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Abstract

We show that two important properties of the primary visual cortex
emerge when the principle of temporal coherence is applied to natural
image sequences. The properties are simple-cell-like receptive fields and
complex-cell-like pooling of simple cell outputs, which emerge when
we apply two different approaches to temporal coherence. Inthe first
approach we extract receptive fields whose outputs are as temporally co-
herent as possible. This approach yields simple-cell-likereceptive fields
(oriented, localized, multiscale). Thus, temporal coherence is an alterna-
tive to sparse coding in modeling the emergence of simple cell receptive
fields. The second approach is based on a two-layer statistical generative
model of natural image sequences. In addition to modeling the temporal
coherence of individual simple cells, this model includes inter-cell tem-
poral dependencies. Estimation of this model from natural data yields
both simple-cell-like receptive fields, and complex-cell-like pooling of
simple cell outputs. In this completely unsupervised learning, both lay-
ers of the generative model are estimated simultaneously from scratch.
This is a significant improvement on earlier statistical models of early
vision, where only one layer has been learned, and others have been fixed
a priori.

1 Introduction

The functional role of simple and complex cells has puzzled scientists since their response
properties were first mapped by Hubel and Wiesel in the 1950s (see, e.g., [1]). The current
view of the functionality of sensory neural networks emphasizes learning and the relation-
ship between the structure of the cells and the statistical properties of the information they
process (see, e.g., [2]). In 1996 a major advance was achieved when Olshausen and Field
showed that simple-cell-like receptive fields emerge when sparse coding is applied to nat-
ural image data [3]. Similar results were obtained with independent component analysis
shortly thereafter [4]. In the case of image data, independent component analysis is closely
related to sparse coding [5].

In this paper we show that a principle calledtemporal coherence[6, 7, 8, 9] leads to the
emergence of major properties of the primary visual cortex from natural image sequences.



Temporal coherence is based on the idea that when processingtemporal input, the repre-
sentation changes as little as possible over time. Several authors have demonstrated the
usefulness of this principle using simulated data (see, e.g., [6, 7]).

We apply the principle of temporal coherence to natural input, and at the level of early
vision, in two different ways. In the first approach we show that when the input consists
of natural image sequences, the maximization of temporal response strength correlation
of cell output leads to receptive fields which are similar to simple cell receptive fields.
These results show that temporal coherence is an alternative to sparse coding, in that they
both result in the emergence of simple-cell-like receptivefields from natural input data.
Whereas earlier research has focused on establishing a linkbetween temporal coherence
and complex cells, our results demonstrate that such a connection exists even on the simple
cell level. We will also show how this approach can be interpreted as estimation of a linear
latent variable model in which the latent signals have varying variances.

In the second approach we use the principle of temporal coherence to formulate a two-layer
generative model of natural image sequences. In addition tosingle-cell temporal coherence,
this model also captures inter-cell temporal dependencies. We show that when this model
is estimated from natural image sequence data, the results include both simple-cell-like
receptive fields, and a complex-cell-like pooling of simplecell outputs. Whereas in earlier
research learning two-layer statistical models of early vision has required fixing one of the
layers beforehand, in our model both layers are learned simultaneously.

2 Simple-cell-like receptive fields are temporally coherent features

Our first approach to modeling temporal coherence in naturalimage sequences can be in-
terpreted either as maximization of temporal coherence of cell outputs, or as estimation of
a latent variable model in which the underlying variables have certain kind of time struc-
ture. This situation is analogous to sparse coding, becausemeasures of sparseness can also
be used to estimate linear generative models with non-Gaussian independent sources [5].
We first describe our measure of temporal coherence, and thenprovide the link to latent
variable models.

In this paper we restrict ourselves to consider linear spatial models of simple cells. Lin-
ear simple cell models are commonly used in studies concerning the connections between
visual input statistics and simple cell receptive fields [3,4]. (Non-negative and spatiotem-
poral extensions of this basic framework are discussed in [10].) The linear spatial model
uses a set of spatial filters (vectors)w1, ...,wK to relate input to output. Let signal vector
x(t) denote the input of the system at timet. A vectorization of image patches can be done
by scanning images column-wise into vectors – for windows ofsizeN × N this yields
vectors with dimensionN2. The output of thekth filter at timet, denoted by signalyk(t),

is given byyk(t) = wT
k x(t). Let matrixW = [w1 · · ·wK ]T denote a matrix with all the

filters as rows. Then the input-output relationship can be expressed in vector form by

y(t) = Wx(t), (1)

where signal vectory(t) = [y1(t) · · · yK(t)]
T

.

Temporal response strength correlation, the objective function, is defined by

f(W) =
K

∑

k=1

Et {g(yk(t))g(yk(t − ∆t))} , (2)

where the nonlinearityg is strictly convex, even (rectifying), and differentiable. The sym-
bol ∆t denotes a delay in time. The nonlinearityg measures the strength (amplitude) of
the response of the filter, and emphasizes large responses over small ones (see [10] for
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Figure 1: Illustration of nonstationarity of variance. (A)A temporally uncorrelated signal
y(t) with nonstationary variance. (B) Plot ofy2(t).

additional discussion). Examples of choices for this nonlinearity areg1(α) = α2, which
measures the energy of the response, andg2(α) = ln coshα, which is a robustified ver-
sion ofg1. A set of filters which has a large temporal response strength correlation is such
that the same filtersoften respond strongly at consecutive time points, outputting large (ei-
ther positive or negative) values. This means that the same filters will respond strongly
over short periods of time, thereby expressing temporal coherence of a population code. A
detailed discussion of the difference between temporal response strength correlation and
sparseness, including several control experiments, can befound in [10].

To keep the outputs of the filters bounded we enforce the unit variance constraint on each of
the output signalsyk(t). Additional constraints are needed to keep the filters from converg-
ing to the same solution – we force their outputs to be uncorrelated. A gradient projection
method can be used to maximize (2) under these constraints. The initial value ofW is
selected randomly. See [10] for details.

The interpretation of maximization of objective function (2) as estimation of a generative
model is based on the concept of sources with nonstationary variances [11, 12]. The linear
generative model forx(t), the counterpart of equation (1), is similar to the one in [13,3]:

x(t) = Ay(t). (3)

HereA = [a1 · · ·aK ] denotes a matrix which relates the image patchx(t) to the activities
of the simple cells, so that each columnak, k = 1, ..., K, gives the feature that is coded by
the corresponding simple cell. The dimension ofx(t) is typically larger than the dimension
of y(t), so that (1) is generally not invertible but an underdetermined set of linear equations.
A one-to-one correspondence betweenW andA can be established by computing the
pseudoinverse solutionA = WT (WWT )−1.

The nonstationarity of the variances of sourcesy(t) means that their variances change over
time, and the variance of a signal is correlated at nearby time points. An example of a signal
with nonstationary variance is shown in Figure 1. It can be shown [12] that optimization of
a cumulant-based criterion, similar to equation (2), can separate independent sources with
nonstationary variances. Thus, the maximization of the objective function can also be in-
terpreted as estimation of generative models in which the activity levels of the sources vary
over time, and are temporally correlated over time. As was noted above, this situation is
analogous to the application of measures of sparseness to estimate linear generative models
with non-Gaussian sources.

The algorithm was applied to natural image sequence data, which was sampled from a sub-
set of image sequences used in [14]. The number of samples was200,000,∆t was 40 ms,
and the sampled image patches were of size16×16 pixels. Preprocessing consisted of tem-
poral decorrelation, subtraction of local mean, and normalization [10], and dimensionality
reduction from 256 to 160 using principal component analysis [5] (this degree of reduction



Figure 2: Basis vectors estimated using the principle of temporal coherence. The
vectors were estimated from natural image sequences by optimizing temporal response
strength correlation (2) under unit energy and uncorrelatedness constraints (here non-
linearity g(α) = ln coshα). The basis vectors have been ordered according to
Et {g(yk(t))g(yk(t − ∆t))} , that is, according to their “contribution” into the final ob-
jective value (vectors with largest values top left).

retains 95% of signal energy).

Figure 2 shows the basis vectors (columns of matrixA) which emerge when temporal
response strength correlation is maximized for this data. The basis vectors are oriented, lo-
calized, and have multiple scales. These are the main features of simple cell receptive fields
[1]. A quantitative analysis, showing that the resulting receptive fields are similar to those
obtained using sparse coding, can be found in [10], where thedetails of the experiments
are also described.

3 Inter-cell temporal dependencies yield simple cell output pooling

3.1 Model

Temporal response strength correlation, equation (2), measures the temporal coherence of
individual simple cells. In terms of the generative model described above, this means that
the nonstationary variances of differentyk(t)’s have no interdependencies. In this section
we add another layer to the generative model presented aboveto extend the theory to simple
cell interactions, and to the level of complex cells.

Like in the generative model described at the end of the previous section, the output layer
of the model (see Figure 3) is linear, and maps signed cell responses to image features. But
in contrast to the previous section, or models used in independent component analysis [5]
or basic sparse coding [3], we donotassume that the components ofy(t) are independent.
Instead, we model the dependencies between these components with a multivariate autore-
gressive model in the first layer of our model. Letabs (y(t)) = [|y1(t)| · · · |yK(t)|]

T
, let

v(t) denote a driving noise signal, and letM denote aK × K matrix. Our model is a
multidimensional first-order autoregressive process, defined by

abs (y(t)) = Mabs (y(t − ∆t)) + v(t). (4)

As in independent component analysis, we also need to fix the scale of the latent variables

by defining Et
{

y
2

k(t)
}

= 1 for k = 1, ..., K.



abs (y(t)) = Mabs (y(t − ∆t)) + v(t) x(t) = Ay(t) x(t)v(t) ×

random signs

y(t)abs (y(t))

Figure 3: The two layers of the generative model. Letabs (y(t)) = [|y1(t)| · · · |yK(t)|]
T

denote the amplitudes of simple cell responses. In the first layer, the driving noise signal
v(t) generates the amplitudes of simple cell responses via an autoregressive model. The
signs of the responses are generated randomly between the first and second layer to yield
signed responsesy(t). In the second layer, natural videox(t) is generated linearly from
simple cell responses. In addition to the relations shown here, the generation ofv(t) is af-
fected byMabs (y(t − ∆t)) to ensure non-negativity ofabs (y(t)) . See text for details.

There are dependencies between the driving noisev(t) and output strengthsabs (y(t)) ,
caused by the non-negativity ofabs (y(t)) . To take these dependencies into ac-
count, we use the following formalism. Letu(t) denote a random vector with
components which are statistically independent of each other. We definev(t) =
max (−Mabs (y(t − ∆t)) ,u(t)) , where, for vectorsa and b, max (a,b) =

[max(a1, b1) · · · max(an, bn)]
T

. We assume thatu(t) andabs (y(t)) are uncorrelated.

To make the generative model complete, a mechanism for generating the signs of cell re-
sponsesy(t) must be included. We specify that the signs are generated randomly with
equal probability for plus or minus after the strengths of the responses have been gener-
ated. Note that one consequence of this is that the differentyk(t)’s are uncorrelated. In the
estimation of the model this uncorrelatedness property is used as a constraint. When this
is combined with the unit variance (scale) constraints described above, the resulting set of
constraints is the same as in the approach described in Section 2.

In equation (4), a large positive matrix elementM(i, j), or M(j, i), indicates that there is
strong temporal coherence between the output strengths of cells i andj. Thinking in terms
of grouping temporally coherent cells together, matrixM can be thought of as containing
similarities (reciprocals of distances) between different cells. We will use this property in
the experimental section to derive a topography of simple cell receptive fields fromM.

3.2 Estimation of the model

To estimate the model defined above we need to estimate bothM andW (pseudoinverse
of A). We first show how to estimateM, givenW. We then describe an objective function
which can be used to estimateW, given M. Each iteration of the estimation algorithm
consists of two steps. During the first stepM is updated, andW is kept constant; during
the second step these roles are reversed.

First, regarding the estimation ofM, consider a situation in whichW is kept constant. It
can be shown thatM can be estimated by using approximative method of moments, and
that the estimate is given by

M ≈ βEt

{

(abs (y(t)) − Et {abs (y(t))}) (abs (y(t − ∆t)) − Et {abs (y(t))})T
}

× Et

{

(abs (y(t)) − Et {abs (y(t))}) (abs (y(t)) − Et {abs (y(t))})
T
}

−1

,

(5)

whereβ > 1. Since this multiplier has a constant linear effect in the objective function



given below, its value does not change the optima, so we can set β = 1 in the optimization.
(Details are given in [15].) The resulting estimator is the same as the optimal least mean
squares linear predictor in the case of unconstrainedv(t).

The estimation ofW is more complicated. A rigorous derivation of an objective function
based on well-known estimation principles is very difficult, because the statistics involved
are non-Gaussian, and the processes have difficult interdependencies. Therefore, instead
of deriving an objective function from first principles, we derived an objective function
heuristically, and verified through simulations that the objective function is capable of es-
timating the two-layer model. The objective function is a weighted sum of the covariances
of filter output strengths at timest − ∆t andt, defined by

f(W,M) =

K
∑

i=1

K
∑

j=1

M(i, j) cov {|yi(t)| , |yj(t − ∆t)|} . (6)

In the actual estimation algorithm,W is updated by employing a gradient projection ap-
proach to the optimization of (6) under the constraints. Theinitial value ofW is selected
randomly.

The fact that the algorithm described above is able to estimate the two-layer model has
been verified through extensive simulations (details can befound in [15]).

3.3 Experiments

The estimation algorithm was run on the same data set as in theprevious experiment (see
Section 2). The extracted matricesA andM can be visualized simultaneously by using the
interpretation ofM as a similarity matrix (see Section 3.1). Figure 4 illustrates the basis
vectors – that is, columns ofA – laid out at spatial coordinates derived fromM in a way
explained below. The resulting basis vectors are again oriented, localized and multiscale,
as in the previous experiment.

The two-dimensional coordinates of the basis vectors were determined fromM using mul-
tidimensional scaling (see figure caption for details). Thetemporal coherence between the
outputs of two cellsi andj is reflected in the distance between the corresponding receptive
fields: the larger the elementsM(i, j) andM(j, i) are, the closer the receptive fields are
to each other. We can see that local topography emerges in theresults: those basis vectors
which are close to each other seem to be mostly coding for similarly oriented features at
nearby spatial positions. This kind of grouping is characteristic of pooling of simple cell
outputs at complex cell level [1].1

Thus, the estimation of our two-layer model from natural image sequences yields both
simple-cell-like receptive fields, and grouping similar tothe pooling of simple cell outputs.
Linear receptive fields emerge in the second layer (matrixA), and cell output grouping
emerges in the first layer (matrixM). Both of these layers are estimated simultaneously.
This is a significant improvement on earlier statistical models of early vision, because no a
priori fixing of either of these layers is needed.

4 Conclusions

We have shown in this paper that when the principle of temporal coherence is applied to nat-
ural image sequences, both simple-cell-like receptive fields, and complex-cell-like pooling
of simple cell outputs emerge. These results were obtained with two different approaches

1Some global topography also emerges: those basis vectors which code for horizontal features
are on the left in the figure, while those that code for vertical features are on the right.



Figure 4: Results of estimating the two-layer generative model from natural image se-
quences. Basis vectors (columns ofA) plotted at spatial coordinates given by applying
multidimensional scaling toM. Matrix M was first converted to a non-negative similarity
matrix Ms by subtractingmini,j M(i, j) from each of its elements, and by setting each
of the diagonal elements at value 1. Multidimensional scaling was then applied toMs
by interpreting entriesMs(i, j) andMs(j, i) as similarity measures between cellsi andj.
Some of the resulting coordinates were very close to each other, so tight cell clusters were
magnified for purposes of visual display. Details are given in [15].



to temporal coherence. The first used temporally coherent simple cell outputs, and the
second was based on a temporal two-layer generative model ofnatural image sequences.
Simple-cell-like receptive fields emerge in both cases, andthe output pooling emerges as a
local topographic property in the case of the two-layer generative model.

These results are important for two reasons. First, to our knowledge this is the first time
that localized and oriented receptive fields with differentscales have been shown to emerge
from natural data using the principle of temporal coherence. In some models of invariant
visual representations [8, 16] simple cell receptive fieldsare obtained as by-products, but
learning is strongly modulated by complex cells, and the receptive fields seem to lack the
important properties of spatial localization and multiresolution. Second, in earlier research
on statistical models of early vision, learning two-layer models has required a priori fixing
of one of the layers. This is not needed in our two-layer model, because both layers emerge
simultaneously in a completely unsupervised manner from the natural input data.
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