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Abstract

We derive a first-order approximation of the density of maximum
entropy for a continuous 1-D random variable, given a number of
simple constraints. This results in a density expansion which is
somewhat similar to the classical polynomial density expansions
by Gram-Charlier and Edgeworth. Using this approximation of
density, an approximation of 1-D differential entropy is derived.
The approximation of entropy is both more exact and more ro-
bust against outliers than the classical approximation based on
the polynomial density expansions, without being computationally
more expensive. The approximation has applications, for example,
in independent component analysis and projection pursuit.

1 Introduction

The basic information-theoretic quantity for continuous one-dimensional random
variables is differential entropy. The differential entropy H of a scalar random
variable X with density f(z) is defined as

H(X) = — / f(2)log f(z)dx. (1)

The 1-D differential entropy, henceforth called simply entropy, has important appli-
cations such areas as independent component analysis [2, 10] and projection pursuit
[5, 6]. Indeed, both of these methods can be considered as a search for directions
in which entropy is minimal, for constant variance.

Unfortunately, the estimation of entropy is quite difficult in practice. Using defi-
nition (1) requires estimation of the density of X, which is recognized to be both



theoretically difficult and computationally demanding. Simpler approximations of
entropy have been proposed both in the context of projection pursuit [9] and in-
dependent component analysis [1, 2]. These approximations are usually based on
approximating the density f(z) using the polynomial expansions of Gram-Charlier
or Edgeworth [11]. This construction leads to the use of higher-order cumulants,
like kurtosis. However, such cumulant-based methods often provide a rather poor
approximation of entropy. There are two main reasons for this. Firstly, finite-
sample estimators of higher-order cumulants are highly sensitive to outliers: their
values may depend on only a few, possibly erroneous, observations with large values
[6]. This means that outliers may completely determine the estimates of cumulants,
thus making them useless. Secondly, even if the cumulants were estimated per-
fectly, they measure mainly the tails of the distribution, and are largely unaffected
by structure near the centre of the distribution [5].

Therefore, better approximations of entropy are needed. To this end, we introduce
in this paper approximations of entropy that are both more exact in the expectation
and have better finite-sample statistical properties, when compared to the cumulant-
based approximations. Nevertheless, they retain the computational and conceptual
simplicity of the cumulant-based approach. Our approximations are based on an
approximative maximum entropy method. This means that we approximate the
mazimum entropy that is compatible with our measurements of the random variable
X. This maximum entropy, or further approximations thereof, can then be used as
a meaningful approximation of the entropy of X. To accomplish this, we derive a
first-order approximation of the density that has the maximum entropy given a set
of constraints, and then use it to derive approximations of the differential entropy
of X.

2 Applications of Differential Entropy

First, we discuss some applications of the approximations introduced in this pa-
per. Two important applications of differential entropy are independent compo-
nent analysis (ICA) and projection pursuit. In the general formulation of ICA
[2], the purpose is to transform an observed random vector x = (1, ...,Zm,)7 lin-
early into a random vector s = (si,...,8,)7 whose components are statistically
as independent from each other as possible. The mutual dependence of the s;
is classically measured by mutual information. Assuming that the linear trans-
formation is invertible, the mutual information I(sy,...,s,;) can be expressed as
I(s1,...,8m) = >.; H(s;) — H(z1, ..., xm) —log |det M| where M is the matrix defin-
ing the transformation s = Mx. The second term on the right-hand side does not
depend on M, and the minimization of the last term is a simple matter of differential
calculus. Therefore, the critical part is the estimation of the 1-D entropies H (s;):
finding an efficient and reliable estimator or approximation of entropy enables an
efficient and reliable estimation of the ICA decomposition.

In projection pursuit, the purpose is to search for projections of multivariate data
which have ’interesting’ distributions [5, 6, 9]. Typically, interestingness is con-
sidered equivalent with non-Gaussianity. A natural criterion of non-Gaussianity is
entropy [6, 9], which attains its maximum (for constant variance) when the distribu-
tion is Gaussian, and all other distributions have smaller entropies. Because of the
difficulties encountered in the estimation of entropy, many authors have considered
other measures of non-Gaussianity (see [3]) but entropy remains, in our view, the
best choice of a projection pursuit index, especially because it provides a simple
connection to ICA. Indeed, it can be shown [2] that in ICA as well as in projection
pursuit, the basic problem is to find directions in which entropy is minimized for



constant variance.

3 Why maximum entropy?

Assume that the information available on the density f(z) of the scalar random
variable X is of the form

/f(;c)G,-(w)dx =g, fori=1,..,n, (2)

which means in practice that we have estimated the expectations E{G;(X)} of n
different functions of X. Since we are not assuming any model for the random
variable X, the estimation of the entropy of X using this information is not a
well-defined problem: there exist an infinite number of distributions for which the
constraints in (2) are fulfilled, but whose entropies are very different from each
other. In particular, the differential entropy reaches —oo in the limit where X takes
only a finite number of values.

A simple solution to this dilemma is the maximum entropy method. This means
that we compute the mazimum entropy that is compatible with our constraints
or measurements in (2), which is a well-defined problem. This maximum entropy,
or further approximations thereof, can then be used as an approximation of the
entropy of X.

Our approach thus is very different from the asymptotic approach often used in
projection pursuit [3, 5]. In the asymptotic approach, one establishes a sequence of
functions G; so that when n goes to infinity, the information in (2) gives an asymp-
totically convergent approximation of some theoretical projection pursuit index. We
avoid in this paper any asymptotic considerations, and consider directly the case of
finite information, i.e., finite n. This non-asymptotic approach is justified by the
fact that often in practice, only a small number of measurements of the form (2)
are used, for computational or other reasons.

4 Approximating the maximum entropy density

In this section, we shall derive an approximation of the density of maximum entropy
compatible with the measurements in (2). The basic results of the maximum entropy
method tell us [4] that under some regularity conditions, the density fo(z) which
satisfies the constraints (2) and has maximum entropy among all such densities, is

of the form
fo(z) = A eXp(Z aiGi(z)), 3)

where A and q; are constants that are determined from the ¢;, using the constraints
in (2) (i-e., by substituting the right-hand side of (3) for f in (2)), and the constraint
J fo(z)dz = 1. This leads in general to a system of n+ 1 non-linear equations which
is difficult to solve. Therefore, we decide to make a simple approximation of fy. This
is based on the assumption that the density f(z) is not very far from a Gaussian
distribution of the same mean and variance. Such an assumption, though perhaps
counterintuitive, is justified because we shall construct a density expansion (not
unlike a Taylor expansion) in the vicinity of the Gaussian density. In addition, we
can make the technical assumption that f(z) is near the standardized Gaussian
density ¢(z) = exp(—x2/2)/\/2w, since this amounts simply to making X zero-
mean and of unit variance. Therefore we put two additional constraints in (2),
defined by Gp11(z) = 2,¢41 = 0 and Gpy2(z) = 22, ¢py2 = 1. To further simplify



the calculations, let us make another, purely technical assumption: The functions
G;,i = 1,...,n, form an orthonormal system according to the metric defined by
o, and are orthogonal to all polynomials of second degree. In other words, for all
,7=1,..,n

/ o(2)Gi(2)G;(2)de = { (1): iy ;g . [ o(@)Gi(z)ehde = 0,k =0,1,2. (4)

For any linearly independent functions G;, this assumption can always be made
true by ordinary Gram-Schmidt orthonormalization.

Now, note that the assumption of near-Gaussianity implies that all the other a; in
(3) are very small compared to a,+2 & —1/2, since the exponential in (3) is not far
from exp(—x?/2). Thus we can make a first-order approximation of the exponential
function (detailed derivations can be found in [8]). This allows for simple solutions
for the constants in (3), and we obtain the approzimative maximum entropy density,

which we denote by f(z):
f(@) = p(@)(1 +)_ ciGi()) (5)

where ¢; = E{G;(X)}. To estimate this density in practice, the ¢; are estimated, for
example, as the corresponding sample averages of the G;(X). The density expansion
in (5) is somewhat similar to the Gram-Charlier and Edgeworth expansions [11].

5 Approximating the differential entropy

An important application of the approximation of density shown in (5) is in ap-
proximation of entropy. A simple approximation of entropy can be found by
approximating both occurences of f in the definition (1) by f as defined in
Eq. (5), and using a Taylor approximation of the logarithmic function, which yields
(1 +¢€)log(1 + €) ~ € + €2/2. Thus one obtains after some algebraic manipulations
[8]

HOO ~ - [ f@)log fla)ds ~ Hw) — 5 3 (6)

where H (v) = 1(1+log(2m)) means the entropy of a standardized Gaussian variable,
and ¢; = E{G;(X)} as above. Note that even in cases where this approximation
is not very accurate, (6) can be used to construct a projection pursuit index (or
a measure of non-Gaussianity) that is consistent in the sense that (6) obtains its
maximum value, H(v), when X has a Gaussian distribution.

6 Choosing the measuring functions

Now it remains to choose the 'measuring’ functions G; that define the information
given in (2). As noted in Section 4, one can take practically any set of linearly inde-
pendent functions, say G;,% = 1, ...,n, and then apply Gram-Schmidt orthonormal-
ization on the set containing those functions and the monomials z*, k = 0, 1,2, so as
to obtain the set G; that fulfills the orthogonality assumptions in (4). This can be
done, in general, by numerical integration. In the practical choice of the functions
G, the following criteria must be emphasized: First, the practical estimation of
E{G;i(z)} should not be statistically difficult. In particular, this estimation should
not be too sensitive to outliers. Second, the maximum entropy method assumes



that the function fo in (3) is integrable. Therefore, to ensure that the maximum
entropy distribution exists in the first place, the G;(z) must not grow faster than
quadratically as a function of |z|, because a function growing faster might lead to
non-integrability of fy [4] Finally, the G; must capture aspects of the distribution
of X that are pertinent in the computation of entropy. In particular, if the density
f(z) were known, the optimal function G,p; would clearly be —log f(z), because
—E{log f(X)} gives directly the entropy. Thus, one might use the log-densities of
some known important densities as Gj.

The first two criteria are met if the G;(x) are functions that do not grow too fast
(not faster than quadratically) when |z| grows. This excludes, for example, the
use of higher-order polynomials, as are used in the Gram-Charlier and Edgeworth
expansions. One might then search, according to the last criterion above, for log-
densities of some well-known distributions that also fulfill the first two conditions.
Examples will be given in the next section. It should be noted, however, that the
criteria above only delimit the space of function that can be used. Our framework
enables the use of very different functions (or just one) as G;. The choice is not
restricted to some well-known basis of a functional space, as in most approaches
[1, 2, 9]. However, if prior knowledge is available on the distributions whose entropy
is to estimated, the above consideration shows how to choose the optimal function.

7 A simple special case

A simple special case of (5) is obtained if one uses two functions Gy and G-, which
are chosen so that G is odd and G4, is even. Such a system of two functions
can measure the two most important features of non-Gaussian 1-D distributions.
The odd function measures the asymmetry, and the even function measures the
bimodality /sparsity dimension (called central hole/central mass concentration in
[3]). After extensive experiments, Cook et al [3] also came to the conclusion that
two such measures (or two terms in their projection pursuit index) are enough for
projection pursuit in most cases. Classically, these features have been measured by
skewness and kurtosis, which correspond to G (z) = z® and G»(z) = z*, but we do
not use these functions for the reasons explained in Section 6.

In this special case, the approximation in (6) simplifies to

H(X) = H(v) = [l (B{G1(X)})* + k2 (B{G2(X)} — E{G2()})’] ()

where k; and k, are positive constants (see [8]), and v is a Gaussian random vari-
able of zero mean and unit variance. Practical examples of choices of GG; that are
consistent with the requirements in Section 6 are the following.

First, for measuring bimodality/sparsity, one might use, according to the recommen-
datlons of Section 6, the log-density of the double exponentlal (or Laplace) distribu-
tion: Ga,(z) = |z|. For computational reasons, a smoother version of G2, might also
be used. Another choice would be the Gaussian function, which may be considered
as the log-density of a distribution with infinitely heavy tails: Gay(z) = exp(—z?/2).
For measuring asymmetry, one might use, on more heuristic grounds, the follow-
ing function: G;(x) = zexp(—z?/2). which corresponds to the second term in the
projection pursuit index proposed in [3].

Using the above examples one obtains two practical examples of (7):
H,(X) = H(v) — [k (B{X exp(—X?/2)})* + k3 (B{|X |} — V/2/7)’],  (8)
Hy(X) = H(v) = [k (B{X exp(=X?/2)})* + k3 (E{exp(-X?/2)} ~ \/1/_2)2]



with k; = 36/(8v/3 —9), k% = 1/(2 — 6/n), and kb = 24/(16v/3 — 27). As above,
H(v) = (1 + log(2m)) means the entropy of a standardized Gaussian variable.
These approximations H,(X) and H(X) can be considered more robust and ac-
curate generalizations of the approximation derived using the Gram-Charlier ex-
pansion in [9]. Indeed, using the polynomials Gi(z) = z® and Gz2(z) = z* one
obtains the approximation of entropy in [9], which is in practice almost identical
to those proposed in [1, 2]. Finally, note that the approximation in (9) is very
similar to the first two terms of the projection pursuit index in [3]. Algorithms for
independent component analysis and projection pursuit can be derived from these
approximations, see [7].

8 Simulation results

To show the validity of our approximations of differential entropy we compared the
approximations H, and Hj in Egs (8) and (9) in Section 7, with the one offered
by higher-order cumulants as given in [9]. The expectations were here evaluated
exactly, ignoring finite-sample effects.

First, we used a family of Gaussian mixture densities, defined by

f(@) = (@) + (1 — p)20(2(z - 1)) (10)

where p is a parameter that takes all the values in the interval 0 < p < 1. This fam-
ily includes asymmetric densities of both negative and positive kurtosis. The results
are depicted in Fig. 1. Note that the plots show approximations of negentropies:
the negentropy of X equals H(v)— H(X), where v is again a standardized Gaussian
variable. One can see that both of the approximations H, and Hj introduced in
Section 7 were considerably more accurate than the cumulant-based approximation.

Second, we considered the following family of density functions:
fal(z) = C1 exp(Cs|z|%) (11)

where « is a positive constant, and C7, C2 are normalization constants that make f,
a probability density of unit variance. For different values of «, the densities in this
family exhibit different shapes. For a < 2, one obtains (sparse) densities of positive
kurtosis. For a = 2, one obtains the Gaussian density, and for a > 2, a density of
negative kurtosis. Thus the densities in this family can be used as examples of dif-
ferent symmetric non-Gaussian densities. In Figure 2, the different approximations
are plotted for this family, using parameter values .5 < a < 3. Since the densi-
ties used are all symmetric, the first terms in the approximations were neglected.
Again, it is clear that both of the approximations H, and Hj introduced in Section 7
were much more accurate than the cumulant-based approximation in [2, 9]. (In the
case of symmetric densities, these two cumulant-based approximations are identi-
cal). Especially in the case of sparse densities (or densities of positive kurtosis), the
cumulant-based approximations performed very poorly; this is probably because it
gives too much weight to the tails of the distribution.
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