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We consider the estimation of the data model of independent component

analysis when gaussian noise is present. We show that the joint maximum

likelihood estimation of the independent components and the mixing ma-

trix leads to an objective function already proposed by Olshausen and

Field using a di�erent derivation. Due to the complicated nature of the

objective function, we introduce approximations that greatly simplify the

optimization problem. We show that the presence of noise implies that the

relation between the observed data and the estimates of the independent

components is non-linear, and show how to approximate this non-linearity.

In particular, the non-linearity may be approximated by a simple shrinkage

operation in the case of supergaussian (sparse) data. Using these approxi-

mations, we propose an e�cient algorithm for approximate maximization

of the likelihood. In the case of supergaussian components, this may be ap-

proximated by simple competitive learning, and in the case of subgaussian

components, by anti-competitive learning.

Key words: Independent component analysis, blind source separation, maximum

likelihood, competitive learning, neural networks.

1 Introduction

Independent Component Analysis (ICA) [1,4,6,7,11,13,15,18] is a statistical

technique whose goal is to represent a set of random variables as linear combi-

nations of statistically independent component variables. Important applica-

tions of ICA are in blind source separation [13] and feature extraction [2,14].

One may formulate ICA as the estimation of the following linear generative

model for the data:

x = As+ n (1)
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where x = (x

1

; x

2

; :::; x

m

) is the vector of observed random variables, s =

(s

1

; s

2

; :::; s

n

) is the vector of the latent variables called the independent com-

ponents, and A is an unknown constant matrix, called the mixing matrix.

The vector n is noise, and is often omitted. The fundamental assumption is

that the independent components s

i

are mutually statistically independent.

The basic problem of ICA is then to estimate both the mixing matrix A and

the realizations of the independent components s

i

using only observations of

the mixtures x

j

. In the maximum likelihood framework used in this paper, it

is also assumed that we know, at least approximately, the probability distri-

butions of the independent components. The fundamental restriction of the

model is that the independent components (expect perhaps one) must be non-

Gaussian. It is also assumed that the s

i

have zero mean but this is in fact no

restriction, as this can always be accomplished by subtracting the mean from

the random vector x. Note that the independent components and the columns

of A can only be estimated up to a multiplicative constant, because any con-

stant multiplying an independent component in eq. (1) could be cancelled by

dividing the corresponding column of the mixing matrix A by the same con-

stant. For mathematical convenience, one usually de�nes that the independent

components s

i

have unit variance [7].

In this paper, we approach the noisy ICA problem using maximum likelihood

estimation. We estimate jointly A and the s in model (1), which leads to an

objective function that was already proposed by Olshausen and Field [19] for

sparse coding, using a di�erent derivation (Section 2). This approach gives

certain important results. First, the presence of noise in (1) implies that the

optimal reconstruction of the independent components is not a linear function

of the x, as in the noiseless case [7]. We derive closed-form expressions for this

non-linear reconstruction using certain assumptions and approximations, and

show that often a good approximation is provided by simple 'shrinkage' or

'truncation' operators (Section 3). Second, we show how the optimization of

the objective function is greatly simpli�ed by these approximations, and pro-

pose an e�cient and simple algorithm performing the joint estimation (Sec-

tion 4). As a modi�cation of this algorithm, it is shown that for supergaussian

(sparse) components, a simple variation of the k-means algorithm is enough to

estimate the mixing matrix (Section 5). Furthermore, this competitive algo-

rithm allows us to relax the conventional assumption in ICA estimation that

the number of the independent component s

i

is not larger than the dimen-

sion of the observed data, i.e., n � m, without resorting to computationally

complex methods. The corresponding modi�cation of the algorithm for sub-

gaussian components uses an anti-competitive mechanism. Applications of the

introduced estimation methods to denoising are discussed in Section 6. Finally,

simulation results are presented in Section 7, and the results are discussed and

compared to previous work in Section 8.
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2 Maximum Likelihood Estimation for ICA

The estimation of A and s in (1) can be accomplished by a maximum like-

lihood estimation. Assume that we have observed T vectors x(t); t = 1; :::; T

generated according to (1). One often knows, at least approximatively, the

densities p

i

(:) of the s

i

, as used in ordinary (noise-free) maximum likelihood

estimation of A [21,1]. Denote the corresponding (negative) log-densities (or

log-likelihoods) by f

i

(:) = � log p

i

(:). For simplicity, we may assume that the

s

i

all have identical densities, in which case the (negative) log-density of s is

by independence of the form

P

n

i=1

f(:). The noise n in the model is assumed

to be Gaussian with known covariance matrix �. (Throughout this paper, the

noise covariance is assumed to be known.) Thus one obtains the log-likelihood:

logL(A; s(1); :::; s(T )) =

�

T

X

t=1

"

1

2

kAs(t)� x(t)k

2

�

�1

+

n

X

i=1

f(s

i

(t))

#

+ C (2)

where kek

2

�

�1

is de�ned as e

T

�

�1

e, the s(t) are the realizations of the inde-

pendent components, and C is an irrelevant costant. Recall that the s

i

are

here constrained to have unit variance. This likelihood is essentially the same

as the objective function proposed by Olshausen and Field [19] as an approx-

imation of the likelihood of A. As the above derivation shows, however, it

is not necessary to consider this objective function as an approximation: for

joint estimation of A and the s(t), it is the exact likelihood. The reason for

this di�erence is that Olshausen and Field considered the s(t) to be nuisance

parameters that should be integrated out. However, in many applications of

ICA, like blind source separation, the s(t) may be even more interesting than

A.

The maximization of (2) is not an easy task, because it is a function of both

the matrix A and the values s(t); t = 1; :::; T , which makes n � m + n � T

variables. Therefore, we shall introduce in the following section approximations

that considerably reduce the dimension of the problem.

3 Non-linear Reconstruction of the Independent Components

A crucial di�erence between the noisy and noiseless ICA models is that in

the presence of noise the maximization of the likelihood leads to non-linear

reconstruction of the independent components, as was noted in [19]. In other

words, the estimate of s(t) is not obtained simply by ŝ(t) =

^

A

�1

x(t), where

ŝ(t) and

^

A are the corresponding estimates of A and s(t). The non-linear
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relation is, in general, very complex. Therefore, we give in this section two

closed-form approximations for this non-linear reconstruction. In particular,

we show that if the independent components are supergaussian (or sparse),

this non-linear reconstruction may be approximated by a shrinkage of the s

i

(t)

towards zero. This operation is formally very similar to the wavelet shrinkage

method by Donoho et al [8].

In this section, we assume for simplicity that the dimension of the data m

equals the number of independent components n. The results can be easily

extended for the case m > n, but not for the case m < n. Taking the gradient

of the Lagrangian of the log-likelihood (2) with respect to the s(t); t = 1; :::; T

and equating this to 0, one obtains at the optimum (see Appendix)

^

A

T

�

�1

^

Aŝ(t)�

^

A

T

�

�1

x(t) + f

0

(̂s(t)) = �ŝ(t) (3)

where the derivative of the log-density, f

0

, is applied separately on each com-

ponent of the vector ŝ(t) (this convention will be used throughout the paper).

The diagonal matrix � of the Lagrangian coe�cients can be easily evaluated to

give at the optimum approximately � = Eff

0

(s

i

)s

i

gI = I due to the Bussgang

equality (assuming that �f is the true log-likelihood of the data) .

Equation (3) can be used to derive two simple approximations of the optimal

non-linearity, using two di�erent assumptions. First, assume that the noise

level is small and that the derivative of the log-density f

0

is a smooth function.

Then a �rst-order approximation (with respect to noise level) of this equation

may be obtained by replacing ŝ(t) in the last two terms by

^

A

�1

x(t). This can

be solved for ŝ(t), giving

ŝ =

^

A

�1

x�

^

A

�1

�

^

A

�T

(f

0

(

^

A

�1

x)�

^

A

�1

x) (4)

where the index t has been dropped for simplicity. Alternatively, we may

assume that the covariance matrix has a particularly simple structure: � =

�

2

AA

T

. Then (3) gives

ŝ = h(

^

A

�1

x) (5)

where the scalar component-wise function h is obtained by inverting the rela-

tion (see Appendix)

h

�1

(u) = (1� �

2

)u+ �

2

f

0

(u): (6)

The assumption on covariance means that the noise can be considered to be

added to the independent components before the mixing (but this need not be
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the case physically). Moreover, if the mixing matrix is orthogonal (as is often

approximately the case in feature extraction), this assumption is valid for the

classical noise covariance of �

2

I. Note that if the constraint of unit variance

is discarded, �

2

inside the parentheses in (6) disappears; this equation is used

extensively in the method of sparse code shrinkage, see Section 6.

The two approximations in (4) and (5) simplify the optimization of (2) con-

siderably: substituting the right-hand side of either (4) or (5) for s in (2), one

has reduced the dimension of the problem to the dimension of the matrix A,

instead of the original, rather intractable dimension n�m+ n� T . Whether

it is better to use (4) or (5) depends basically on which assumptions are more

correct. If f

0

is smooth and noise covariance is far from the form �

2

AA

T

, (4)

may be better; otherwise, (5) will probably give better results.

As an important example, let us assume that the density of the independent

components is double exponential (or Laplace), which is a classical example of

a supergaussian (or sparse) distribution, i.e., a distribution of positive kurtosis

[11]. supergaussian distribution have typically heavier tails than the Gaussian

distribution, and a peak at zero. Such distributions are found, for example,

in many situations of feature extraction and speech processing. Then one has

f(u) =

p

2juj (plus an irrelevant constant), and one sees easily that for �

2

< 1,

the function h in (5) has the form of a shrinkage operator, as depicted in Fig. 1:

h(u) =

1

1� �

2

sign(u)max(0; juj �

p

2�

2

) (7)

(To see this, approximate f

0

by a sequence of continuous functions and take

the limit.) This means that h �rst decreases the absolute value of its argument

by a certain amount (hence 'shrinkage'), and then performs a simple rescaling.

Intuitively, such a shrinkage has appealing properties: it suppresses values of

independent components that are very small, thus reducing noise. Indeed, it

can also be motivated as an optimal de-noising method according to minimax

estimation theory [8].

Another interesting example is found when the s

i

have a uniform distribution.

The uniform distribution is a typical example of a subgaussian distribution,

i.e., a distribution of negative kurtosis [11]. subgaussian distributions are typi-

cally �atter and have lighter tails when compared to the Gaussian distribution.

Then one obtains the truncation operator h(u) = sign(u)min(juj;

p

3). This is

also intuitively appealing: since an uniform variable of unit variance cannot

have values that are outside the interval [�

p

3;

p

3], all values must be forced

to stay in that interval.
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Fig. 1. Plot of the (scaled) shrinkage function. The e�ect of the function is to reduce

the absolute value of its argument by a certain amount, which depends on the

parameters, and then rescale. Small arguments are set to zero. This reduces Gaussian

noise for supergaussian (sparse) independent components.

4 Optimization by alternating variables method

Using the approximations introduced in Section 3, the optimization of (2)

can be accomplished by a simple alternating variables method, which has

already been used in similar estimation tasks [20]. The method is based on

�rst optimizing the objective function with respect to A for �xed s(t), then

optimizing with respect to the s(t) for �xed A, and so on. The optimization

with respect to A for �xed s(t) is evidently accomplished by a simple least-

squares �t, and the optimization with respect to s(t) using the methods of the

preceding section. Thus, the algorithm has the following form:

(i) Take some initial value for

^

A

0

. Let k = 1.

(ii) Compute the ŝ

k

(t) by either (4) or (5), using

^

A

k�1

as the estimate of A.

Normalize the components of ŝ

k

(t) to have unit variance.

(iii) Update

^

A

k

= Efxŝ

T

k

g[Efŝ

k

ŝ

T

k

g]

�1

(iv) Increment k and go back to step 2 if not converged.

This algorithm may be further simpli�ed as follows. First, the matrix in brack-

ets in step 3 is usually close to identity (especially near the solution), so it

may be discarded. Second, the inversion of the matrix

^

A in (4) and (5) may

be avoided by �rst sphering (or whitening) the data. Sphering means that

the covariance matrix of x is made equal to unity, i.e., Efxx

T

g = I, which

is possible by a simple linear transformation [7]. Then it is easy to see that

one has A

�1

= A

T

(I��)

�1

, which can be simpli�ed in the case � = �

2

AA

T

to yield A

�1

= A

T

=(1 � �

2

). Thus,

^

A

�1

may be replaced by

^

A

T

(I � �)

�1

when equations (4) and (5) are computed in the algorithm. After these two

simpli�cations, no matrix inversions are needed in the algorithm. Moreover,

the stability of the algorithm can then be improved by orthogonalizing the

matrix

^

A so that

^

A

^

A

T

= I� � after every iteration.
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Methods for the neural implementation of sphering can be found, e.g. in [6,15].

Note that if the data is sphered and (5) is used, our algorithm becomes some-

what similar to the algorithm proposed in [16] on a more heuristic basis.

5 Competitive and Anti-Competitive mechanisms

5.1 The dichotomy in maximum-likelihood estimation

It is a well-known fact that the conventional maximum-likelihood (or infomax)

estimation of the mixing matrix is very robust with respect to misspeci�ca-

tion of the densities of the independent components [1,21]. Indeed, it has been

proven in a similar context [12] that for any distribution of the s

i

, and for

any well-behaving non-quadratic function g one can always estimate the mix-

ing matrix by using either g or �g as an approximation of the log-likelihood.

Therefore, it seems very likely that for estimation of A, it would be enough

to use just two di�erent densities in (2). We take two 'densities', one which

corresponds to a distribution that is extremely supergaussian (i.e., has a very

large positive kurtosis), and another one which corresponds to an extremely

subgaussian distibution. (i.e., one which has an extremely negative kurtosis).

It seems then reasonable to assume that whatever the distributions of the s

i

may be (as long as they are identical for all independent components), one

of these learning rules performs the estimation of A correctly. The estimation

of the s(t) can then be performed afterwards, by minimizing (2) separately

with respect to s(t) for every t. These extremely supergaussian and subgaus-

sian 'densities' lead to competitive and anti-competitive learning, respectively,

when used in connection with the algorithm of the preceding section.

5.2 A competitive mechanism for supergaussian components

To estimateA in the ICA model when the independent components are super-

gaussian (or sparse, or have positive kurtosis), one may thus use a log-density

f that is extremely supergaussian. An extremely supergaussian variable is one

which is zero most of the time, only rarely obtaining other values. Thus one

could use an 'improper' log-density de�ned as follows: f(u) = 0 for u = 0

and f(u) = M for u 6= 0, where M is a very large constant. Using such a

log-density, at most one of the s

i

(t) is non-zero, for practically every t. Note

that the case where all the s

i

(t) are zero corresponds to the case where only

Gaussian noise is observed. Since the estimation of A is not strongly a�ected

by occasionally inputting Gaussian noise as x, we may simplify the situation

even further by assuming that for any given x(t), exactly one of the s

i

is non-
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zero. This means that we are using a competitive winner-take-all mechanism

in the representation of the x(t). The second term in the likelihood is then

constant, and one only needs to minimize the reconstruction error (i.e., the

�rst term) subject to the constraint that only one of the s

i

(t) is non-zero for

given t, i.e., only one neuron is active at a given point of time.

Given

^

A, one can thus determine the ŝ(t) using the competitive mechanism.

Then the algorithm in the preceding section leads to the following iteration

for updating the columns â

1

; :::; â

n

of

^

A:

(i) For each vector â

i

(k), collect the set S

i

of all those training samples x(t)

such that jâ

i

(k)

T

x(t)j � jâ

j

(k)

T

x(t)j for all j 6= i.

(ii) Let â

�

i

(k) =

P

x(t)2S

i

x(t) (â

i

(k)

T

x(t)) and â

i

(k + 1) = â

�

i

(k)=kâ

�

i

(k)k

where k is the iteration index. This algorithm is basically a modi�cation of the

classical k-means algorithm. The main di�erence is that instead of vectors, we

are 'quantizing' 1-D subspaces. Note that since the improper density does not

determine the variance of the s

i

, we normalize instead the vectors â

i

(k). Note

also that the estimates of the s(t) obtained by winner-take-all learning may

not be very good: the s(t) should be estimated separately after the estimation

of A, using the methods in Section 3. To improve the convergence of this

learning rule, it may be advisable to sphere (or whiten) the data x.

An important feature of this competitive learning rule is that it was not as-

sumed in the derivation that the number of observed mixtures x

i

be at least

as large as the number of the independent components. Thus it allows the es-

timation of A even in the case where there are more independent components

than mixtures, i.e., n > m.

5.3 An anti-competitive mechanism for subgaussian components

For estimating A in the case of subgaussian independent components, we use

an extremely subgaussian 'density', which corresponds to the binary distribu-

tion: s

i

= �1 with equal probabilities. Thus we constrain the s

i

to have one

of the two values: �1 and +1. Again, the second term in the likelihood is con-

stant, and one only needs to minimize the reconstruction error (i.e., the �rst

term) subject to s

i

(t) = �1. To simplify the situation, assume that the data is

sphered and that the matrix

^

A is constrained to be orthogonal (which implies

that n � m). Then it is obvious that the optimal reconstruction is obtained

when
^
s(t) = sign(A

T

x(t)), where the sign operator is applied separately on

each component of its argument. Then the step 3 of the algorithm in Section 4

has the form

^

A

k

= Efx(sign(x

T

^

A

k�1

)g (8)
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This learning rule might be called anti-competitive, as every unit participates

in the representation of s(t) with the same amount.

6 Application for denoising

The framework given in Section 3 has applications beyond the simple estima-

tion problem considered here.

Assume that we estimate the noise-free independent components by the meth-

ods introduced in Section 3, obtaining the estimates
^
s(t). We could reconstruct

the original data by

^
x =

^

A
^
s: (9)

It is then reasonable to assume that
^
x contains less noise than the original x.

This gives a new approach to denoising of nongaussian random vectors. The

resulting method is called sparse code shrinkage and is described in detail in

[10,9]. In fact, it is shown in [9] that it is not really necessary that the data

follows the ICA model: The crucial assumption is that the data is nongaussian,

which seems to be true for many real-world signals. Thus the method is of

considerable generality.

7 Simulation results

We applied the methods of our paper for blind separation of 3 i.i.d. source

signals (or independent components) from 3 noisy mixtures. The source sig-

nals are shown in Fig. 2, and the noisy mixtures in Fig. 3. The competitive

learning rule in Section 5.2 was used for estimating A. Approximately 10 iter-

ations were required for convergence. The linearly separated signals

^

A

�1

x(t)

are shown in Fig. 4. The errors in these linearly separated signals are not

due to errors in the estimation of A, since A was estimated correctly up to

4 decimal places. Instead, the errors in Fig. 4 are due to noise and linear

reconstruction. Applying the shrinkage operator on the linear reconstruction,

one obtained an approximation of the optimal nonlinear reconstructions of the

source signals, depicted in Fig. 5. Clearly, this non-linear reconstruction gives

better estimates of the original source signals in the presence of noise.

Next, we performed estimation of A in the case where the number of inde-

pendent components was larger than the number of observed mixtures. The

independent components had supergaussian distributions, and thus the com-

petitive learning in Section 5.2 was used again. To validate the results the
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Fig. 2. Original supergaussian source signals.
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Fig. 3. Mixtures of supergaussian source signals, with noise added.
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Fig. 4. Linearly separated supergaussian source signals.
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Fig. 5. Non-linear reconstructions of the supergaussian source signals.

matrix A

T

^

A was computed after convergence. The matrices were here nor-

malized so that each column had unit norm. This gave the following:

A

T

^

A =

2

6

6

6

6

6

6

6

6

4

�0:1001 �0:0760 �0:9999 �0:0642

�0:9998 0:6031 �0:0970 0:5187

0:6032 �0:9998 �0:0544 0:3567

0:4887 0:3586 �0:0522 �0:9998

3

7

7

7

7

7

7

7

7

5

(10)

Every column has exactly one entry whose absolute value is practically equal

to one. This shows that the columns of

^

A converged to the directions of the

columns of A, which shows that the algorithm converged properly.

Finally, we performed simulations to validate the algorithm in (8). The results

are given in Figs. 6�9. The original distributions of the independent compo-

nents were uniform or binary. The corresponding nonlinear reconstructions

correspond to the truncation operator (as given above) and the 'sign' non-

linearity. Clearly, the method was able to estimate the mixing matrix, and

reduce noise from the linear estimates of the source signals.
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Fig. 6. Original subgaussian source signals.
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Fig. 7. Mixtures of subgaussian source signals, with noise added.
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Fig. 8. Linearly separated subgaussian source signals.
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Fig. 9. Non-linear reconstructions of the subgaussian source signals.

8 Discussion

A maximum likelihood approach was taken to the estimation of the ICA data

model. It was shown how to estimate jointly the mixing matrix and the inde-

pendent components. This leads, in general, to a very complex minimization

problem. Therefore, simpler approximations were introduced. It was shown

how the presence of noise leads to a non-linear relationship between the ob-

served variables and the estimates of the independent components, and meth-

ods for approximating this non-linear relation were given. A simple alternating

variables method was then proposed using these approximations.

To simplify the estimation even further, it was shown how the estimation can

be performed by competitive and anti-competitive learning rules for super- and

subgaussian data, respectively. This shows an interesting connection between

competitive learning and ICA.

Little work on maximum likelihood estimation of ICA in the presence of noise

has been done previously. In [3] the problem was treated for discrete-valued

sources. A method more closely related to ours was introduced in [17], in which

an EM algorithm was proposed for estimation of the noisy ICA model. Our
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methods are considerably simpler and computationally less demanding than

the one proposed in [17]. In particular, the complexity of the EM algorithm

is exponential as a function of the number of independent components; our

algorithm has polynomial complexity. The price to pay is the loss of gener-

ality. The approximations introduced in Sections 3 and 5 may not work in

all circumstances. Moreover, in this paper, the covariance matrix of the noise

was assumed to be known, whereas in [17], it was estimated as part of the

algorithm. Future work may reveal simple ways of estimating the covariance

matrix in our framework. Other recent work on the problem of noisy ICA is

reported by Cichocki et al [5] in this issue.

A Derivations

Taking the negative of the gradient of (2) with respect to s(t), we obtain

A

T

�

�1

As(t)�A

T

�

�1

x(t) + f

0

(s(t)): (A.1)

The constraints of unit variance are equivalent to constraining the norms of

the vectors S

i

= (s

i

(1); s

i

(2); :::; s

i

(T )) to equal one. This corresponds to the

Lagrangian term

X

i

�

i

(kS

i

k

2

� 1) (A.2)

which gives the gradient of the Lagrangian of (2) with respect to the whole

data s(1); :::; s(T ); this can be written separately for each t as

A

T

�

�1

As(t)�A

T

�

�1

x(t) + f

0

(s(t))� �s(t): (A.3)

which implies (3). To derive (5), note that the assumption � = �

2

AA

T

implies

1

�

2

ŝ(t)�

1

�

2

^

A

�1

x(t) + f

0

(̂s(t))� ŝ(t) = 0: (A.4)

which gives (6). Finally, to derive (7), it is enough to plot the function in (6),

with f

0

(u) =

p

2sign(u). The inverse can be obtained by re�ecting the graph

with respect to the axis x = y.
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