval-
ues of the covariance matrix of connectivities are equal, the corresponding
eigenvectors are not well defined and are likely to mix together those two
source pairs. Finding directly a low-rank solution to a PCA-like objective is
likely to alleviate this problem, as will be confirmed by the simulations in
section 5.

3.1 Definition of Constrained PCA Objective. Consider the original
connectivity matricesby C,, 7 =1, ..., k as in the preceding section. In one
time segment (or subject), the connectivity between the two areas can be
intuitively defined as wTCIv, which, in the case of covariance matrices, is
actually the covariance of w’x and v’ x. We want to maximize the variance
of this quantity in order to find components that explain as much of the
nonstationary (or otherwise changing) connectivity structure as possible.
We constrain w and v in the same way as in theorem 1: their norms are
equal to unity, and they are orthogonal. Thus, we obtain the (preliminary
form of the) optimization problem:

Iwl=llvi=1,w"

k 2
1 T 2 1 T
max o T; (w C.v)" — (k ET w Ctv> . (3.1)

To simplify this, let us subtract the average connectivities to obtain the
centered connectivity matrices,

k
- 1
C =C_ —— E . 2
T T kiZICz’ (3 )

so that )", CT = 0. Thus, we obtain the final optimization problem, which
is equivalent to equation 3.1, as

Iwll=[lvi=1,w"

k
'C.v)2 3.3
max o ; w C,v) (3.3)
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To understand the meaning of such constrained PCA, it is useful to con-
sider the basic case of two connectivity matrices; k = 2. Then the subtraction
of average connectivity means that C; = —C, = 1(C, — C,). Constrained
PCA is then simply based on analyzing the difference of the two connectiv-
ities, and equation 3.3 becomes the optimization problem in equation 2.2,
the squaring being immaterial. In fact, the unconstrained principal compo-
nent is simply obtained by K = C; — C, up to a scaling. So the case of two
connectivity matrices reduces to the theory in section 2, but for k > 3, we
need to develop a new algorithm.

3.2 Algorithm for Constrained PCA. Next, we consider the general
optimization problem formulated in equation 3.3. To find a simple and
efficient method for the optimization problem in equation 3.3, we formulate
the following alternative problem, inspired by Journée et al. (2010),

> rla’Ca-b"Cb], (34)

max
lall=Ibll=(r|=1

with an auxiliary variable vector r = (1, ..., ), and a, b defined in equa-
tion 2.4. This modified optimization problem is based on two ideas, already
used in the proof of theorem 1. First, we have by simple linear algebra,

w/Mv = %(W—FV)TM(W—FV) — %(w —v)'M((w —v) (3.5)

for any symmetric matrix M. Thus, by making a change of variables in
equation 2.4, we obtain the bracketed expression above.
Second, the optimal r_ are trivially obtained as

r. =cla’C,a—b'C b], (3.6)

where the proportionality constant c is introduced due to the unit norm
constraintbutis immaterial. Plugging this into equation 3.4 gives something
related to the sum of squares in equation 3.3, although the existence of ¢
makes the situation a bit more complicated.

To formally show the equivalence of the two optimization problems, we
have the following theorem:

Theorem 3. The vectors w, v are a solution of the optimization problem, equation
3.3, if and only if a and b as transformed in equation 2.4 are a solution (together
with some r) of the optimization problem, equation 3.4.

The theorem is proven in the appendix.
The utility of this new formulation is that we can apply a simple al-
ternating optimization method. The solution for r given a, b was given in
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equation 3.6, where the constant c can be set to any positive value without
affecting the algorithm. On the other hand, given a running estimate r and
considering it fixed, we have the optimization problem

max a'Ma—b"Mb (3.7)
lall=[Ibl|=1
with
M=) rC,. (3.8)

which was already considered in the proof of theorem 1 and is solved by
performing an eigenvalue decomposition of M and taking as a the eigen-
vector corresponding to the largest eigenvalue and as b the eigenvector
corresponding to the smallest eigenvalue.

In fact, the eigenvectors a and b are necessarily orthogonal (unless in
a very degenerate case, where all the eigenvalues are equal), and thus we
obtain a’b = 0 automatically. Here, we see another really useful property
of this reformulation: the orthogonality constraint in equation 3.3 can be
omitted since the optimum will necessarily produce orthogonal a and b,
which implies orthogonal w and v.

Thus, we obtain a simple algorithm that contains no step-size parameters
and in which every step is guaranteed, by construction, not to decrease the
objective function. It is reasonable to start the optimization at a point given
by the orthogonal rank-two approximation of matrix PCA, which means
that maximization of this objective can be considered a fine-tuning of matrix
PCA results.

3.3 Estimating Many Components. The methods so far presented in
this section consider a single principal component pair of connectivities.
Next, we consider estimation of many principal component pairs.

Consider first the case of constrained PCA. We extend it to many com-
ponent pairs by well-known deflation (orthogonal projection) methods.
However, here two distinct approaches seem possible:

1. A basic but very stringent condition would be to impose the orthog-
onality between all the vectors w; and v, estimated. However, this
may be too strict, since we may want to have pairs in which one of
the components is the same as or similar to a previously estimated
one.

2. In the matrix space, we can restrict the different rank-two approxi-
mations w,v] +v,w! to be orthogonal in the sense that tr([w,v] +
viw/][w;v] +v,w]]) = 0for i # j. This can be simply implemented

T

by projecting the one-dimensional subspace spanned by w;v! + v,w!

away from the set of connectivity matrices.
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In the matrix-level PCA case in section 2, another solution would be
to apply orthogonal rank-two approximation to principal component ma-
trices obtained by conventional PCA of the connectivity matrices; in such
conventional PCA, many components are defined in the usual way.

We propose here to use the orthogonality of rank-two approximations
(case 2 above) in both the constrained and the matrix-level PCA cases. In
practice, it does not seem to lead to too similar components, and thus the
orthogonality does not seem to be too relaxed with this method. It is also
more natural even in the case of matrix PCA, if the results of matrix PCA
are to be reduced to the rank-two approximation afterward anyway:.

3.4 Robust Variant. It is possible that the objective in equation 3.3 is
too sensitive to connectivities in a single connectivity matrix, which might
be due to outliers. To alleviate this problem, we can easily develop a more
robust version, replacing squaring by an absolute value operator as

. Z lw'C_v]. (3.9)

wll= HVII 1W’

This objective can be optimized using a similar alternating variables method
by defining the relaxed optimization problem as

Zr [a"C,a—b'C, b]. (3.10)

max
lall=lbll=1,r e{-1.+1}

Given the r_, the optimal a, b are obtained as in the basic constrained PCA
algorithm. The only change is that here, the optimal 7, are obtained as

r, =sign(@ C,a—b’C_b). (3.11)
It is easy to show that this algorithm optimizes equation 3.9.

4 Probabilistic Generative Model

To get further insight into the methods in the preceding section, it is useful to
formulate a generative probabilistic model such that the methods presented
can be considered to estimate parameters in it. Again, we develop the
model for the case where the connectivity matrices come from different
time segments, but the model is applicable for the general case where the
meaning of the index t has an arbitrary meaning. The connectivity matrices
are assumed to be covariance or correlation matrices here.
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4.1 Basic Idea. To present the basic idea, we assume we have just two
time segments. In both, the data follow a linear mixing model, with stan-
dardized, possibly gaussian components s;

x = Hs, 4.1)

where the number of s; is equal to the number of the x; and H is square and
orthogonal. Assume the matrix H is the same for the entire data, but the
statistics of the components change as follows. In the first segment, all the s;
are independent, but in the second segment, we have the perfect correlation
s; = s,, while all the other components are independent. Then we have

C,=HHT, (4.2)
C,=HH" + h;h! +h,h], (4.3)

where h; is the ith column of H, and the matrix principal component, as
shown in section 3.1, is given by

K=C, - C, =h/h) +h,h{, (4.4)

so by theorem 2, optimization of equation 2.2 will find w = h, and v = h,.
This shows that the methods considered in this article can be seen to analyze
changes in correlation structure of components in a model related to blind
source separation or independent component analysis (ICA) (Comon, 1994;
Hyvarinen, Karhunen, & Oja, 2001). Various extensions relaxing the inde-
pendent assumption have been developed before (see, in particular, Sasaki,
Gutmann, Shouno, & Hyvarinen, 2014, for a related method considering
linearly correlated components).

4.2 Definition of Probabilistic Model. Next, we define the generative
model with more generality. To begin, assume the data are generated by a
generative model as in equation 4.1, with gaussian and standardized s;. In
the following, we model the nonstationary covariance of two components,
which can be assumed to be those with indices 1 and 2 without loss of
generality. The nonstationary covariance of h; and h, is modeled by a
latent variable z(7). In particular, the ith, jth element of the precision matrix
of x in time segment 7 is assumed to be equal to z(7),

cov(s(t)) ' =1+ z(t)[eleg + e2e1T], (4.5)

where e, is the ith canonical basis vector (all zeros but the ith entry equal
one). We assume
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> z(r) =0, (4.6)

T

which means that over the whole data set, the precision matrix of s is
identity, as can be seen by summing equation 4.5 over t. Further, we have
to assume

|z(t)| < 1, forall z, 4.7)

which preserves the positive definiteness of the precision matrix by making
it diagonally dominant.

We further assume that H is orthogonal. This assumption is made since
we want the components to be mainly nonoverlapping, representing groups
of variables that do not contain the same variables. (If the data were
whitened, we would find the typical assumption of uncorrelatedness used
in ICA.) This assumption may seem unrealistic, but we point out that it is
made in this theoretical generative model only, and in the actual method
explained in the preceding section, the constraint on orthogonality is essen-
tially weaker, as explained in section 3.3.

To estimate the model, we have the following theorem, proven in the
appendix:

Theorem 4. Assume that the data follow the model specified by equations 4.5 to
4.7 and 4.1. Assume further that H is orthogonal, and that z follows a uniform
prior in the infinitesimal interval [—e, €]. Then the Taylor approximation of the log
likelihood of the model has the leading term (ignoring constant terms not depending
on the parameters)

3
log L(H) = % A (4.8)

where C, is the covariance matrix in time segment T with average covariances
subtracted as in equation 3.2.

Note that here, the first-order and second-order terms (in €) disappear
since they correspond to a gaussian likelihood of orthogonally transformed
data, which is constant. Using such an infinitesimal € is justified by the fact
that we are considering an infinitesimal departure from stationarity, and in
fact the term of O(e®) would be constant in the case of stationarity.

Also, since we used the orthogonality of H in computing its determinant
(the normalization constant) in the proof, this likelihood is valid only for
orthogonal H. In fact, it explodes if H is allowed to go infinitely far from
the origin.

What we see in this theorem is that the constrained PCA objective in
equation 3.3 appears as a first-order approximation of the likelihood. The
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first-order approximation means that the dependencies between the com-
ponents are infinitesimal. This provides the link between our heuristically
defined objective and estimation of the generative model.

Our model considers, for simplicity, a single component pair. More than
one component pair can be estimated by well-known deflationary methods,
discussed in section 3.3.

It should be noted that the probabilistic generative model as presented
here is in fact a special case of generative models that can be estimated
by the practical algorithms presented in earlier sections. In particular, we
assumed here that the average connectivity is zero (see equation 4.6), which
is not at all necessary in the practical algorithm. Likewise, we assumed that
the whole matrix H is orthogonal, while in the practical algorithm, we
use a more much more relaxed orthogonality constraint, as discussed in
section 3.3. These extra constraints make the model much more similar to
ICA and BSS methods and amenable to mathematical analysis. They should
thus be seen as mathematical simplifications and not real restrictions on the
data to be analyzed in practice.

4.3 More Realistic Model with Changing Variances. A problem in
practice is that the simple model above ignores an essential aspect of many
kinds of real data; the nonstationarity of the variances of observed variables.
To make the model more realistic, we thus add separate terms modeling
the changing variances (rescaling) of the data variables as

x = D_Hs, (4.9)

where D, is a random diagonal matrix modeling the changing variances
of the data variables; its expectation is equal to identity. We do not make
strong assumptions on D_, since in the developments below, we will see that
it essentially disappears when we normalize the data covariance matrices
by calculating the correlation coefficient matrices.

The justification for introducing the changing variances is the empirical
observation that covariances can sometimes get unrealistically large values,
possibly due to outliers or faulty sensors that lead to extremely high vari-
ances for some of the observed variables. In practice, most research uses
the correlation coefficients instead of covariances, while the theory in the
preceding section implies we should use covariances. As we see below, the
model of changing variances removes this theoretical discrepancy, showing
that correlation coefficients are actually the connectivity measure implied
by this theory.

In this model, we need to introduce a further assumption on h, and h,:
they must be nonoverlapping in the sense that

> i =0. (4.10)
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This is necessary for the likelihood approximation because it means that
the nonstationarity does not affect the diagonal of the inverse covariance
matrix, and as a first-order approximation, it does not affect the covariances
of the observed variables. (For more details, see the proof of theorem 5.)
Such an assumption also makes intuitive sense, since it is essentially a
stronger form of the orthogonality constraint, and in fact a form that more
strictly formalizes the intuitive idea that h; and h, should model different
sets of variables.®

To estimate the modified model, we have the following theorem (proven
in the appendix), which again gives an approximate log likelihood is equal
to our heuristic objective used in section 3.2:

Theorem 5. Assume that the data follow the model specified by equations 4.5 to
4.7 and 4.9. Assume further that H is orthogonal and, in important contrast to
theorem 4, that the first two columns are nonoverlapping in the sense of equation
4.10. Assume further that z follows a uniform prior in the infinitesimal interval
[—e€, €]. Then the Taylor approximation of the log likelihood of the model has the
leading term (ignoring constant terms not depending on the parameters):

3
log L(H) = % A “11)

T

where C, is the correlation coefficient matrix with average correlation coefficients
removed.

This approximation does not hold for covariances in this model, in con-
trast to theorem 4.

5 Simulations

We performed simulations to investigate how the methods presented are
capable of estimating the components for data coming from our generative
models in section 4.

We have three variants of orthogonal connectivity factorization:

OCF1: The orthogonal rank-two decomposition of matrix PCA results
(see section 2)

OCEF2: The constrained PCA algorithm or fine-tuning (see section 3)

OCEF3: The robust version of the constrained PCA algorithm (see sec-
tion 3.4)

Furthermore, as baseline, we used

3This assumption of nonoverlappingness cannot be made on all the columns of H as
it is full rank. Instead, it will only be made pairwise on the pairs correspond to correlated
components.
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EVD: Ordinary rank-two approximation using e .., e ..
eigen-value decomposition of matrix PCA results

obtained by

We applied these four methods on connectivity matrices given by cor-
relation coefficients. In addition, we applied the basic method OCF1 on
connectivities given by covariances, which is denoted by OCF1cov.

We simulated six kinds of data sets based on our generative models,
giving rise to simulations 1 to 6:

Simulation 1: Basic case with one nonstationary component pair, where
all OCF methods are supposed to work (in contrast to
EVD)

Simulation 2: Introducing random scaling of observed variables as in
section 4.3 to see what difference this makes for the dif-
ferent OCF methods

Simulation 3: Further introducing overlap between the spatial patterns,
that is, violating equation 4.10 to see the significance of
this constraint

Simulation 4: Going back to the basic case and introducing strong out-
liers to investigate the robustness of the different methods

Simulation 5: Like simulation 1, but now with two nonstationary com-
ponents

Simulation 6: Making simulation 5 more difficult by equalizing the sta-
tistical properties (especially variances) of the two com-
ponents

The dimension of the data was 12, which is rather small but enabled us
to run the algorithm thousands of times in a reasonable time frame. The
number of time points was 5000 which can be considered realistic in many
brain imaging scenarios (for fMRI, assuming many subjects) and is not
very different from what we have in the real-data experiments in the next
section.

The changes in the correlations were created blockwise, so that in each
block (segment) of 250 points (similar to a typical resting-state fMRI ses-
sion), the correlation structure was randomly generated, with correlation
coefficients between correlated source pairs drawn from a uniform distri-
bution in [-0.5, 0.5]. In the algorithm, the size of each segment in which
the connectivity was computed was not fixed to the right value but took
different values: 50, 100, 250, 200, and 750 were used. For each setting, 1000
data sets (trials) were randomly generated, and the results shown are av-
eraged over them. As in the theory in section 4, the matrix H was always
constrained orthogonal.

In the first four simulations, there were 12 gaussian sources, all of them
independent except for one pair. In the most basic one, simulation 1, there
was no overlap between the spatial patterns between the sources, and there
was no effect of variable scaling of the observed variables; that is, we used
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the generating model in section 4.2 with constraint 4.10. In simulation 2, the
observed variables had variable scaling in section 4.3. In simulation 3, the
spatial patterns had an overlap of 25%. In simulation 4, two strong outliers
(10 times the standard deviation of data) were introduced in the data.

Furthermore, we created two simulations (numbers 5 and 6) in which
there were two pairs of connected sources (both without overlap and with-
out variance scaling). In simulation 5, the connectivities between the pairs
were created independently of each other, while in simulation 6, we created
the two pairs so that the statistical properties (mean and variance) of the
connectivities were the same for the two pairs.

The estimation error was computed as a simple mean-squared error and
normalized so that it gives the proportion of error of the parameter vector
norm. For visibility, the Briggs logarithms are plotted.

The results are in Figure 3. In simulation 1, we see that all proposed
methods work quite well, while the baseline (EVD) is much worse. Unsur-
prisingly, the errors are minimized when the window size in the algorithm
is equal to the window size in data generation. In simulation 2, we see
that when the observed variables are randomly rescaled, using covariance
does not work well at all, while correlations coefficients do work very well
with all the methods. In simulation 3, we see that introducing overlap be-
tween the spatial patterns reduces the performance of all the methods rather
uniformly but not dramatically. Introducing outliers in simulation 4 makes
most methods fail, but the robust method (OCFE3) still works. Interestingly, it
is now important that the window size is not too large, presumably because
with a large window, the proportion of connectivity matrices destroyed by
outliers is larger. It should also be noted that in most simulations, the robust
method (OCF3) has slightly larger errors, which indicates a typical trade-off
with robust methods.

The basic case of two source pairs in simulation 5 is not very different
from the case of a single source pair. However, we see some advantage for
OCEF?2 (fine-tuning by constrained PCA), presumably because with more
source pairs, matrix PCA with orthogonal rank-two approximation may
mix them up if the eigenvalues are not clearly distinct. Such a phenomenon
is simulated more explicitly in simulation 6, where the eigenvalues are set
equal.

The case of two source pairs with identical connectivity statistics in simu-
lation 6 is quite interesting, showing that OCF2 (fine-tuning by constrained
PCA) results in a major improvement. This is understandable based on
the theoretic argument that PCA cannot distinguish the eigenvectors in the
case where the eigenvalues are equal. Actually, it is a bit surprising that
OCF1 based on matrix PCA works at all in this case, which is presumably
because the randomness in the data generation process created slightly
unequal eigenvalues and also because any mixing of eigenvectors in the
matrix PCA may be partly compensated by the EVD of the matrix principal
component.
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Figure 3: Main simulations with artificial data. Each panel is one simulation
(type of data set), and each curve gives estimation errors for one variant of
the algorithm. Vertical axis: Estimation errors, which were given a ceiling of
one (zero in log scale) for visualization purposes. Horizontal axis: window size
used in the algorithm (the window size in data generation was always the
same). Standard errors of the mean are smaller than marker size and thus not
plotted.
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Asymptotic behaviour of error
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Figure4: Further simulations with artificial data on consistency. Log-estimation
error as a function of sample size when the sample size grows larger. Standard
deviation given as error bar.

To recapitulate, OCF2 seems to be the best method in the comparison
simulations, except that the robust variant OCF3 is better with outliers.
OCF1 also performs quite well. We emphasize that OCF1 (matrix PCA with
orthogonal rank-two approximation) is also a new method, so the fact that
finetuning (OCF2) makes little difference in most simulations is not dis-
appointing; it merely shows that our basic approach using the orthogonal
rank-two approximation works well enough in itself and the more sophis-
ticated developments may not always be needed. In contrast, the baseline
(EVD) performed very badly.

Finally, we did a further simulation to investigate the consistency of the
estimator. We took the basic setting in the first simulation and used OCFE2,
but varied the sample size to see if the estimation error seems to go to zero,
which would indicate consistency of the estimator and identifiability of the
model in this specific case. The result is in Figure 4. The error clearly seems
to go to zero, which indicates consistency.

6 Experiments on Brain Imaging Data

To further validate the model, we performed experiments on two kinds
of real brain imaging data, investigating both intersubject variability of
connectivity and nonstationarity of connectivity.
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6.1 Multisubject Functional Connectivity MRI Data

6.1.1 Methods. We first applied the method on public domain func-
tional connectomics data from the USC Multimodal Connectivity Database
(http:/ /umcd.humanconnectomeproject.org). The data consist of func-
tional connectivity magnetic resonance imaging (fcMRI) resting-state data.
We selected the 103 subjects measured at Oulu University Hospital, tagged
“Oulu.” The database provides one functional connectivity matrix per sub-
ject, consisting of correlations of activities between 177 regions of interest
(ROI). Thus, we analyze the intersubject variability of connectivities in this
experiment.

We used the same four different methods as in the simulations, that is,
OCF1: Matrix PCA followed by orthogonal rank-two decomposition (see
section 2); OCF2: constrained PCA (see section 3); and OCF3: robust variant
of constrained PCA (see section 3.4). As a baseline for comparison, we also
considered EVD, the original eigenvectors e, , e . of the matrix principal
components (which are related to the w, v of the first method by a 90 degree
rotation as in theorem 1).

The resulting 3D spatial patterns were plotted so that the center of each
ROI was plotted as a dot. Very small values were plotted as gray dots,
while clearly positive and negative values were plotted as red and blue
dots, respectively, so that the diameter of the dot was proportional to the
absolute value. To visualize the 3D structure, the dots were projected onto
three planes: sagittal (brain viewed from the side), horizontal (brain viewed
from above), and frontal (brain viewed from the front or, equivalently, from
the back). The projections were transparent, using no occlusion information
(i.e., the visualization used a “glass brain”). As a background, we plotted
a 2D projection of the gray matter in the ICBM 152 atlas (version 2009a)
template brain volume for normal population (Fonov et al., 2011). Due
to an apparent scaling incompatibility between the two data sources, the
coordinates of the ROI centers were increased by 7%, which seemed to
provide a better fit.

Note that the signs of w and v are not determined by the estima-
tion methods, similar to PCA or ICA. Purely for the purposes of visu-
alization, we determine the signs so that the strongest coefficients are
positive.

To further compare the methods quantitatively, we computed two
statistics of the resulting representations: the sparsity of the spatial pat-
terns, which was defined as a normalized version of the fourth (non-
centered) moment, (}_; wf + >, v}/ (X, w? + >, v?)?/n, and a measure of
overlap, which was a normalized version of the correlation of the squares,
O w2y /> w2/ (v?)2. (In these measures, any mean was not sub-
tracted.) We also computed the similarities of the resulting spatial patterns
for the three proposed methods.
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1st component pair for fcMRI

OCF1: Matrix PCA + orth rank-two approx

EVD: Matrix PCA + ordinary EVD

Figure 5: Results on multisubject fcMRI. The first principal component pair
obtained by the two methods. (Top panel) Matrix principal component analyzed
by orthogonal rank-two approximation. (Bottom panel) For comparison, matrix
PC analyzed by ordinary EVD. In each panel, the upper and lower parts give the
two spatial patterns w, v in the pair obtained, seen from three different angles.
The brains are facing right.

6.1.2 Results and Discussion. The first two component pairs for OCF1, ma-
trix PCA followed by the orthogonal rank-two decomposition, are shown
in the upper panels of Figures 5 and 6.

The red (positive) areas of the first principal component pair (see Fig-
ure 5) reveal somewhat surprisingly two well-known resting state net-
work configurations. The v resembles markedly the default mode network
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2nd component pair for fcMRI

OCF1: Matrix PCA + orth rank-two approx

EVD: Matrix PCA + ordinary EVD

Figure 6: Results on multisubject fcMRI: the second principal component pair
obtained by the two methods. For the legend, see Figure 5.

(DMN) with emphasis on the ventromedial prefrontal cortex, as well as
some posterior cingulate (PCC) participation. The other spatial pattern, w,
is formed from auditory, language areas, and sensorimotor cortices and can
be regarded to form a task-positive network (TPN); however, it has to be
noted that major medial cerebral arteries lie in these areas.

The second component pair (see Figure 6) again has DMN in v, with a bit
more emphasis on the PCC and angular gyri and less on upper frontal areas.
The w seems to consist of frontal areas of the central executive network
(CEN), interestingly on both sides of the v's DMN frontal regions.
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These results are intriguing since the method finds well-known func-
tional brain networks based on the interindividual variability. Previously,
similar networks have been found by spatial ICA (Kiviniemi et al., 2003;
van de Ven, Formisano, Prvulovic, Roeder, & Linden, 2004; Beckmann et al.,
2005). In particular, the DMN seems to be most variable in its connectivity
with TPN and CEN. These spatial patterns cover a substantial part of the
frontoparietal functional networks. It is possible that this variability of con-
nectivity is related to the intrasubject temporal nonstationarity of the DMN
found in a previous ICA analysis (Kiviniemi et al., 2011). As the DMN is
one of the most robust components in spatial ICA of resting-state activity
in single subjects, the intersubject variability of DMN connectivity suggests
that it performs different tasks reflecting the individual brain function of
each subject.

For comparison, we also plot the eigenvectors e ,e . of the matrix
principal components corresponding to the smallest and largest eigenvalues
in the lower panels of Figures 5 and 6. Clearly these spatial patterns are less
localized and more overlapping, and thus it is difficult to associate them
with individual brain areas.

Constrained PCA results (OCF2, OCFE3) are not plotted here since they are
visually indistinguishable from OCF1. This is at least partly attributable to
the fact that OCF2 and OCF3 used OCF1 as the initial point of optimization
iterations.

In addition to the spatial patterns, we can also compute the time courses
of the components for each subject, which could give rise to further analyses.
Here, we simply note that the average connectivity between the two areas in
the first principal component were negative, while for the second principal
component, they were positive (results not shown). These values are well
in line with the interpretation given above.

The quantitative comparison of results for the four methods is in Figure 7.
We see that all the three methods in this article improve the sparsity and re-
duce the overlap between the spatial patterns quite substantially compared
to the baseline given by the eigenvectors of matrix PC (EVD). (Note that
the reduced overlap has nothing to do with orthogonality; vector pairs are
orthogonal for all the methods.) On the other hand, it is difficult to see any
differences between the new proposed methods regarding these measures.
Comparison of similarities of OCF1 and OCF2 components (pairs) in
Figure 7c shows that while the two first component pairs are very similar,
further components actually have some differences, and the fourth compo-
nent pairs are completely different. In contrast, the robust version (OCF3) is
very similar to OCF1 for all the five computed components (see Figure 7d).

Regarding the computation times in this analysis, we briefly mention that
the total computation time was on the order of 1 minute for all the results in
this section, most of which was spent in computation of basic constrained
PCA (fine-tuning). Perhaps surprisingly, the robust version was much faster
than the basic constrained PCA.
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Figure 7: Quantitative comparison of methods based on fcMRI results. (a) The
sparsities of fcMRI component spatial patterns for different methods. Meth-
ods are from left to right: EVD, the original eigenvectors of the matrix PCA
(baseline); OCF1, matrix PCA with orthogonal rank-two decomposition; OCF2,
constrained PCA; OCE3, constrained PCA with the robust version of objective.
(b) The overlaps of fcMRI components for different methods; same as in panel
a. (c) Similarities of estimated components for OCF1 and OCF2. The color codes
the absolute values of correlations of the spatial patterns, taking the maximum
over the two permutations of v and w. (d) As in panel ¢, but using a robust
version of constrained PCA (OCF3 instead of OCF2).

6.2 Nonstationarity in Magnetoencephalographic Data

6.2.1 Methods. Second, we investigated nonstationary connectivity in
magnetoencephalographic (MEG) data from Ramkumar, Parkkonen, Hari,
and Hyvarinen (2012). The data comprised a single 12 minute session
recorded on a Elekta Neuromag 306-channel neuromagnetometer. The sub-
ject received alternating stimulation of visual, auditory, and tactile modali-
ties, interspersed with rest periods. As basic preprocessing, we applied the
signal space separation method (Taulu, Kajola, & Simola, 2004) to attenuate
artifacts and motion correction and downsampled the data to 150 Hz.
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1st component pair for MEG amplitudes

OCF1: Matrix PCA + orth rank-two approx

‘Rl 'Rer

OCF2: Constrained PCA
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Figure 8: Results on the nonstationarity of MEG amplitudes: the first principal
component pair obtained by the two methods. (Top panel) Matrix principal
component analyzed by orthogonal rank-two approximation. (Bottom panel)
Constrained PCA results. In each panel, the left and right parts give the two
spatial patterns in the pair obtained.

We first Morlet-filtered the data using a single complex-valued Morlet
filter with a center frequency of 10 Hz to extract alpha-range activity. We
next performed ICA on the Morlet-filtered MEG data to separate sources
of rhythmic activity. Finally, we computed the energies (envelopes) of the
sources and used these as input to the proposed method.

Correlation coefficient matrices between the energies of independent
components were computed in nonoverlapping time windows of a length
of 5 seconds. Two variants of the method, OCF1 or matrix PCA followed
by rank-two approximation (see section 2), and OCF2 or constrained PCA
(see section 3) were applied on the data. Note that w and v could be inter-
changed, and we have here manually switched them in some plots to make
the results of the two methods as similar as possible for ease of visualization.

6.2.2 Results and Discussion. We show the first component pair (w, v)
for the two methods in Figure 8 and the second component pair in Fig-
ure 9. The spatial patterns are visualized on the measurement helmet by
adding together the spatial patterns (squares of columns of mixing matrix)
of the underlying independent components that contribute to each connec-
tivity component. Thus, we obtain a rough plot of the spatial extents of the
components.

In general, the results using constrained PCA look cleaner and more
plausible. The first component pair (see Figure 8, lower panel) shows that
the strongest nonstationarity is in the connectivity between an occipito-
parietal area and the left temporal area. The second component pair
(see Figure 9, lower panel) shows that another strongly nonstationary
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2nd component pair for MEG amplitudes

OCF1: Matrix PCA + orth rank-two approx
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Figure 9: Results on the nonstationarity of MEG amplitudes: the second prin-
cipal component pair obtained by the two methods. See the Figure 8 legend.

connectivity is between inferior occipital areas and slightly superior
occipito-parietal areas.

7 Discussion

Next, we discuss the relation of our methods to well-known methods.

7.1 PARAFAC as Constrained PCA. The method has interesting rela-
tions to parallel factor analysis (PARAFAC) (Harshman, 1970), also called
CANDECOMP, one of the simplest tensor decompositions (the collection
of covariances can be considered a tensor). Let us first consider basic
PARAFAC for the centered connectivity matrices C,. Considering just a
single component for simplicity, we would be minimizing

%22 IC, —r.wvl|?, (7.1)

where the idea is to approximate each of the matrices C, by the same outer
product wv! but allowing for a rescaling by the scalar r,. The optimal vec-
tors would clearly be such that w = v due to symmetry of the C. . Ignoring
irrelevant constants, we can write the objective as

. 2 4 T¢
rr“1I1¥1 Z rellw|* = 2r.w' C . w. (7.2)
T

Due to the scaling by 7., we can further assume without loss of generality
that |[w| = 1, and we can solve the optimal r as
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r,=w C w. (7.3)
Plugging this into the objective, we obtain the final equivalent objective for
PARAFAC as
TE w2

max w C w)“, 7.4

HWH:1;< W) (7.4)
which basically means that PARAFAC is trying to find a single spatial pat-
tern w such that the variability inside that spatial pattern is maximized. Su-
perficially, this objective looks algebraically quite similar to our constrained
PCA objective, but with the crucial difference that the vectors multiplying

C, are here equal, while in our constrained PCA, they are two different
vectors constrained orthogonal.

7.2 Connection to BSS methods. Next, we point out that such
PARAFAC can be seen as a blind source separation method based on the
nonstationarity of variances (Matsuoka, Ohya, & Kawamoto, 1995; Pham
& Cardoso, 2001; see also De Lathauwer (2006) for related developments).
Consider data generated by a linear mixing x = Hs, where the variances
o, . of the s; change independently of each other. The covariance at a time
segment is then equal to Hdiag (s, )H, and the centered covariance is ob-
tained by replacing the o’s by the centered versions. Assume the data have
been whitened so H is orthogonal, and define q = H' w. Then the objective
in equation 7.4 equals, in the limit of infinite number of time windows,

> w'C,w)* - E_ {(w'H[diag(c7,) — diag(E, {07, ) ]H w)*}

2
=E, { (Z %2[(’51 - E{Gi%r}]) } = quvar(aﬁr). (7.5)

If we constrain ||[w|| = |Iq|l = 1, this reduces to a well-known optimization
problem usually formulated in terms of kurtosis in ICA theory (Comon,
1994; Delfosse & Loubaton, 1995) and is well known to be solved by taking
w to be equal to one of the columns of H, thus finding one of the original
sources s;. Thus, we see how PARAFAC of the covariance matrices can
separate sources in the same way as methods by Matsuoka et al. (1995) and
Pham and Cardoso (2001).

7.3 Our Method as Orthogonally Constrained PARAFAC. We can
further show that our constrained PCA method can be obtained from
a PARAFAC with special constraints, followed by a transformation. Let
us consider a PARAFAC with two components (here, each component
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corresponding to one outer product) where we constrain the r_ to have
opposite signs and the same absolute value for the two components, and
the two vectors a and b to be orthogonal:

min C._ — 7 (aa” — bb")|2. 7.6
Hau:ubu:l,afb:o;“ AR )l 7.6

In other words, we approximate the matrices C, by the difference of the two
outer products, so that the scaling r, is applied on that difference instead of
having a separate scaling variable for each outer product.

Here, we assume that the PARAFAC uses the outer product aa’ instead
of using two different vectors, say, ac’. This is not really a constraint since
it is clear that the optimal approximation will use the same vector due to
the symmetry of C,. Expanding the squared norm, we obtain

min —2r,(a'C,a" —b'C,b)
llall=Ib]l 1,aTb:02r:
+72(lall* + [b]* — 2(a"b)?) + const., (7.7)

from which we get r, = a’ C,a’ — b"C,b, and an equivalent optimization
problem is

Z(aTC a—b'C b)%. (7.8)
llall= \IbII laTb =0

This is the same as our reformulated constrained PCA in equation 3.3 with
optimal 7, plugged in, except that we have the constraint of orthogonality.
However, it was shown in the proof of theorem 1 that the optimal a and
b in the optimization of equation 3.4 are always orthogonal, so the same a
and b maximize this objective as well.

7.4 Checking and Comparing Model Assumptions. Thus, we see that
the constrained PCA method can be seen to be a constrained form of
PARAFAC. This might seem to imply that there is little reason to apply
constrained PCA since PARAFAC is a more general method. Such reason-
ing is invalid, because in the PARAFAC framework, it is the a and b that
are considered to define the components (e.g., in terms of spatial patterns).
In our framework, we transform them into w, v, by taking sums and differ-
ences, in order to get the spatial patterns. Thus, the components obtained are
completely different. Furthermore, one of the main motivations for the con-
strained PCA method is that by inputting the constraints in the optimization
problem itself, we can get better estimates of the relevant parameters.

Basically, which method should be used depends on whether the as-
sumptions in our model are correct. In particular, we assume that the main
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nonstationarity is in correlations between the components, while the BSS
framework, which is equivalent to constrained PARAFAC, assumes that
it is the variances of the components that are nonstationary. For exam-
ple, in raw EEG/MEG data (as opposed to energies of sources, which we
used in our experiments in section 6.2), the nonstationarity of variances is
a well-known phenomenon (Hyvarinen, Ramkumar, Parkkonen, & Hari,
2010), and it would probably be a bad idea to apply our method on such
data. The same applies for natural image sequences (Hyvarinen, Hurri, &
Hoyer, 2009). The situation is very different in fMRI. The nonstationarity
of variances does not seem to be a phenomenon of much interest in the
neuroimaging community in contrast to nonstationarity in connectivity, a
topic of great current interest (Leonardi et al., 2013). Thus, it may be reason-
able to assume that the nonstationarity of connectivity is a more prominent
phenomenon.

If the assumptions in our model are not fulfilled, it is possible that our
algorithm is in fact doing something like blind source separation based
on nonstationarity, where the sources will not be given by the w, v but
by a, b (at least assuming that the data are white or close to white). Such
a possibility could in some cases be checked by investigating which pair
gives a more plausible estimate of spatial patterns. For example, if we
assume that the spatial patterns are sparse, the sparsities of these solutions
could be compared, which is what we did for the fMRI data in section 6.1.

7.5 Relationship to Common Spatial Patterns. The method has some
similarity to common spatial patterns (CSP). Typically in CSP, we assume
just two connectivity matrices and analyze their difference. As noted in
section 3.1, in the case of just two time segments, PCA in the connectiv-
ity matrix space in fact results in the analysis of the difference of the two
connectivity matrices in our framework as well. Extensions to many con-
nectivity matrices exist but are not too widely used (Dornhege, Blankertz,
Curio, & Muiiller, 2008).

So the crucial difference is in how the difference of connectivity matrices
is analyzed. In CSP, we would use well-known low-rank approximations—
vectors equal to the eigenvectors. This in in contrast to our method, where
we transform the eigenvectors by taking sums and differences. On the other
hand, CSP has an interesting affinity to our method in the sense that vectors
corresponding to both the dominant positive and negative eigenvalues are
used.

Another important difference is that CSP is usually formulated in a su-
pervised case, where the segmentation of the data corresponds to some
externally defined classes. However, nothing would prevent CSP from be-
ing applied, for example, to the first half and the second half of resting-state
data. Further related work in classification was published by Tomioka and
Miiller (2010), where a penalty for the rank of a matrix classifier leads to a
low-rank classifier.
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We can easily define a supervised variant of our method, simply by
definining the segments in which connectivity is computed to correspond
to segments predefined by an experimental protocol or other supervisory
labels. In such a case, we could even use the components for classification.
However, we leave a detailed investigation of such supervised methods for
future research and concentrate on purely unsupervised learning here.

8 Conclusion

We proposed a new method, orthogonal connectivity factorization, for an-
alyzing the dynamics of connectivity patterns or, in general, the differences
of a set of connectivity matrices. The main novelty here is to find compo-
nents that are linear in the original data. This is in contrast to conventional
methods that find linear components in the connectivity matrix space. The
main goal is to analyze the variability (nonstationarity) of connectivities
in a way that is intuitively comprehensible and easy to visualize. Further-
more, our method considerably reduces the number of free parameters to
estimate and is thus likely to lead to better results when data are scarce.

The method finds two linear, orthogonal components of the data such
that the connectivity between them is maximally nonstationary. The orthog-
onality constraint is the main mathematical novelty and sets the method
apart from related methods, such as common spatial patterns (CSP), or
blind source separation using nonstationarity (Matsuoka et al., 1995). Intu-
itively, the method is related to a constrained form of PCA, but according
to the simulations, it seems to have better identifiability, similarly to ICA
or PARAFAC. The orthogonality constraint improved the fMRI analysis
results substantially.

We presented three variants of the method: OCF1 to OCF3. The first is
based on further analyzing the PCA of connectivity matrices by a dedi-
cated, orthogonal rank-two approximation, and the two others are based
on formulating a constrained PCA objective function and optimizing it by
a tailor-made algorithm. Constrained PCA produced better results on some
simulated data, especially when there are component pairs with similar
statistics, which leads to the well-known identifiability problem of PCA.
Constrained PCA seemed to produce better results even with some real
data, although only on one of the data sets, and the validation of the results
is purely visual since ground truth was not known. However, the basic idea
of performing the novel orthogonal rank-two approximation on results of
matrix PCA is surprisingly efficient as well.

While the method was mainly motivated by brain imaging data in this
article, it seems to have extremely wide applicability, and we did not make
any assumptions that would somehow be particular to brain imaging data.
For example, it is easy to imagine applications on word co-occurrence ma-
trices, correlations in financial time series, and regional feature covariances
in images.
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A Matlab package implementing the method is publicly available on the
Internet (http:/ /www.cs.helsinki.fi/u/ahyvarin/code/ocf/).

Appendix: Proofs of Theorems

A.1 Proof of Theorem 2. We can equivalently formulate the problem

as
o 2
‘K - Sow! +va)‘ ,

(A1)

e
a.wl=|v|=1,wv=0

where « is a scalar and the norm is the Frobenius norm. Then we have
o T |2 2 T o’
”K— Sw! 4wy )H — IKJ? —2av'Kw + = (A2)

under the unit norm and orthogonality constraints. Maximizing this with
respect to « gives o = 2v! Kw, and plugging this alpha into the objective
function transforms the optimization problem into

min IK|I? — 2(wTKv)?, (A.3)

Iwl=lvl=1,wTv=0

which is equivalent to equation 2.2 since we can always switch the sign of,
say, w and thus have to actually maximize the absolute value of the bilinear
form in equation 2.2. Using theorem 1, we further see that the value of the
objective is as announced in the theorem.

The squared Frobenius norm of a symmetric matrix equals, by diago-
nalization, the sum of the squared eigenvalues. Denote by c the sum of the
squares of the eigenvalues of K, excluding the smallest and the largest. We
therefore have

IKI? = 220 + A2 +C. (A4)

Thus, the optimal value of the objective function can be manipulated as

1
IKI? = 2W KY)? = (A + A + ) = 5 Crane = uin)” =

1
=5 Cax + Amin)” + €. (A5)
This is clearly always nonnegative, and it is zero if and only if ¢ = 0, which

means that the matrix has rank two, and A_;, = — A,y
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A.2 Proof of Theorem 3. Given a, b, the optimal r, is as in equation 3.6,
with
1
c= .
/3. [a7C.a — bTC,bP

(A.6)

Plugging this into the objective, equation 3.4, we obtain the optimization
problem,

lall=lbll=1

max \/Z(aTCra —bTC,b)2. (A7)

Maximizing this objective is equivalent to maximizing

max a’C.a—b"C b)?, A8
Hall=\|bll=1;( ‘ ) (A8)

since an increasing transformation of the objective does not change the
optimizing point.

Now assume a, b, r maximize the transformed objective, equation 3.4.
Then, by the logic just given, the a, b maximize equation A.8. On the other
hand, for any given r, the optimization of equation 3.4 is equivalent to the
problem

max a'Ma—b"Mb (A.9)
lall=[bll=1
with
M=>"rC,. (A.10)

T

Since this is of the same form as the problem in the proof of theorem 1,
the a and b are orthogonal, as shown in the proof of theorem 1. Thus, the
optimization of equation 3.4 gives the same a, b as the same optimization
of equation A.8, with an added orthogonality constraint:

max 3} (a’C.a—b'C.b) (A.11)
lall=[b]=1,a"b=0 .

In this optimization, we can transform the variables as in equation 2.7, and
we obtain the original constrained PCA objective, equation 3.3. Thus, an
optimum of equation 3.4 is an optimum of equation 3.3.

Conversely, assume that w, v optimize the original objective, equation
3.3. Transforming as in equation 2.4, the ensuing a, b equivalently solve
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the problem in equation A.11. As shown in the preceding paragraph, the
constraint of orthogonality on a, b does not change the optimum; that is,
the a, b solve equation A.8 as well. Thus, see that the a, b also optimize
equation 3.4, together with the r given in equation 3.6.

A.3 Proof of Theorems 4 and 5. We prove here theorem 5. The proof of
theorem 4 is obtained as a simplification of the proof below by replacing D!
by identity and any correlation coefficient matrices by covariance matrices.

First, we have for the precision matrix of observed data

cov(x(z)) = [DTHcov(s(r))HTDt]_1 = D;1Hcov(s(r))_1HTD;1
=D; [ +z(z)(h;h} +h,h])ID; L. (A.12)

Denoting the observed covariance matrix in time segment = by C_, we can
formulate the gaussian likelihood of the model defined by equations 4.9
and 4.5 as

log L(H, z(r), D)=~ %tr(CZDﬂ(I +z(v)[hyh] +h,h{ DD )

1
+3 log | det(I + z(t)[h;h] +h,h1]))|

+ log|detD;!| +log p(z(1), ...,z(k)), (A.13)

where p(z(1), ..., z(k)) is the (prior) pdf of the z(7), and the summation is
taken over all the terms. Using logic similar to the proof of theorem 1 and
the orthogonality of H, we see that the eigenvalues of the first matrix whose
determinant is being computed above are equal to 1 — z(r) and 1+ z(7),
and the rest are ones. Furthermore, we can arrange the product in the first
trace term as according to the well-known commutativity of the trace. Thus,
we have

. 1
log L(H, z(r), D) == z(t)h{D;'C, D, 'h, + 5 log 1 — z(7)?|

1 .
+ log|detD; | + Etr(D;lch;l)

+ log p(z(1), ..., z(k)) + const., (A.14)

where the constant term does not depend on z or H. Now, in theorem 5,
we approximate D, by the standard deviations of the data variables (i.e.,
its sample version). This approximation is exact in the limit of infinitesimal
z(1). Together with the nonoverlapping property, the approximation leads
in fact to an error of O(z?) if we neglect finite-sample errors because we
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have

cov(x(t)) =1 — z(t)(h;h] + h,hT) — z(z)*(h;h]
+hyh)) + O, (A.15)
as can be verified by simply multiplying this by cov(x(t))~!. Now, due to
the nonoverlapping property, h;h! has zero diagonal, which means that
the variances are changed only by O(z2). Thus,
cov(x(t)) = D,[I — z(t) (h;h] + h,h)]D ! 4+ O(Z?). (A.16)

With this approximation, D;'C, D " is nothing else than the sample correla-
tion coefficient matrix C, in time segment 7, and we have the approximation
of the likelihood

a 1
log L(H, z(t)) = — Zr:z(r)thCThz +3 Z log |1 — z(7)?|

+ log p(z(1), ..., z(k)) + const. + O(z%), (A.17)

where the constant term does not depend on z or H.

Next, we implement the zero-mean constraint of z in equation 4.6. We
use the simple identity E{(x — Ex)(y — Ey)} = E{x(y — Ey)} = E{(x — Ex)y}
applicable for any two random variables, which in this case, applied on z
and h C_h, and averaging taking place over 7, implies

Y z(t)h{Ch, =) "z(r)(h{C,h, — % > h{C.hy)

T

_ 1 _
- XT:Z(‘L’)th[CT -7 Z C.]h,, (A.18)

and thus we define the correlation coefficient matrices with the average
correlations removed as

=C - Z C.. (A.19)
We can write the approximate likelihood as

s 1
log L(H, z(t)) = — zr:z(t)thCrhz +5 thlog 1T —z(0)?

+ log p(z(1), ..., z(k)) + const. + O(z%), (A.20)
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which holds even for z without the zero-mean constraint. Thus, we see that

we can equivalently analyze the correlation coefficients whose global means

have been removed, which makes intuitive sense, and was done above.
As in the theorem, we define

1
p(z) = ZI[_G’E]' (A.21)

To integrate out z(7), let us first make a Taylor expansion for each of them
separately. Denoting ¢, = h'C_h,, simple Taylor approximations give for a
single time point (where indices t are dropped for simplicity):

L(H,z)=exp(logL(H, z)) = exp(—zc)v'1 —z2 + 0%

=[1—-zc+ %zzcz +0(z))] [1 - %zz + o(zz)] +0(z%)
=1—zc+ %(c2 —1Dz% +0(z%). (A.22)

We need to integrate this for all 7, over [—e, €]” with the constraint of zero
mean in equation 4.6:

1 1
@ /S [0 =z, + E(cf —1)z(7)?
+o(z()H)]dz(1), dz(2), . ..., dz(k), (A.23)

where S = {x € [—€,€]", Y x, = 0}. When the product in the integrand is
written out, it will have a constant term equal to one, not depending on the
parameters (i.e., ¢); the first-order terms —z(7)c,, which integrate to zero
by symmetry; and second-order terms, which are the relevant ones. They
are of two kinds, 1(c? — 1)z(r)? and z(t)c,z(t')c,. The terms 3z(7)? can
be ignored since they do not depend on c_. The remaining terms can be
arranged as %(Zr crz(r))z. Since the ¢, have zero mean, this term does not
depend on the mean of the z(t), and it in fact is equal to %Zr(crz(t))z.
Thus, we are left with an integral in which all variables are separable, and
we simply need to compute (ignoring lower-order terms)

1 € € €1 63
@ v/;é \/_E .. .[6 E Z(Crz(f))2d2(1),d2(2), ‘e ,dZ(k) = g XT:CE,

(A.24)

which gives the approximation in the theorem.
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