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Independent component analysis (ICA) is increasingly used for analyzing brain imaging data. ICA typically
gives a large number of components, many of which may be just random, due to insufficient sample size,
violations of the model, or algorithmic problems. Few methods are available for computing the statistical
significance (reliability) of the components. We propose to approach this problem by performing ICA
separately on a number of subjects, and finding components which are sufficiently consistent (similar) over
subjects. Similarity is defined here as the similarity of the mixing coefficients, which usually correspond
to spatial patterns in EEG and MEG. The threshold of what is “sufficient” is rigorously defined by a null
hypothesis under which the independent components are random orthogonal components in the whitened
space. Components which are consistent in different subjects are found by clustering under the constraint that
a cluster can only contain one source from each subject, and by constraining the number of the false positives
based on the null hypothesis. Instead of different subjects, the method can also be applied on different
recording sessions from a single subject. The testing method is particularly applicable to EEG and MEG
analysis.
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Introduction

Independent component analysis (ICA) has been successfully
used for analyzing brain imaging data. In particular, analysis of data
recorded at rest (Beckmann et al., 2005; de Pasquale et al., 2010;
Kiviniemi et al., 2003; van de Ven et al., 2004), or during natural
stimulation (Bartels and Zeki, 2004; Hasson et al., 2004) has received
a lot of attention recently. Such data cannot be easily analyzed by
ordinary supervised methods based on regression with a stimulus
function, and unsupervised methods such as ICA may be needed.

Despite its success, there is a fundamental problem which has not
been satisfactorily solved in the theory of ICA. ICA provides a number
of components many of which may be just random effects due to
small sample size, noise or other violations of the model, algorithmic
problems such as local minima, etc. Thus, the estimation methods
should be complemented by testing methods. Few methods are
available for computing the statistical significance (reliability) of the
components. It has been proposed that one can randomize the data
by bootstrapping and see how the ICA results change (Himberg
et al., 2004; Meinecke et al., 2002). However, it is not clear how
to determine any meaningful thresholds or p-values in such boot-
strapping methods. Moreover, even if a component is robust with
respect to randomization of the data, its neuroscientific validity is by
no means guaranteed if the analysis is done on a single subject.
Group ICA methods attempt to increase the validity of the com-
ponents by analyzing data frommany subjects (Beckmann and Smith,
2005; Calhoun et al., 2009; Esposito et al., 2005). Typically, the goal is
to find components which are sufficiently similar over many subjects.
Such components are more likely to be of interest for further analysis,
although some of them may still be artifacts. However, most group
ICA methods, reviewed by (Calhoun et al., 2009), do not provide any
selection of components: the number of independent components
they compute is given a priori by the investigator. Thus, these
methods do not even attempt to analyze the statistical reliability of
the components.

An exception is the group ICA method by (Esposito et al., 2005)
which rejects components which are not found in sufficiently many
subjects in sufficiently similar form. Nevertheless, it is not clear how
to define “sufficient” in that method, i.e. how to set the thresholds, so
the method cannot quantify the reliability of the components in a
statistically principled way.

A related problem in ICA research is component selection and
sorting. After computing ICA, further analysis may require going
manually through all of themwhich is time consuming, especially in a
group analysis. Methods for selecting interesting components have
been proposed based on their statistical properties (Formisano et al.,
2002; Hyvärinen et al., 2010), or intersubject consistency (Malinen
and Hari, Submitted for publication). However, a more principled and
fundamental way of selecting components would be to use a testing
procedure to select components which are statistically significant.
Any other method of selection would be more naturally applied to the
subset of significant components.
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Here, we propose a method for testing the inter-subject consis-
tency of components in a group ICA setting. We perform ICA
separately on a number of subjects, and find clusters of components
which are sufficiently similar across subjects, not unlike (Esposito
et al., 2005). The method does not force components in different
subjects to be similar, as happens in many group ICA methods. Our
main contribution here is to develop a theory in which the threshold
for what components can be considered “sufficiently similar” is
obtained by defining a null hypothesis, which allows us to apply
basic principles of statistical estimation theory. In particular, we
control the false positive rates of the detected clusters of components,
and the false discovery rates of joining components to the clusters.
Thus, we obtain a method that determines which components are
reliable (significant) enough in a statistically principled way. The
method is here developed for the case where the similarity is defined
as the similarity of the columns of the mixing matrix, which is
typically pertinent in EEG and MEG analysis. It is also applicable to
data from a single subject if the recordings are divided into sessions
(or segments), and the consistency between such sessions is analyzed.

Mathematical theory

General setting

Assume we have recordings from r subjects. The data from each
subject is stored in a data matrix Xk where k=1,…,r is the index of
the subject. If we do temporal ICA, as is typical with EEG and MEG,
the rows of Xk are the channels and the columns are time points. If
we do spatial ICA, as is more typical with fMRI, the rows of Xk are the
volumes (time points) and the columns are the voxels. The theory we
present here is equally valid in the case where we have r sessions of
recordings from a single subject, but for simplicity, we present the
method using the terminology of the multi-subject case.

We assume that the data for each subject follows an ICA model
with its own mixing matrix Ak and independent components Sk:

Xk = Ak Sk: ð1Þ

We estimate ICA separately on each subject, thus obtaining a
decomposition

Xk = Âk Ŝk ð2Þ

where it is important to distinguish the estimates Âk and Ŝk from the
actual values Ak and Sk.

We develop here a testing procedure which uses the columns of Âk

as the vectors characterizing each subject. In temporal ICA as typically
applied on EEG and MEG, these are the spatial patterns. In spatial ICA
as typically applied in fMRI, they are the time courses. (Thus, the
method presented here is not directly applicable to inter-subject
analysis of spatial patterns in spatial ICA of fMRI.) We denote the
obtained estimates of those columns by aik; i = 1;…;n with n
denoting the number of independent components. The number of
independent components is here fixed to be equal to the dimension
after principal component analysis (PCA), which is performed as part
of the ICA estimation. (However, the mixing matrices Ak are in the
original space, i.e. the PCA preprocessing has been inverted.)

The goal is then to determine if the different subjects have sig-
nificantly similar aik. Note that because of the permutation indeter-
minacy of ICA, we cannot hope that the indices i in different subjects
correspond to each other; we have to search for the best matching
intersubject pairs in some way.

In the following, an important aspect is the well-known division
of the ICA estimation into two parts: we can estimate ICA by first
doing a preliminary whitening of the data (often accompanied by a
PCA dimension reduction), and then estimating an orthogonal ICA
transform. Thus, the whitening reduces the ICA transform into an
orthogonal matrix.
Null hypothesis, or model of inter-subject randomness

The purpose of our null hypothesis, or H0, is to model the situation
where the estimates of the mixing matrix Âk have no inter-subject
consistency, so those estimates in different subjects have random
relations.

Since our null hypothesis is formulated on the estimates of the
parameters, it includes two different elements of randomness. First,
it could be that the actual mixing matrices Ak are completely different
in different subjects. This models the real underlying inter-subject
variability of the brain activity patterns due to anatomical and
physiological differences. Second, it could be that the actual activity
patterns are similar in different subjects, but the estimates Âk of the
mixing matrices Ak are very bad and thus effectively random, due to
problems in the estimation algorithm. The estimation algorithm can
fail because the data does not follow the ICA model, the sample size
is too small, there is too much noise, or due to algorithmic problems,
as discussed in more detail by Himberg et al.(2004). Our test will
consider these two sources of randomness with equal emphasis.

It is important to incorporate just the right amount of randomness
in the null hypothesis. We do not want to assume, for example, that
the estimates of the mixing matrix are just white noise, because
this would introduce too much randomness and the null hypothesis
would be too easily rejected. In EEG/MEG, the spatial patterns cannot
be assumed to be white noise because different channels are cor-
related due to volume conduction if for no other reason. Thus, we
want to introduce the smallest meaningful amount of randomness in
the null hypothesis.

To model the randomness due to anatomical and physiological
differences, we assume that the actual mixing matrices Ak are
generated randomly. To introduce a controlled amount of randomness
in this (hypothetical) generation of the Ak, we reason as follows:
since our goal is to specifically consider the intersubject consistency
of the independent components as opposed to the covariance struc-
ture of the data, we assume that the recordings Xk have the same
covariance structure. Then, the matrices Ak are necessarily linked by
an orthogonal transformation: Ak = A0 Uk where Uk is an orthogonal
matrix, and A0 is some underlying mixing matrix (which could be
taken equal to be any of the Ak). To obtain the maximum amount
of randomness in this setting, we assume that Uk is random and
follows a uniform distribution in the set of orthogonal matrices.

Next we model the randomness due to the estimation procedure.
Again, since we are interested in modeling the randomness in the ICA
estimation as opposed to the covariance structure or its estimation,
we assume that only the latter part of the ICA estimation procedure
(finding an orthogonal transform) produces random results. Thus we
assume that under H0, the estimated spatial patterns are orthogonal
transformations of the underlying spatial patterns, i.e. Âk = AkU′k for
some orthogonal matrix U′k. Again, U′k is assumed to be uniformly
distributed in the set of orthogonal matrices.

Thus, we see that we can model both kinds of randomness
(variability of brains, and variability of ICA estimation) by the same
idea of considering the estimated mixing matrix to be a random
orthogonal transformation of some underlying mixing matrix. In fact,
we have Âk = A0 Uk U′k. The product of two uniformly distributed
orthogonal matrices is again uniformly distributed in the set of or-
thogonal matrices, as is well-known in the theory of randommatrices.

Thus, we can rigorously formulate the distribution of the model
parameters underH0: underH0, themixingmatrixAk = a1k; a2k;…; ank½ �
for the k-th subject has the same distribution as A0 Uk where Uk is
a random matrix uniformly distributed in the set of orthogonal n×n
matrices, and A0 is a fixed matrix. The Uk for different subjects are
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mutually independent. To use this null hypothesis in practice, it is not
necessary to specify or estimate the matrix A0, as will be seen below.

Defining similarity of components

Our test is based on similarities of the vectors aik estimated for
different subjects. The similarity of two vectors is defined as the
Euclidean similarity which uses a weighting given by a stabilized
inverse of the “global” covariance matrix. We define the global
covariance matrix of the vectors as

C =
1
nr

∑
ik

aik a
T
ik ð3Þ

which is in fact equal to the covariance of the data computed over all
subjects, assuming they all have the same number of data points.
Then, we define PCA on the set of the vectors aik in the usual way: the
PCA is given by the reduced matrices D0 and E0 which are obtained as
the dominant diagonal entries and columns of the matrices in the
eigen-value decomposition C = EDET . The dimension of D0 and E0 is
fixed as the same n as the dimension of the original data after its PCA
dimension reduction.

Using the global covariance matrix, we define the similarities of
the vectors a as follows:

γij;kl =
jaTikRajl jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aTikRaik
q ffiffiffiffiffiffiffiffiffiffiffiffiffi

aTjlRajl
q ð4Þ

where

R = E0D
−1
0 ET

0: ð5Þ

The similarity γ is related to the well-known Mahalanobis sim-
ilarity, but for the sake of numerical stability, we take the inverse
of the covariance “inside” the PCA subspace only. We further take
the absolute value in Eq. (4) because of the sign indeterminacy of
independent components.

While the use of the Mahalanobis distance has some general jus-
tifications in machine learning, our main reason for using this special
weighting of the distances is the following property (proven in the
Appendix):

Theorem 1. Under H0, each γ follows the (marginal) distribution of
the absolute value of an element of an orthogonal matrix uniformly
distributed in the set n×n of orthogonal matrices.

The point here is that under H0, the distribution of the similarities
does not depend on any model parameters, such as the covariances
or the hypothetical matrix A0. It only depends on the PCA dimension
n. This greatly simplifies the computation of p-values, which we
consider next.

Finding significant similarities

After computing all the similarities, we want to determine which
similarities are statistically significant.

Null distribution of similarities
First, we need to determine in detail the null distribution of the

similarities based on Theorem 1. The starting point is the following
theorem (proven in the Appendix):

Theorem 2. Assume U is a random matrix which follows the uniform
distribution in the set of orthogonal d×d matrices. Denote by u one entry
in the matrix. Then the transformed variable

t =
u
ffiffiffiffiffiffiffiffiffiffi
d−1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−u2

p ð6Þ
follows a Student's t-distribution with d−1 degrees of freedom, and u2

follows a beta distribution with parameters
1
2
;
d−1
2

� �
.

Knowing the distribution of such simple transformations of u
under the null hypothesis allows us to determine the chance level
of the similarities γ, which are distributed as the elements of a ran-
dom orthogonal matrix according to Theorem 1. In particular, we
can transform the similarities to p-values. (See the end of the
Appendix for notes on numerical computation of the p-values.) Using
the p-values, we could easily define a test with a controlled false-
positive rate (FPR). However, we must take into account the fact
that we are computing many similarities, and if we just use ordinary
testing based on uncorrected fixed false-positive rate according to
the distribution given above, we are likely to get many more false
positives as is well-known in the theory of multiple testing.

Corrections for multiple testing
We propose to approach the problem of multiple testing by a

combination of two different approaches.

False discovery rate for connections. In general, we use the concept of
false discovery rate (FDR), proposed by Benjamini and Hochberg
(1995), instead of false positive rate because using the false positive
rate leads to very conservative (insensitive) results in the case of a
large number of tests, as has been previously shown in the context
of brain imaging by Genovese et al.(2002). The FDR is defined as the
number of false positives divided by the total number of positives.

Denote by nγ the number of truly significant similarities, which we
assume to be much smaller than the total number of similarities. If we
use a corrected significance level αFD

corr in the test, we get approxi-
mately αFD

corrm false positives where m is the total number of tested
similarities, andwe assume independence of the tests. Thus, to control
the proportion of false positives (FDR) to be below a given level αFD,
we should have

αcorr
FD m
nγ

≤ αFD ð7Þ

where we omit adding the number of false positives in the de-
nominator because it is assumed to be small enough. Thus, we should
take

αcorr
FD = αFD

nγ

m
: ð8Þ

It turns out that we do not need to have explicit estimate of nγ to
perform this testing with a controlled FDR. We use the well-known
Simes' procedure (Benjamini and Hochberg, 1995; Simes, 1986) to
find the threshold without computing nγ. The number of tests m can
be obtained simply by counting similarities considered; a simple
formula will be given below.

False positive rate for clusters. Nevertheless, we prefer to control the
classical false-positive rate for the existence of a component which is
consistent (a cluster).

We do this because controlling the FPR is usually preferable to
controlling the FDR, if it does not make the test too conservative. In
particular, inferring the existence of a consistent component which
does not actually exist can be considered a rather serious error from
the viewpoint of neuroscientific interpretation. In contrast, it may be
less serious to infer that a given subject has a component which really
exists in the group although actually not for that subject. So, it makes
sense to be more conservative in testing the existence of consistent
components. In our simulations and experiments, using the FPR for
the consistent components (clusters) seemed to be sensitive enough,
and not too conservative.
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To control the FPR of clusters, we use a simple Bonferroni cor-
rection. We compute the approximately corrected αFP

corr threshold
simply as

αcorr
FP =

αFP

m
: ð9Þ

To calculate the number of testsm needed in Formula (9), consider
that we are basically taking the maximum over all the elements of
the similarity matrix, excluding connections inside the same subject.
Thematrix is symmetric which reduces the degrees of freedom by one
half. So, we obtain the degrees of freedom as

m =
n2r r−1ð Þ

2
: ð10Þ

Some idea of the difference between the FDR and Bonferroni
corrections can be obtained from our MEG experiments below, in
which the factor on the right-hand-side of Eq. (8) is of the order of
1/1000…1/100. Using Bonferroni correction as in Eq. (9), the factor
would be much smaller, approximately 10−5. In fact, the difference
between the two thresholds is exactly the additional factor nγ, which
was typically between 100 and 1000 in our MEG experiments.

Both Bonferroni correction and Simes' procedure make the as-
sumption of independence of the tests. The validity of this assump-
tion is certainly questionable but it can be considered a useful first
approximation. The simulations below will shed light on whether it
is reasonable.

Intersubject clustering of similar components

We can use the similarities considered strong (significant) enough
in different clustering methods. Here, we develop a rather simple one
similar to hierarchical clustering using a single-linkage strategy.

A cluster of components which are consistent over subjects is
found by starting with the pair of components which is the most
similar in terms of having the smallest p-value. Whether the similarity
is sufficient is tested based on the corrected FPR threshold given
in Eq. (9). Further components are added to this cluster based on
the strongest similarity between a candidate component and the
components already in the cluster, until no more components with
significant similarities according to the FDR criterion, implemented by
Simes' procedure, are found. In the clustering, it is obviously always
forbidden to put two vectors from the same subject in the same
cluster.

Note that we do not require that the cluster should contain a
component from all the subjects because this is unrealistic: many
interesting brain sources are likely to be found in some subjects but
not all of them. In some cases, it may be interesting to search for
clusters which include only a couple of vectors. Thus, we allow the
cluster size to be completely determined by the data.

Once a cluster has been found, we can find more by a simple
“deflation” procedure. We simply re-run the clustering but ignore
all the vectors which have already been clustered. This is a rather
heuristic procedure, and its effects of FPR and FDRwill be investigated
next. Also, the algorithm will be described in more detail below.

Corrections needed because of deflation

Above, all p-values were computed under H0 which says that
there are no clusters of consistent components in the data. However, if
we consider data with, say, ten clusters, we need to take the effects of
deflation, i.e. the interaction between clusters into account. The false-
positive rate for the existence of the 11th cluster is, in fact, different
from the false-positive rate for finding the first cluster, as will be seen
below. That is, the p-values we computed above are strictly correct
only for finding one cluster.

To formalize this, we define a parameterized version of the null
hypothesis, H′0(k). Under H′0(k), k components are present and equal
in all the subjects. The existence of k ideal clusters in the data simply
means that the dimension n of the data is reduced by k. Thus, we can
re-apply the method and use the distribution under H0 again, taking
the new dimension into account in the computation of the p-values.
Reducing the dimension effectively reduces the randomness in the
data which is seen in larger p-values. Thus, it is important to take this
change into account to control the FPR and FDR.

While in the ideal case, finding one cluster of components has
simply the effect of reducing the dimension of the data, in practice, the
total effect of such deflation is more complex. This is so especially
because we do not require a cluster to have r components, and the
components are not exactly equal in different subjects. Thus, to take
this effect into account more precisely, we define the “effective”
PCA dimension for each pair of subjects k, k′ based on the number of
clusters which include components from both subjects:

ñ k; k′
� �

= n− # of clusters C such that aik; ajk′∈ C for some i; j
n o

:

ð11Þ

The effective PCA dimension essentially quantifies the actual ran-
domness in the data. When computing the p-values of the similarities,
the corresponding ñ should be used in the parameters of the beta or
Student distributions.

Ideally, the effective PCA dimension should be computed before
computing any p-values and doing any clustering. This may be im-
possible, however, because it depends on the clustering. We proceed
here by updating the estimates of ñ at every deflation step, i.e. after
each formation of a new cluster. This seems to be an appropriate
approximation because the clustering uses the smallest p-values first.
Thus, it should be enough to make the correction which tightens
the thresholds only during the formation of the first clusters, when
clusteringwill be attemptedwith larger p-values. Furthermore, we re-
iterate the clustering to further fine-tune the internal parameters, as
will be described below.

Description of the algorithm

Finally, we describe the resulting algorithm in detail. It proceeds as
follows:

1. Parameters fixed by the ICA results are the PCA dimension of
the data n and number of subjects r. Parameters fixed by the
investigator for the testing procedure are the false positive rate
for clusters αFP and the false discovery rate for similarities αFD.

2. Set the initial effective PCA dimension ñ(k, l)=n for all k, l. Define
m as in Eq. (10).

3. Compute the global covariance C as in Eq. (3) and the similarities
γij, kl as in Eq. (4) for all i, j=1,…, n and k, l=1,…, r, k≠ l. Set
similarities of vectors in the same subject to zero.

4. Define the set of found clusters S to be empty. Set the variable uij,
kl=1 for all i, j and k≠ l; this variable tracks which similarities are
still valid (not deflated away).

5. Transform the similarities into p-values by

pij;kl = 1−BI γ2
ij;kl;

1
2
;
ñ k; lð Þ−1

2

� �
ð12Þ

where BI is the regularized incomplete beta function (i.e. the cdf
of the beta distribution).

6. Find the smallest p-value pij, kl over all i, j, k, l such that uij, kl=1.
Denote the minimizing indices as I, J, K, L.
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7. This p-value is significant if

pI J;K L b
αFP

m
: ð13Þ

8. If the p-value is significant according to Eq. (13), define the new
cluster C initially as the set of those two vectors: C=[(I, K), (J, L)].

• Otherwise, no more clusters can be found: abort the algorithm
and output S as the set of significant clusters.

9. Perform Simes' procedure on the p-values. That is, sort the
p-values, and consider the h-th smallest p-value p(h) significant if

p hð Þ≤ αFDh
m

: ð14Þ

10. Search for the smallest p-value pij, kl which was found significant
according to Eq. (14) and which is such that either (i, k) or (j, l),
but not both, is in C and uij, kl=1 (i.e. the connection is “going out”
from the cluster and not deflated away).

11. If such a p-value could be found, denote the minimizing indices as
I, J, K, L, and add the vector which is connected to the cluster by γIJ,

KL to C, and go back to step 10.
• Otherwise, store C in the set of found clusters S. Set uij, kl to zero for
all similarities to and from vectors in C (deflation). Update the
effective dimensions ñ as in Eq. (11). Go back to step 5.

To further fine-tune the clustering, we propose to run the
clustering algorithm a second time, using the internal parameters ñ
obtained at the first run of the algorithm. This has the benefit that
the computation of all the clusters is using the same estimates of the
internal parameters.

Public-domain Matlab code implementing the algorithm is
available at www.cs.helsinki.fi/u/ahyvarin/code/isctest/.

Computational complexity

To analyze the computational complexity of the resulting
algorithm, we begin by noting that the computations done in the
clustering method are relatively simple searches for the largest ele-
ments. After the initial computation of the similarities, no sophisti-
cated matrix operations are done. The sorting of the p-values is the
only operation which does not have linear complexity in the number
of similarities. On the other hand, the number of the similarities is
quite large, proportional to n2r2. The similarities are manipulated and
searched through for every cluster, and thus we need to multiply this
by the number of clusters. The number of clusters could be assumed to
be proportional to n.

As a first approximation, we might thus assume that time needed
for computation is proportional to n3r2. This may not be quite the
case in theory because typical sorting algorithms would require
O(n2r2(log n+ log r) operations, but the difference may be insignif-
icant in practice.

In fact, we have found that the main bottleneck in the method,
using a simple PC, is in thememory needed to store the similarities and
quantities which are derived from the similarities, such as p-values,
indices of which p-values are deflated away, and related temporary
quantities. This memory complexity is clearly of the order n2r2.

We will consider these issues in more detail in the simulations
below.

Experimental methods

Simulation 1: artificial data

As a first validation of the testing procedure we conducted
simulations with purely artificial data. The main goal was to compute
the false positive and false discovery rates under the null hypotheses
and see if it is well controlled in spite of the many approximations
made in the development of the testing procedure.We operated in the
space of orthogonal rotations, thus neglecting the ICA estimation part.

The data PCA dimension had the values 20 and 50, while the
number of subjects was either 6 or 20. We generated random
orthogonal matrices in the (hypothetical) PCA space, where each
column of the orthogonal matrix corresponds to one component, and
computed the similarities. Then, we ran the testing algorithm.

We used the following five scenarios which all could potentially
give rise to different kinds of errors:

1. There was no inter-subject consistency at all: all components in all
subjects were generated independently of each other.

2. Half of the components were equal in all subjects, and half of the
components were completely random. In other words, half of the
components had perfect inter-subject consistency, while the other
half had zero consistency.

3. Half of the subjects had all equal components, while the other half
had components which were completely random, independent of
each other and of the first half of subjects. In other words, half of
the subjects had perfect inter-subject consistency for all compo-
nents, while the other half of the subjects had no consistent
components.

4. Half of the components were equal in all subjects. Moreover, for
half of the subjects, all the components were consistent.

5. For half of the subjects, half of the components were consistent
(equal over subjects).

In scenarios 1 and 2, the typical errors would be that the algorithm
finds a false positive cluster, usually with just two components. In
scenario 3, the typical error would be adding one falsely “discovered”
component to one of the clusters. In scenarios 4 and 5, both kinds of
errors are equally possible.

The false positive and discovery rates in the testing method were
set at αFP=αFD=0.05 and 500 different sets of orthogonal matrices
(“data sets”) were generated in each of the 2×2×5=20 different
conditions.

We computed what we call the “actual” FPRs and FDRs as the
proportion of data sets in which one of the following errors occurred
when compared to the true generating mechanism: either there was
a false positive cluster, or a component was added to a cluster
although it did not belong there. Note that these error rates are the
rates which are relevant in practice; they do not exactly correspond to
the error rates αFP=αFD in the theoretical development. For example,
even if a similarity falsely exceeds the FDR threshold, it may not lead
to a false clustering: it is possible that neither of the corresponding
components could be added to an existing cluster because the more
stringent FPR threshold was not exceeded for sufficiently similar
components.

Simulation 2: semi-realistic data with varying inter-subject consistency

As a second validation of the testing procedure, we used artificial
data where the ground truth is known, but went through all the steps
of practical data analysis, including ICA estimation. The number of
subjects was fixed to 11, the data dimension to 204, the dimension
after PCA dimension to 40, and αFP=αFD=0.05.

We first chose a “common” mixing matrix A0 as a basis for inter-
subject consistency. While we could have generated A0 completely
randomly, we chose to introduce somemore realism to the simulation
by taking as A0 a mixingmatrix estimated fromMEG data (see below).
Then, the mixing matrices for different subjects were created by
adding inter-subject variability to this common matrix.

Intersubject variability was created by adding gaussian “noise” to
the common mixing matrix A0, using different noise samples for each
subject. Note that this noise has little to do with measurement noise
in a brain imaging device, since it is added on the parameters and
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not on the signals. The level of noise added to the mixing matrix,
which we call intersubject noise, was varied. Furthermore, we
completely destroyed inter-subject consistency for one half of the
components by replacing half of the columns (same columns for each
subject) by random gaussian noise. The variance of the noise was
chosen so that the norms of the columns of the mixing matrix were
not changed on average.

The independent components were generated as Laplacian i.i.d.
signals with 10,000 time points. The standard deviation of each
independent component (or equivalently, the norm of the corre-
sponding column of the mixing matrix) was set to a random number
uniformly distributed between 0.5 and 1.5. Finally, the independent
components were mixed for each subject.

For each level of inter-subject variability, 100 randomized trials
were conducted, in which the common mixing matrix A0 was
randomly picked from a set of 11 different estimated mixing matrices
(corresponding to different subjects in the MEG experiments below).

Note that an intersubject noise level of 1 essentially means a
signal-to-noise ratio of 1 in creation of the individual mixing matrices
from the common one. Thus, when the intersubject noise level is
larger than one, the “intrasubject” part of the common part of the
mixing matrix is larger than the “intersubject” one.

We then estimated ICA for each subject separately using the
FastICA algorithm, and tested inter-subject consistency as explained
above. To compare the results with the ground truth, we assigned
each estimated vector (column of estimated mixing matrix) to one of
the columns of the original common mixing matrix A0, by finding the
maximum correlation coefficient (in absolute value) between the
estimated vector and the columns of A0.

We computed two quantities as a function of intersubject noise:

• the number of times the null hypothesis was rejected, and
• the number of clusters found by the method.

Further, we assessed the quality of the clusters found by dividing
them into different categories:

• “Perfect” cluster: the cluster has one vector from each subject, and
each vector is assigned to the same column of A0.

• “Correct” cluster: each of the vectors in the cluster was assigned to
the same column of A0, but it does not contain a vector from all the
subjects.

• “Incorrect” cluster: it contains vectors which were assigned to
different columns of A0.

Ideally, the number of clusters found would be equal to 20, which
is the number of consistent clusters (one half of the PCA dimension,
40). Further, the clusters would all be perfect, and the null hypothesis
would be rejected in 100% of the cases.

Simulation 3: semi-realistic data with two subject groups

We further conducted a variant of the preceding simulation to
investigate the behavior of the algorithmwhen there are two different
groups of subjects. Instead of adding general inter-subject “noise”
to the mixing matrix as in Simulation 2, we added a random
perturbation to the mixing coefficients of the consistent components
for subjects with indices 6,…,11 so that the perturbation was the
same for all subjects (but different for different components). The
random perturbation models the difference between the groups
consisting of subjects 1,…,5 and 6,…,11. The numbering of
the subjects is arbitrary, so this models the general case where the
subjects can be divided into two groups and we do not know the
grouping.

The norm of the random perturbation was increased in the same
way and with the same values as in Simulation 2. We analyzed the
clustering in the same way as in Simulation 2. In this case, the
meaning of “incorrect” and “perfect” clusters is not quitewell-defined,
but they serve as useful quantitative measures of the behavior of the
algorithm. We further analyzed the data by simply plotting individual
clustering results for comparing them with the group structure.

Simulation 4: computational complexity

Next we evaluated the computational complexity of the method to
determine which numbers of subjects r and PCA dimensions n are
feasible.

To evaluate the computational complexity of the method, we can
of course use quite artificial data. However, we cannot use random
noise because then the clustering method would find no clusters and
there would be not much to compute. So, we decided to generate data
from scenario 5 of Simulation 1, which is arguably the most realistic.

We used the same values for the number subjects and PCA
dimensions, n=r. The values used in the different trials were 8, 16, 32,
64, and 128. The computations were done in Matlab on a rather
ordinary Linux PC with two cores of 2.66 GHz each, and 2.4 GB of
memory available.

We computed the CPU time needed as well as thememory needed.
The memory usage considered only the memory needed for storing
the explicit variables, i.e. the final values of any Matlab operations
neglecting any intermediate results, and thus clearly provides a lower
bound only.

Experiments on MEG data

Inter-subject consistency
We next applied the method on magnetoencephalographic (MEG)

data consisting of 204 gradiometer channels measured by the
Vectorview helmet-shaped neuromagnetometer at the Brain Research
Unit of the Low Temperature Laboratory of Aalto University, Finland.1

The recordings were of spontaneous activity in 11 healthy volunteers,
who received alternating auditory, visual, or tactile stimulations
interspersed with rest blocks, taken from Ramkumar et al.(in press).
The MEG recordings had a prior approval by the Ethics Committee of
the Helsinki and Uusimaa Hospital District.

Noise and artifacts were reduced by the signal space separation
method (Taulu et al., 2004) which also reduced the effective dimen-
sion of the data to 64. At the same time, the data was downsampled
from the initial sampling frequency of 600 Hz to 150 Hz. All 64
dimensions were used in ICA, and PCA dimension reduction was not
performed. Thus, 64 independent components were estimated for
each subject using Fourier-ICA (Hyvärinen et al., 2010). Each topo-
graphic distribution of an independent components on the gradiom-
eter channels is a 204-dimensional vector aik, and these are used in
the intersubject consistency testing. We set αFP=αFD=0.01.

To further analyze the results, we found in each cluster the most
representative component (the one with minimum sum of Euclidean
distances to other components) and computed its cortical distribution
using the minimum norm estimate, as well as the Fourier spectrum.

Finally, we analyzed the modulation by each stimulation modality
(some divided into subcategories) by computing the difference of
the logarithm of average energy in each stimulation block and the
preceding rest block, separately for each component in the cluster.
The differences were converted to (uncorrected) z-scores.

Inter-session consistency
We further applied the method to three different recordings of a

single subject obtained in the same set of experiments as the one
above. In addition to the dataset consisting of naturalistic stimulations
interspersed with rest, we also had two more recording sessions. In
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Fig. 1. Simulation 1: false positive rates and false discovery rates for simulated data.
Different settings of data dimension and number of subjects are given in different
colors. The data scenarios are explained in detail in the text, briefly: 1: no consistent
components, 2: half of components consistent for all subjects, 3: all components
consistent for half of the subjects, 4: for half the subjects, all components consistent and
half of the components consistent for the rest of the subjects, 5: for half of the subjects,
half of the components were consistent. The desired false positive and discovery rates
were set toαFP=αFD=0.05. For scenario 1, FDR cannot be meaningfully computed
since the number of true positives is zero.
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one of them the subject was resting with eyes open and fixated, while
in the other the subject received the same kind of naturalistic
stimulation as above but without any rest in between. The analysis
of the results was identical to the analysis in the inter-subject
consistency experiments, subjects being simply replaced by sessions.
However, we did not compute the activity modulation by stimulation
because there were not enough different blocks to achieve statistical
significance in that respect.

Results

Simulation 1: artificial data

The “actual” false-positive rates and false-discovery rates (as
defined in Methods) are shown in Fig. 1. We can see that they are all
less than the required 5%, and well controlled in spite of the various
approximations done in developing our method.

Thus, the approximations in the computation of the p-values seem
to lead to conservative testing, so the FPR and FDR do not need to
chosen particularly small.

Perhaps one could argue that the most realistic case is scenario 5
in which the inter-subject consistency is always limited in the sense
that component is found in all the subjects, and in addition there
are subjects with no consistency with the others. In this scenario, the
FPR and FDR were of the order of 1%, which shows some tendency
to conservative testing since we set αFD=αFP=0.05.

Simulation 2: semi-realistic data with varying inter-subject consistency

The probability of rejection of the null hypothesis is shown in
Fig. 2 a). We see that for a reasonable intersubject noise, i.e., some
inter-subject consistency, the method always correctly rejected the
null hypothesis. However, with really small inter-subject consistency
(noise level of 2), the null hypothesis was no longer always rejected,
and intersubject consistency was no longer detected.

The numbers of clusters found, divided into the different cate-
gories, are shown in Figs. 2 b)–c). We see that for reasonably small
intersubject noise (0.25 or 0.5), i.e. reasonably large consistency,
almost all clusters are perfect and there are 20 (or close) of them as
expected.

For a larger noise level (=1), clusters are fewer and they are not
perfect; one the average, 15% of them were correct only. With a very
high noise level (=2), there were only two clusters on the average.
No incorrect clusters were observed in these simulations, but this is
presumably subject to a lot of random fluctuation and not a conclusive
result.

Thus, incorrect clustering seems to happen very rarely: when
intersubject consistency is negligible, the method does not usually
group the components into incorrect clusters. Instead, it simply finds
very few clusters. This is of course what the method was supposed to
do, and indicates that clusters considered significant can be trusted to
some extent.

Simulation 3: semi-realistic data with two subject groups

The results for Simulation 3 are shown in Fig. 3. We see that first,
when the difference between the groups is small (0.25 or 0.5), the
method simply ignores the difference between the groups: it clusters
corresponding components from all subjects into one cluster, which is
thus “perfect” in our classification. In contrast, with the highest group
difference (2), the method creates almost 40 “correct” clusters and
few perfect ones, as well as a few incorrect ones.

A closer examination of the clusters reveals the expected result
that each subject group has its own clusters in the case of high group
difference, with components from 5 or 6 subjects in each. This is
shown in Fig. 3 d), in which the clustering structure is given for one
randomly selected trial in the case of the highest group difference. The
method found 38 clusters, 36 of which contain exactly the subjects of
one group (up to two random errors), and 2 contain the subjects from
both groups. Since the group difference was randomized for each
component, for some components the group difference seems to have
been too small to be detected.

Thus, any group differences of the subjects can lead to splitting of
the clusters by groups, provided the group differences are strong
enough.

Simulation 4: computational complexity

The computational requirements are shown in Fig. 4. Note that
both plots are in log–log scale with base 2. We can see that the
memory requirement increases rather exactly proportionally to n2r2,
which is seen as the increase of memory by a constant of 16=24

when increasing n and r by a factor of two. Regarding computation
time, the progression is also close to linear. The slope of the line is
close to 5 (in logarithms) for the largest dimensions computed, thus
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approximately conforming with the theoretical prediction of n3r2

complexity.
The case n= r=128 could not be computed due to lack of memory

in our PC. In fact, an extrapolation of the line plotted shows that it
would have required approximately 1.4 GB of memory to store the
variables. Since this value does not take into account the memory
needed for temporary storage of internal variables, the required
computations were impossible with the 2.4 GB of free memory we
had. However, it would not have been difficult for us to find a
computer with the required memory capacity, so the case n=r=128
is not impossible, and presumably already possible in more advanced
hardware configurations.

Extrapolating the CPU time, we see that the expected computation
time in the case of n=r=128 would have been less than 10 h, which
would still have been feasible. Thus, the computational bottleneck is
really in the memory requirements.

MEG data

Inter-subject consistency
When applied on the naturalistic stimulation data from 11 subjects

and a PCA dimension of 64, the method found 43 reliable clusters. The
a) Topographies over subjects

Fig. 6. Another cluster found in real group MEG data, mod
distribution of cluster sizes (not shown) was rather uniform from 2 to
11, with a slight overrepresentation of clusters of two components.
The clusters included a total of 239 components, which is 34% of
the total number of estimated components.

We show threemanually selected clusters in Figs. 5–7. Fig. 5 shows
a typical Rolandic cluster strongly modulated by tactile stimulation.
Fig. 6 shows a temporal component mainly modulated by speech
stimulation. Fig. 7 shows an occipital visual component. Many fur-
ther components modulated by sensory input were found as well,
typically in the occipital and parietal cortices. Some of the clusters
seemed to be ocular or muscular artifacts.

Inter-session consistency
When applied on single-subject data with three different sessions,

the method found 32 clusters. 25 of them were of size three, and the
rest of size two. Two of the clusters are shown in Figs. 8 and 9. Clearly,
the spatial patterns are very similar across sessions.

Discussion

We proposed a method for testing the statistical significance or
reliability of independent components based on the consistency of the
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ulated by auditory stimulation. See Fig. 5 for legend.
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columns of the mixing matrix over subjects or sessions. While
clustering of components to solve the group ICA estimation problem
has been proposed before (Esposito et al., 2005), our contribution
here was to derive statistically principled thresholds to determine if a
cluster is reliable or not. We were able to derive such thresholds in
closed form, controlling the false-positive rates for clusters and false
discovery rates for including components in the clusters. Due to the
complexity of the ICA model, the algorithm had to resort to a number
of approximations which means that the control of the error rates is
not exact. However, according to the simulations, the control of error
rates was good, and experiments on real MEG data gave plausible
results as well.

Intersubject consistency in ICA theory

The multi-subject scenario has received little attention in the
general literature of ICA theory, and it is often considered more of a
nuisance in the theoretical literature, although its importance is clear
in the context of neuroimaging. Most of the methods for group ICA
have been developed, in fact, in the neuroimaging literature.
One implication of the work presented here is that having many
subjects is actually very useful for ICA even on a theoretical level, since
it leads to a method of testing components which is both intuitively
appealing and mathematically principled. Our statistical test discards
many of the components and shows which ones are worthy of further
attention because they are more consistently found than would be
by chance. This is in contrast to most group ICA methods, reviewed by
Calhoun et al.(2009), which do not provide any selection of the
components. Ourmethod is closely related to the one by Esposito et al.
(2005); we improve on that work by replacing an arbitrarily set
threshold by a statistically principled one which controls the error
rates. A related method based on split-half analysis of the group was
recently proposed by Varoquaux et al.(2010) but they did not provide
a principled threshold either.

Wewant to emphasize that widely-used group ICAmethods based
on concatenation of the individual data matrices are based on the
implicit assumption that the same components are present in all
subjects. However, this assumption is usually not validated in any
way, so there is no guarantee that a given component is really present
andmeaningful in all the subjects, or evenmany of them. It is possible
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that the ICA algorithm simply ignores some, or even most, of the
subjects when estimating a given component. One way to make sure
that a component is present in several subjects (and to find out in
which subjects) is to compute ICA separately for each subject and then
analyze the intersubject consistency of the results.
a) Topographies over sessions

Fig. 9. Another cluster found in single-subject data with three different session
Technical notes and future work

An important extension of the current method would be to
consider the case where we are interested in similarities of spatial
patterns estimated by spatial ICA. This is, in fact, the most frequent
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s. See Fig. 5 for legend. (Modulation by stimulation not computed here.).
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type of application of group ICA methods, and dominant in the fMRI
literature. We are hopeful that the framework can be extended in
that direction, and will pursue that goal in the near future. The
method as presented here is, in fact, applicable to spatial ICA of
fMRI data if one is interested in the inter-subject consistency of
time courses, i.e. inter-subject synchronization (Hasson et al., 2004;
Malinen and Hari, Submitted for publication).

Our null hypothesis implies some specific equalities of the
parameters. In particular, it implies that the subjects have the same
covariance matrices, and thus the same PCA subspaces and whitening
matrices. While this may be contradictory with their empirical
estimates, it is justified by the logic given above for introducing a
minimum amount of randomness. If the data for different subjects is
actually generated by a random process which has less restrictions,
the similarities are less likely to attain any thresholds we compute
here. Thus, any thresholds for comparing inter-subject consistency
using our H0 are conservative.

This leads to the question of whether the assumption of equal
covariances may actually lead to overly conservative testing. One
has to note that the subspace of components which are consistent has,
by definition, approximately the same covariance matrix for all the
subjects (up to possible differences in scaling of the components). So,
the subspace in which the covariance is clearly different is likely to
correspond to inconsistent components. Thus, the test is likely to be
more conservative for accepting false positives only from subspaces in
which there is no consistency. This should not be a problem if it is not
likely to be much more conservative in rejecting H0 for consistent
components.

We further assumed in the case of multiple testing that we can
approximate the tests to be independent. Alternatively, we might
use an FDR procedure which does not make any such assumption
(Benjamini and Hochberg, 1995), but we have found (results not
shown) that such variants make the test far too conservative. In
simulations reported above, we found that our test is not too per-
missive in spite of this approximation. In fact, it would rather seem
to be slightly too conservative, and another topic for future research
is to find methods that make the FPR rate closer to the desired one.

Our framework can also be used for analyzing different recordings
of the same subject in different conditions, for example, in rest or
under different kinds of stimulation. Ultimately, one could even
divide a single, long recording into segments and analyze which
components are found in many segments. Thus, we can actually de-
termine principled p-values in the general context of the ICASSO
method (Himberg et al., 2004) which is applicable to any ICA analysis.
It should be noted that our theory cannot be used with bootstrapping
samples because such samples have considerable overlap so the
complete inter-session randomness of H0 would be quite unrealistic.
Instead, we have to use disjoint subsets of the data points. Because of
time correlations in the data, the subsets should also be temporally
contiguous, as opposed to random subsets of time points, to make
the complete randomness in the null hypothesis a realistic baseline.
(Relatedwork based on splitting the data into two halves can be found
in Groppe et al., 2009.)

Our clustering method is a simple modification of a classic one:
hierarchical clustering by single linkage. The modification consists
of allowing at most one cluster member from each subject. There
is no reason why any other clustering method could not be used.
An obvious option would be to use other variants of hierarchical
clustering, in particular complete linkage. Variants of k-means
clustering should be easily applicable as well. Whether any benefit
can be derived from such variants is another interesting question for
future research.

The definition of FDR was here based on the number of similarities
considered true although they are false. It should be noted that this
is not the number of components falsely clustered. In principle, it is
possible that the number of falsely clustered components is larger
than given by FDR because if one component is falsely clustered, it
may bring other, similar components to the same cluster. How-
ever, in our simulations, the opposite seemed to happen, and the
number of falsely clustered components was actually smaller than the
FDR. In fact, it is not quite clear how to define the number of “falsely
clustered” components in the first place, since if the method merges
two small clusters, it is not clear whether one should consider falsely
clustered all the components in the two clusters, all the components
in one of the clusters, or only one component. Our FDR definition
considers, in fact, that only one error has been committed.

In general, any estimation method should be accompanied by a
testing method in practical data analysis. In the case of ICA, the testing
has been long neglected. We hope that the present work and any
related future work contribute to correcting that oversight.
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Appendix A. Proof of Theorem 1

We have
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where + is the Moore–Penrose pseudoinverse, and U is uniformly
distributed in the set of orthogonal matrices for k≠ l. The de-
nominators aTjlRajl are all one because they correspond to UT

kUl with
k= l, which is identity.

Appendix B. Proof of Theorem 2

The theorem is considered well-known by some authors, and is
closely related to results by Fisher(1915) and Anderson(1984). The
variable u is, in fact, closely related to the correlation coefficient
between two samples drawn from two distributions with zero
correlation, since our similarity is a normalized dot-product just like
a correlation coefficient. Its distribution has been treated extensively
in that context, but since we are unable to find an accessible reference
considering this particular case, we provide a complete proof here.

Here, we call a d-sphere a set of the form x∈Rd j∥x∥ = r
n o

. The

volume of the d-sphere is C(d)rd−1 where C(d) is a constant that
depends on d. We don't need to calculate C because its effect would be
essentially to normalize the pdf and we can do that afterwards.

By symmetry considerations, we can see that the distribution
of an element of a uniformly distributed d×d orthogonal matrix is
the same as the distribution of an element of an d-dimensional
vector u uniformly distributed on the unit d-sphere (i.e. d-sphere with
r=1). From now on, u thus refers to one element of such a random
vector.

Consider a fixed value u0N0 for |u|. Parameterize it as u0=cos α.
The probability P(u≥u0) is proportional to the volume of the “cap”
of the d-sphere which is obtained for angles |α|≤arccos u0. This is
illustrated in Fig. 10. The volume of the set in question can be obtained
by integrating over the volumes of the segments corresponding to the
part of the sphere between the angles [α, α+δ] (red and magenta
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circles in Fig. 10). The volume of such a segment, which is essentially
an d−1-sphere, equals C(d−1)(sin α)d−2δ. Thus, we have

P ju j≥u0ð Þ = C′ dð Þ∫arccos u0
0 sin αð Þd−2dα ðB:1Þ

for some constant C′ which depends on d only.
We make the transformation of variable

t = cos2α: ðB:2Þ

Since

d
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we obtain
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Here, we recognize in the integrand the unnormalized pdf of the

beta distribution with parameters
1
2
;
d−1
2

� �
. The constant C″ thus

has to be the proper normalizing constant. Thus, we have proven that
u2 follows the beta distribution. Next, we make the transform to
Student's distribution. From the cdf in (B.5) we obtain the pdf of u as

p uð Þ∝ u2×
1
2
−1

� �
1−u2
� � d−1

2
−1

u = 1−u2
� � d−1

2
−1

ðB:6Þ

where the multiplying u at the end of the pdf comes from the change
of measure when going from u2 to u. We use the notation ∝ to
indicate that the expression of the pdf is missing the normalization
with respect to td. The inverse and the volume element of the trans-
formation in Eq. (6) are given by

u =
t

ffiffiffiffiffiffiffiffiffiffi
d−1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

t2

d−1

s =
tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d−1 + t2
p ðB:7Þ

du
dt

=
1

d−1 + t2
� �3=2 ðB:8Þ

and thus we have

p tð Þ ∝ 1− t2

d−1+ t2

 ! d−1
2

−1
1

d−1+ t2
� �3=2

=
d−1

d−1 + t2

� � d
2
−3

2 1

d−1 + t2
� �3=2 :

ðB:9Þ

From which we finally obtain

p tð Þ∝ 1 +
t2

d−1

 ! −
d−1ð Þ + 1

2
ðB:10Þ

which shows that t follows Student's t distribution with d−1 degrees
of freedom.

Let us note that if u is complex-valued, as proposed, for example,
in Hyvärinen et al.(2010), numerical simulations indicate that |u|2

follows a beta distribution with parameters 1;
2d−1

2

� �
, but we do not

have an analytical proof for this property.

Appendix C. Numerical computation of p-values

The numerical computation of either of the cumulative distribu-
tion functions (cdfs) given in the theorem is fundamentally based on
the incomplete beta function, which is essentially the cdf of the beta
distribution. We have

P u2 ≤ x
� �

= BI x;
1
2
;
d−1
2

� �
ðC:1Þ

where BI is the regularized incomplete beta function

BI y; a; bð Þ = ∫y
0t

a−1 1−tð Þb−1dt

B a; bð Þ ðC:2Þ

and B is the (ordinary) beta function B a; bð Þ = ∫1
0 ta−1 1−tð Þb−1dt.

Computation of the incomplete beta function, as well as its inverse, is
efficiently implemented in many software platforms for scientific
computation. In fact, the cumulative distribution function of Student's
distribution is typically computed using the incomplete beta function,
which is why the incomplete beta function may be preferable,
although any difference in accuracy or speed may be very small.

Whichever distribution is used, due to the corrections for multiple
testing, we need to compute the value of the cdfs for values very close
to 1, which easily leads to numerical problems. This is because we are
in fact interested in the values of oneminus the cdf, and this difference
will not be properly presented in the value of the cdf if the difference
is very small. Such a problem can be solved using the upper option of
Matlab's betainc function, or by computing the value of the cdf of
the t-distribution for − t instead of t.
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