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Abstract

We show that two important properties of the primary visuaitex
emerge when the principle of temporal coherence is apptiathtural
image sequences. The properties are simple-cell-liketedields and
complex-cell-like pooling of simple cell outputs, which erge when
we apply two different approaches to temporal coherencethérfirst
approach we extract receptive fields whose outputs are gtaity co-
herent as possible. This approach yields simple-cellsoeptive fields
(oriented, localized, multiscale). Thus, temporal coheeds an alterna-
tive to sparse coding in modeling the emergence of simpleestptive
fields. The second approach is based on a two-layer statiggnerative
model of natural image sequences. In addition to modeliagemporal
coherence of individual simple cells, this model includgsgi-cell tem-
poral dependencies. Estimation of this model from natuash ¢ields
both simple-cell-like receptive fields, and complex-didé pooling of
simple cell outputs. In this completely unsupervised leggnboth lay-
ers of the generative model are estimated simultaneousty fcratch.
This is a significant improvement on earlier statistical mledf early
vision, where only one layer has been learned, and otheestiesen fixed
a priori.

1 Introduction

The functional role of simple and complex cells has puzz&eists since their response
properties were first mapped by Hubel and Wiesel in the 198k €.g., [1]). The current

view of the functionality of sensory neural networks emgheslearning and the relation-
ship between the structure of the cells and the statisticgdgaties of the information they

process (see, e.g., [2]). In 1996 a major advance was achwelven Olshausen and Field
showed that simple-cell-like receptive fields emerge whErse coding is applied to nat-
ural image data [3]. Similar results were obtained with meledent component analysis
shortly thereafter [4]. In the case of image data, indepehctemponent analysis is closely
related to sparse coding [5].

In this paper we show that a principle callenporal coherencgs, 7, 8, 9] leads to the
emergence of major properties of the primary visual contemfnatural image sequences.



Temporal coherence is based on the idea that when procedssipgral input, the repre-
sentation changes as little as possible over time. Sevethbes have demonstrated the
usefulness of this principle using simulated data (see, [6.97]).

We apply the principle of temporal coherence to natural inpad at the level of early
vision, in two different ways. In the first approach we shoatttvhen the input consists
of natural image sequences, the maximization of temposglaniese strength correlation
of cell output leads to receptive fields which are similar itne cell receptive fields.
These results show that temporal coherence is an altegrtatisparse coding, in that they
both result in the emergence of simple-cell-like recepfigkls from natural input data.
Whereas earlier research has focused on establishing aditmkeen temporal coherence
and complex cells, our results demonstrate that such a conexists even on the simple
cell level. We will also show how this approach can be intergpd as estimation of a linear
latent variable model in which the latent signals have vayyiariances.

In the second approach we use the principle of temporal eolserto formulate a two-layer
generative model of naturalimage sequences. In additisinge-cell temporal coherence,
this model also captures inter-cell temporal dependentiesshow that when this model
is estimated from natural image sequence data, the resglisde both simple-cell-like
receptive fields, and a complex-cell-like pooling of simpéd outputs. Whereas in earlier
research learning two-layer statistical models of eadjyovi has required fixing one of the
layers beforehand, in our model both layers are learnedisimaously.

2 Simple-cell-like receptive fields are temporally cohererfeatures

Our first approach to modeling temporal coherence in nalomagie sequences can be in-
terpreted either as maximization of temporal coherencelbbatputs, or as estimation of

a latent variable model in which the underlying variablegeheertain kind of time struc-
ture. This situation is analogous to sparse coding, becqaassures of sparseness can also
be used to estimate linear generative models with non-Gausslependent sources [5].
We first describe our measure of temporal coherence, andptioeide the link to latent
variable models.

In this paper we restrict ourselves to consider linear apaibdels of simple cells. Lin-
ear simple cell models are commonly used in studies conugthe connections between
visual input statistics and simple cell receptive fields4B,(Non-negative and spatiotem-
poral extensions of this basic framework are discussed@h)[The linear spatial model
uses a set of spatial filters (vectors), ..., wx to relate input to output. Let signal vector
x(t) denote the input of the system at timeA vectorization of image patches can be done
by scanning images column-wise into vectors — for windowsipé N x N this yields
vectors with dimensiotV2. The output of theth filter at timet, denoted by signa}, (),

is given byy, (t) = wlx(t). Let matrixW = [wy - - -wik]" denote a matrix with all the
filters as rows. Then the input-output relationship can essed in vector form by

y(t) = Wx(t), €y
where signal vectoy (t) = [y1(t) - - - yx (£)]©
Temporal response strength correlation, the objectivetfan, is defined by

FOW) =Y TE{g(yi (1))g(yy,(t — A1)}, 2
k=1

where the nonlinearity is strictly convex, even (rectifying), and differentiablEhe sym-
bol At denotes a delay in time. The nonlinearityneasures the strength (amplitude) of
the response of the filter, and emphasizes large responsesmall ones (see [10] for
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Figure 1: lllustration of nonstationarity of variance. (Ajtemporally uncorrelated signal
y(t) with nonstationary variance. (B) Plot gf (¢).

additional discussion). Examples of choices for this nudrity areg; (o) = o2, which
measures the energy of the response, @id) = In cosh «, which is a robustified ver-
sion of g;. A set of filters which has a large temporal response strergtielation is such
that the same filtersften respond strongly at consecutive time pogiatgputting large (ei-
ther positive or negative) values. This means that the sdteesfivill respond strongly
over short periods of time, thereby expressing temporatieaice of a population code. A
detailed discussion of the difference between temporglarse strength correlation and
sparseness, including several control experiments, céouloel in [10].

To keep the outputs of the filters bounded we enforce the aniirce constraint on each of
the output signalg,, (¢). Additional constraints are needed to keep the filters fronvem-
ing to the same solution — we force their outputs to be untatgd. A gradient projection
method can be used to maximize (2) under these constraims.inltial value of W is
selected randomly. See [10] for details.

The interpretation of maximization of objective functid?) @s estimation of a generative
model is based on the concept of sources with nonstatiormaignces [11, 12]. The linear
generative model fax(t), the counterpart of equation (1), is similar to the one in 33,

x(t) = Ay (?). ®3)

HereA = [a; - - - ax| denotes a matrix which relates the image pattt) to the activities
of the simple cells, so that each column k& = 1, ..., K, gives the feature that is coded by
the corresponding simple cell. The dimensiox¢f) is typically larger than the dimension
of y(t), so that (1) is generally not invertible but an underdetesdset of linear equations.
A one-to-one correspondence betwédh and A can be established by computing the
pseudoinverse solutioh = W (WWT)~1L,

The nonstationarity of the variances of sourg€s) means that their variances change over
time, and the variance of a signal is correlated at nearby iaints. An example of a signal
with nonstationary variance is shown in Figure 1. It can lmsh[12] that optimization of

a cumulant-based criterion, similar to equation (2), cgrasgte independent sources with
nonstationary variances. Thus, the maximization of theahje function can also be in-
terpreted as estimation of generative models in which thieigdevels of the sources vary
over time, and are temporally correlated over time. As wasdabove, this situation is
analogous to the application of measures of sparsenedat@tslinear generative models
with non-Gaussian sources.

The algorithm was applied to natural image sequence datehwias sampled from a sub-
set of image sequences used in [14]. The number of sample2@aB00At was 40 ms,
and the sampled image patches were of $iize 16 pixels. Preprocessing consisted of tem-
poral decorrelation, subtraction of local mean, and nomatibn [10], and dimensionality
reduction from 256 to 160 using principal component analf&i (this degree of reduction
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Figure 2: Basis vectors estimated using the principle ofpmmal coherence. The
vectors were estimated from natural image sequences bgigptg temporal response
strength correlation (2) under unit energy and uncorrdlaes constraints (here non-
linearity g(o) = Incosha). The basis vectors have been ordered according to
E: {g9(y,(£)g(y,(t — At))}, that is, according to their “contribution” into the final ob-
jective value (vectors with largest values top left).

retains 95% of signal energy).

Figure 2 shows the basis vectors (columns of mafxixwhich emerge when temporal

response strength correlation is maximized for this dalt@ Fasis vectors are oriented, lo-
calized, and have multiple scales. These are the main sapfisimple cell receptive fields

[1]. A quantitative analysis, showing that the resultingegtive fields are similar to those

obtained using sparse coding, can be found in [10], wherel¢tails of the experiments

are also described.

3 Inter-cell temporal dependencies yield simple cell outpupooling

3.1 Model

Temporal response strength correlation, equation (2)sorea the temporal coherence of
individual simple cells. In terms of the generative modedatibed above, this means that
the nonstationary variances of different(¢)’s have no interdependencies. In this section
we add another layer to the generative model presented &hexe=nd the theory to simple
cell interactions, and to the level of complex cells.

Like in the generative model described at the end of the pum/ection, the output layer
of the model (see Figure 3) is linear, and maps signed cglbreses to image features. But
in contrast to the previous section, or models used in inoléget component analysis [5]
or basic sparse coding [3], we dotassume that the componentsydf) are independent.
Instead, we model the dependencies between these comp@aitma multivariate autore-
gressive model in the first layer of our model. ladts (y (t)) = [|y1(t)] - - lyx ()], let
v(t) denote a driving noise signal, and lef denote aK x K matrix. Our model is a
multidimensional first-order autoregressive procedsfined by

abs (y(t)) = Mabs (y(t — At)) + v(t). 4)
As in independent component analysis, we also need to fixctile sf the latent variables
by defining & {yZ(t)} =1fork=1,.., K.
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Figure 3: The two layers of the generative model. &b (y (¢)) = [Jy1 ()] - - - |yx (£)]]"
denote the amplitudes of simple cell responses. In the &y&r| the driving noise signal
v(t) generates the amplitudes of simple cell responses via aneguéssive model. The
signs of the responses are generated randomly betweenghaniir second layer to yield
signed responses(t). In the second layer, natural videdt) is generated linearly from
simple cell responses. In addition to the relations showa,tthe generation of(t) is af-
fected byM abs (y (t — At)) to ensure non-negativity ebs (y(t)) . See text for details.

There are dependencies between the driving ne{ggand output strengthsbs (y (¢)) ,
caused by the non-negativity aibs (y(¢)). To take these dependencies into ac-
count, we use the following formalism. Let(¢) denote a random vector with
components which are statistically independent of eacterothWe definev(t) =
max (—Mabs (y(t — At)),u(t)), where, for vectorsa and b, max(a,b) =

[max(ay,b1) --- max(an,byn)]” . We assume that(t) andabs (y(t)) are uncorrelated.

To make the generative model complete, a mechanism for geémgtthe signs of cell re-
sponsesy (t) must be included. We specify that the signs are generatetbraly with
equal probability for plus or minus after the strengths & thsponses have been gener-
ated. Note that one consequence of this is that the diffgggnt's are uncorrelated. In the
estimation of the model this uncorrelatedness propertgésias a constraint. When this
is combined with the unit variance (scale) constraints idesd above, the resulting set of
constraints is the same as in the approach described iroBexti

In equation (4), a large positive matrix elem@ét(s, j), or M(j, ), indicates that there is
strong temporal coherence between the output strengtlelsi and;. Thinking in terms
of grouping temporally coherent cells together, malvixcan be thought of as containing
similarities (reciprocals of distances) between différegils. We will use this property in
the experimental section to derive a topography of simple@eeptive fields froniM.

3.2 Estimation of the model

To estimate the model defined above we need to estimateNdaiind W (pseudoinverse
of A). We first show how to estimatel, given W. We then describe an objective function
which can be used to estimaW, given M. Each iteration of the estimation algorithm
consists of two steps. During the first sidpis updated, andV is kept constant; during
the second step these roles are reversed.

First, regarding the estimation ®f, consider a situation in whichV is kept constant. It
can be shown tha¥l can be estimated by using approximative method of momentks, a
that the estimate is given by

M ~ 5, {(abs (¥ (1)) — E: {abs (y())}) (abs (y (t — A)) — Ei {abs (y(1)})" }

< €, { (abs (y(1)) ~ E. {abs (y(1))}) (abs (y(1)) ~ & fabs (y(1)})" } .
©

where > 1. Since this multiplier has a constant linear effect in theeotiye function



given below, its value does not change the optima, so we ¢ah=sel in the optimization.
(Details are given in [15].) The resulting estimator is theng as the optimal least mean
squares linear predictor in the case of unconstrair(ed

The estimation oW is more complicated. A rigorous derivation of an objectivadtion
based on well-known estimation principles is very difficbkkcause the statistics involved
are non-Gaussian, and the processes have difficult intendemcies. Therefore, instead
of deriving an objective function from first principles, wertied an objective function
heuristically, and verified through simulations that th¢eative function is capable of es-
timating the two-layer model. The objective function is agited sum of the covariances
of filter output strengths at timés— At andt¢, defined by

K K
FOW, M) = 373" M, ) cov { i (8)] y (¢ — AD)]}- (6)

i=1 j=1

In the actual estimation algorithnW is updated by employing a gradient projection ap-
proach to the optimization of (6) under the constraints. iffiteal value of W is selected
randomly.

The fact that the algorithm described above is able to egtirtitee two-layer model has
been verified through extensive simulations (details caiobed in [15]).

3.3 Experiments

The estimation algorithm was run on the same data set as prévéous experiment (see
Section 2). The extracted matricAsandM can be visualized simultaneously by using the
interpretation ofM as a similarity matrix (see Section 3.1). Figure 4 illustsathe basis
vectors — that is, columns & — laid out at spatial coordinates derived frdvhin a way
explained below. The resulting basis vectors are agaimiik localized and multiscale,
as in the previous experiment.

The two-dimensional coordinates of the basis vectors weterthined fromM using mul-
tidimensional scaling (see figure caption for details). Tmporal coherence between the
outputs of two cellg andj is reflected in the distance between the correspondingtieeep
fields: the larger the elemend (i, j) andM(j, ) are, the closer the receptive fields are
to each other. We can see that local topography emerges iaghks: those basis vectors
which are close to each other seem to be mostly coding fotaimioriented features at
nearby spatial positions. This kind of grouping is chanastie of pooling of simple cell
outputs at complex cell level [1].

Thus, the estimation of our two-layer model from natural g@aequences yields both
simple-cell-like receptive fields, and grouping similathie pooling of simple cell outputs.
Linear receptive fields emerge in the second layer (maiixand cell output grouping
emerges in the first layer (matrix). Both of these layers are estimated simultaneously.
This is a significant improvement on earlier statistical mlewf early vision, because no a
priori fixing of either of these layers is needed.

4 Conclusions

We have shown in this paper that when the principle of tempotzerence is applied to nat-
ural image sequences, both simple-cell-like receptivdgiegdnd complex-cell-like pooling
of simple cell outputs emerge. These results were obtairidtwo different approaches

1Some global topography also emerges: those basis vectich wide for horizontal features
are on the left in the figure, while those that code for vetfieatures are on the right.
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Figure 4. Results of estimating the two-layer generativalehdrom natural image se-
guences. Basis vectors (columnsAf plotted at spatial coordinates given by applying
multidimensional scaling t&/1. Matrix M was first converted to a non-negative similarity
matrix M by subtractingmin; ; M(i, j) from each of its elements, and by setting each
of the diagonal elements at value 1. Multidimensional scalvas then applied td/s

by interpreting entried/Is(i, 7) andMs(j,4) as similarity measures between célesnd;j.
Some of the resulting coordinates were very close to eadr,ath tight cell clusters were
magnified for purposes of visual display. Details are givefib].



to temporal coherence. The first used temporally coheremplsi cell outputs, and the
second was based on a temporal two-layer generative modeitofal image sequences.
Simple-cell-like receptive fields emerge in both cases,thaadutput pooling emerges as a
local topographic property in the case of the two-layer gatiee model.

These results are important for two reasons. First, to oondedge this is the first time
that localized and oriented receptive fields with differsrdles have been shown to emerge
from natural data using the principle of temporal coheretieesome models of invariant
visual representations [8, 16] simple cell receptive figlds obtained as by-products, but
learning is strongly modulated by complex cells, and thepéee fields seem to lack the
important properties of spatial localization and multiesion. Second, in earlier research
on statistical models of early vision, learning two-layesdels has required a priori fixing
of one of the layers. This is not needed in our two-layer mdakstause both layers emerge
simultaneously in a completely unsupervised manner framttural input data.
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