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Nonlinear Independent Component Analysis:

Existence and Uniqueness Results

Abstract

The question of existence and uniqueness of solutions for nonlinear indepen-
dent component analysis is addressed. It is shown that if the space of mixing
functions is not limited, there exists always an infinity of solutions. In par-
ticular, it is shown how to construct parameterized families of solutions. The
indeterminacies involved are not trivial, as in the linear case. Next, it is shown
how to utilize some results of complex analysis to obtain uniqueness of solutions.
‘We show that for two dimensions, the solution is unique up to a rotation, if the
mixing function is constrained to be a conformal mapping, together with some
other assumptions. We also conjecture that the solution is strictly unique ex-
cept in some degenerate cases, since the indeterminacy implied by the rotation
is essentially similar to estimating the model of linear independent component

analysis.

Keywords: independent component analysis, blind source separation, redundancy

reduction, feature extraction.



1 Introduction

Independent Component Analysis (ICA) (Comon, 1994; Jutten and Herault, 1991) is
a statistical technique whose goal is to represent a set of random variables as linear
functions of statistically independent component variables. ICA can be applied to
blind source separation (Jutten and Herault, 1991) as well as to feature extraction
(Bell and Sejnowski, 1997; Olshausen and Field, 1996). More generally, it has been
proposed that the goal of sensory coding is redundancy reduction (Barlow, 1961;
Barlow, 1972). This corresponds to obtaining a factorial code of the observed data or
equivalently, a representation with independent components, as in ICA. A nonlinear
factorial code or nonlinear ICA can be formulated as the estimation of the following

generative model for the data:

x = f(s) (1)
where x = [z1,72,...,7,]7 is the vector of observed random variables,
s = [s1,82,--.,8n]T is the vector of the latent variables called the independent com-

ponents, and f is an unknown function from R” to R”. (The dimensions of x and s
need not be equal, but we make this assumption here for simplicity.) For a linear f,
the above definition coincides with linear ICA. The fundamental assumption is that
the components s; are mutually statistically independent. The basic problem of ICA
is then to estimate the realizations of the independent components s; together with
the mixing function f, using only observations of the mixtures z;.

In most cases, it is assumed that the mixing function f is linear (Comon, 1994;
Jutten and Herault, 1991). Then a solution to the ICA estimation problem exists,
and this solution is unique up to some trivial indeterminacies (permutation and mul-
tiplication of the s; by constants). To obtain this result, it is also necessary to assume
that the components s;, except perhaps one, are non-Gaussian, and that the data fol-
lows the linear generative model (Comon, 1994). In other words, the linear generative
model is essentially identifiable under these assumptions.

The purpose of this paper is to investigate the existence and uniqueness of non-

linear solutions of the problem of decomposing a random vector nonlinearly into



components that are statistically independent. This can be interpreted as estima-
tion of the nonlinear ICA model in Eq. (1). To our knowledge, these problems have
not been treated in the literature, although some algorithms for nonlinear ICA have
already been proposed (Burel, 1992; Deco and Brauer, 1995; Deco and Obradovic,
1995; Lee et al., 1997; Pajunen et al., 1996; Pajunen and Karhunen, 1997; Yang et al.,
1998). In a special case, the problem has been treated in (Taleb and Jutten, 1997).
The questions of existence and uniqueness of solutions are, however, of fundamental
importance even in the construction of algorithms for nonlinear ICA.

We present two results in this paper. In Section 2, we show explicitly how to
construct a function g from R™ to R™ so that the components of y = g(x) are
independent. We also show using this construction that such a decomposition into
independent components is by no means unique in general. In Section 3, we show that
for n = 2, the solution is unique up to a rotation, if the mixing function f is constrained
to be a conformal mapping (Ahlfors, 1979), together with some other assumptions.
We also conjecture that the solution is strictly unique except in some degenerate cases,
since the indeterminacy implied by the rotation is essentially similar to solving the
linear ICA problem. Section 4 gives some simulation results and Section 5 discusses

the significance of the results.

2 Existence

2.1 Construction of a solution

In this subsection, we show constructively that the nonlinear ICA problem always has
at least one solution. That is, given a random vector x, there is always a function g
so that the components of y = [y1,...,y,]? given by y = g(x) are independent. In
the next subsection, we show that this solution is highly non-unique.

The construction used here might be considered as a generalization of Gram-
Schmidt orthogonalization. Given m independent variables y1, ..., y, and a variable
x, one constructs a new variable ¥m41 = g(y1, - - ., Ym, ) so that the set y1,. .., Ym+1

is mutually independent.



The construction is defined recursively as follows. Assume that we have already m
independent random variables y1, ..., y,, which follow a joint uniform distribution in
[0,1]™. (It is not a restriction to assume that the distributions of the y; are uniform:

this follows directly from the recursion, as will be seen below.) Denote by z any

random variable, and by a, ..., am,b some non-random scalars. Define
9(@1, .., Qm, 05Dy 2) = Px <blyr = a1, ., Ym = Q) (2)
b
. f_oopy,w(ala Sy am,f)df
py(at,...,am)

where p,(-) and p, ,(-) are the (marginal) probability densities of (yi,...,ym) and
(y1,---,Ym, ), respectively (it is assumed here implicitly that such densities exist),
and P(-|-) denotes the conditional probability. The p, , in the argument of g is to
remind that g depends on the joint probability distribution of ¥1,..., 4, and z. For
m = 0, g is simply the cumulative distribution function of z. Now, g as defined above

gives a nonlinear decomposition, as stated in the following theorem:

Theorem 1 Assume that yy,. ..,y are independent scalar random variables which
follow a joint uniform distribution in the unit cube [0,1]™. Let x be any scalar random
variable (such that the joint distribution of y1,...,Ym,x has a probability density with

respect to the Lebesgue measure of R™*! ). Define g as in (2), and set

Ym+1 = (Y1, - - - Yms T3 Py,)- (3)
Then Ym+1 is independent from the yi,. .., Ym- In particular, the variables yi,. .., Ym+1
are jointly uniformly distributed in the unit cube [0,1]™+1.
Proof. Denote by
Fui,...;um, &) = (U1, .-, Um, 9(U1, -+, Uy €50y 7)) 4)
the transformation made on the vector (yi,...,Ym, ) to obtain (y1,...,Ym+1). The
Jacobian of this transformation equals
1 0 0
o 1 ... 0
JE(i,..om, )= (5)
cp ¢ ... K



where ¢q,c2,... are some irrelevant quantities, and

K:pyyz(vl7""vm’£)‘ (6)
Py(v1,.. ., Um)

The determinant of JF equals K. Thus, one obtains the density p,; of the vector

(yl; s Jymaym+1) as

-1

py,w(vh e 7Um7§)
Py(v1, -, Um) (7)

py+(U17 s JUm+1) = py,w(vla s ,Um,f)
=py(vi,...,Um)

From (2) it follows that ym41 € [0,1]. Thus (7) implies that p,4 is a uniform density
in [0,1]™*1, which implies that the yi,...,¥my1 are mutually independent (Pajunen

et al., 1996). o

The construction can obviously be used to decompose n variables z1, ..., z, into
n independent components y,...,Yy,. Let m run from 0 to n — 1, and obtain y,,,41
using the above construction, where the observed variable z,,,1 is used as z. In
other words, let ymy1 = g(y1,- -, Ym> Tm41; Py,zmis) for m =0,...,n — 1. Using this
Gram-Schmidt-like recursion, one obtains y1, .. ., ¥, which are mutually independent,
and give a solution for the nonlinear ICA problem. The vector y could of course be
expressed using a single function g as y = g(x), but the closed-form expression for g
would be very complicated. A related result in the two-dimensional case was given in
(Darmois, 1951).

Note that our construction, when defined, does not depend on the number of
the original independent components s; in (1). In particular, the number of the
original independent components could be larger than the dimension n of x. The
above construction would always give, however, exactly n variables y1,7i = 1..n. In
contrast, if the number of independent components were smaller than n, the density

of x would be degenerate, and the construction would not be defined.



2.2 Non-uniqueness of solutions

In the previous section a bijection was constructed which is a solution to nonlinear
ICA. The mapping g transforms any random vector x into a uniformly distributed
random vector y = g(x). This construction also clearly shows that the decomposition
in independent components is by no means unique. For example, we may apply first
a linear transformation on the x to obtain a random vector x’ = Mx, and then
compute y' = g'(x’) with g’ being defined using the procedure given above, where
x is replaced by x’'. Thus we obtain another decomposition of x into independent
components. The resulting decomposition y' = g'(Mx) is, in general, different from
¥, and cannot be reduced to y by any simple transformations. Parameterizing the
family of initial transformations (e.g., linear transformations), we obtain parametrized
families of nonlinear ICA decompositions.

More rigorously, to show that the above construction is not a unique solution to
nonlinear ICA, it is sufficient to construct a class of automorphisms, i.e. mappings
h: [0,1]" — [0,1]", that are measure-preserving, i.e., do not change the probability
distribution of a random variable distributed uniformly in the unit cube. Then forming
a mapping hog we get another solution to nonlinear ICA. Thus it can be seen that the
class of measure-preserving automorphisms on [0,1]" determines the indeterminacy
of the solutions to nonlinear ICA.

A concrete example of a measure-preserving automorphism in two dimensions is
obtained by considering the two-dimensional random variable y as a complex random

variable z, and defining the following mapping;:

z, 2| > ¢;
h(z) =
zexp(f(|2]), |z <e.
where the continuous scalar function f must fulfill

f(¢) = 0. The constant must be chosen so that 0 < ¢ < 1. Then h is continu-
ous and measure-preserving. Since f and ¢ can be chosen freely, this results in a large
class of indeterminacies in the nonlinear ICA solutions. Clearly, the indeterminacy

implied by the above function h is not trivial.



From the viewpoint of estimating the generative model (1), we thus we see that
the constraint of independency of the s; alone is not sufficient to make the elements
in the generative model identifiable.

Finally, we would like to point out a simpler form of non-uniqueness: if s; and
s9 are independent, then any component-wise transformations fi(s;) and fo(s») are
also independent. This trivial indeterminacy can be compared with the scale indeter-
minacy in linear ICA, and is of little consequence compared to the more fundamental

non-uniqueness shown above.

3 Uniqueness

3.1 Assumptions

As seen above, the solution of the nonlinear ICA problem is, in general, highly non-
unique. In this section we show that under some restrictions, results on uniqueness

can be obtained. Assume the following:

1. The dimension of the problem equals two, i.e., n = 2. This allows us to consider

the data as complex variables z = 21 + i25.

2. The mixing function f is a conformal mapping (Ahlfors, 1979; Churchill and
Brown, 1990) (see below), and zero preserving, i.e. £(0) = 0.

3. The densities of the independent components have bounded support, and the

supports are known.

Under these assumptions it can be shown that the ICA problem can be solved up to
a transformation which is essentially a rotation. Moreover, we conjecture that it can
be solved uniquely in most cases.

A bijective complex mapping is called conformal if it is analytic, i.e. the complex
derivative exists, and its derivative is non-zero everywhere. Conformal mappings have
applications in electrostatics, steady fluid flows, and in general all physical problems

where Laplace equation appears, since a conformal map preserves solutions to Laplace



equation. Intuitively, a conformal mapping can be thought of as a one-to-one nonlin-
ear mapping which preserves the orthogonality of coordinates locally (Churchill and
Brown, 1990).

As for the assumption of bounded support of densities, it is quite realistic in
some applications, for example telecommunications, where the uniform distribution
is often used to model the densities of the independent components (Cardoso and

Laheld, 1996).

3.2 Using properties of conformal mappings

First, we prove that the nonlinear ICA problem can be solved up to a rotation.
We observe a mixture vector x = f(s) where f : R2 — R? is the conformal mixing
mapping. Now choose a zero-preserving bijection gg that is a conformal mapping, and
maps the support of the densities of the observed variables to S, where S denotes the
rectangular support of the joint density of the independent components: go : £(S) —
S. Such a function can be approximated using the Schwarz-Christoffel transformation
(Churchill and Brown, 1990), which is an integral formula that gives a conformal
mapping from the upper half-plane onto a given polygon; the computation of the
transformation usually requires numerical methods (Driscoll, 1996). The support of
the mixture densities, on the other hand, can be estimated from the data. Now
h = ggof is a bijection h : § — S which preserves zero. As a consequence of the
Riemann mapping theorem, there exists a conformal mapping r which maps S onto
the unit disk while preserving zero. Such a transformation can be found as a special
case of the Schwarz-Christoffel transformation as well (Churchill and Brown, 1990;
Driscoll, 1996). We can use this to construct h’ = r o h o r™! which maps the unit
disk onto itself and preserves the zero. To this mapping we can apply the following

result, known as the Schwartz lemma (Ahlfors, 1979):

Theorem 2 Let p be a conformal one-to-one mapping of the unit disk onto itself

with a fized point at 0. Then p(rexp(jo)) = rexp(j(¢ + ¢o)), i.e. p is a rotation.

This implies that h’ is a rotation in the unit circle, and that h=r"!oh'oris a

rotation transformed onto the rectangle S. Thus, using only the information on the



bounds of the values of the independent component, we can determine the inverse
transformation up to the function h, which is essentially a rotation by the angle ¢g.

This completes the proof.

3.3 Using independence

In the above proof, the independence of the s; was not utilized at all. We only used
the properties of the mixing function, together with the knowledge of the supports
of the densities of the independent components, and an estimate of the support of
the joint density of the mixtures. Taking the independence into account reduces the
indeterminacy even further, and we conjecture that it can be completely eliminated
in all but a few degenerate cases.

Since the indeterminacy left is essentially a rotation, it is enough to find the inverse

rotation to obtain the independent components. Define

gy =T lorotyorog (8)

where rot, means rotation with angle o, and gy and r are as defined above (e.g.,
those given by the Schwarz-Christoffel transformation). The results in the preceding

subsection imply that there exists an aq such that

£~ = 8ao 9)

Now, denote by §;(a),% = 1,2 the components obtained by

Sa = 8a(x) (10)

Take some measure of the dependence of the obtained components, for example mu-
tual information I (Comon, 1994; Hyvérinen, 1998). Then we can minimize the

dependence with respect to a:

min I(31 (@), 2(a))- (11)

[e3
For some value of «, the mutual information I(§;(a),$2(c)) vanishes. In one
of such points, we have then obtained the original independent components. Fur-

thermore, it seems very plausible that the mutual information vanishes only in the

10



directions of the independent components (which means four points in the range
[0, 27], corresponding to the four directions defined by the independent components).
Thus we conjecture that the solution is unique except in some degenerate cases. By
a degenerate distribution we mean here a distribution that is invariant with respect
to the rotation defined above: this is the conterpart of a gaussian distribution in the

linear case. Simulation results presented below give support to our conjecture.

4 Simulation results

4.1 Existence

First we present simulation results that illustrate the existence result of Section 2.
Since Theorem 1 gives an explicit construction, we can use it to decompose a given
n-dimensional signal into independent components.

In the simulations, we used two independent components of uniform distributions

in [0,1]. Three different mixing functions (mappings) were used:

tanh(4s; — 2) + s1 + s59/2
fs) = [ T F A2 (12)
tanh(4sa — 2) + s2 + s1/2

£y(s) tanh(sy)/2 + 81 + 87 /2 ’ (13)

53 — s1 + tanh(ss)
and

fi(s) = sAs | (14)
tanh(s2) + 3
The function f; is only moderately nonlinear, whereas fa is rather strongly non-
linear. The function f3, on the other hand, is not even bijective, and thus quite
problematic. Figs. 1-3 illustrate the functions by showing the images of a grid in the
square [0, 1] x [0, 1], using these three functions.

Applying one of the above functions on the uniformly distributed independent

components, a random vector x was obtained. The nonlinear ICA construction of

11



Section 2 was then used to obtain independent components yi,y2. The densities
needed were estimated simply by histograms, dividing the values of z; into 100 bins.
The function g was then computed nonparametrically, by direct application of (2).
The joint density of the vector y = (y1,y2) is illustrated in Fig 4 for f; it is a
uniform distibution up to certain estimation errors, as expected. (For f, and fj,
the density was essentially similar). This shows that the obtained components were
really independent, since variables with jointly uniform density are always mutually
independent.

The theory in Section 2 showed that the independent components are by no means
uniquely defined. To illustrate this fact, we computed the composite mappings g; of;,
where the g; are the transformations defined in Theorem 1, using mixtures obtained
by the f;,4 = 1,2,3. The results are shown in Figs. 5—7. The composite mappings
are not equal to identity; instead, they are some measure-preserving transformations
on the unit square. Thus, the assumption of independency is not sufficient to de-
termine the inverse transformations of the f;. For smooth mixing mappings (fi and
f5), the composite mapping is also smooth, whereas the composite mapping obtained
from f3 folds together, like f3 itself. These results show that a simple application of
the construction of Theorem 1 is not enough to estimate the original independent

components.

4.2 Uniqueness

Next we give a simple illustration of the uniqueness result presented in Section 3. The
independent components were uniformly distributed in [—1,1] x [-1,1]. A conformal
mixing mapping f. was randomly constructed by generating a polygon with random
vertices and constructing the corresponding Schwarz-Christoffel mapping, which is
shown in Fig. 8. The Schwarz-Christoffel mapping was constructed using the SC
MATLAB toolbox (see (Driscoll, 1996)). In the first part of the estimation of the in-
dependent components and the mixing mapping, the compact support of the mixture
density was manually approximated using only the mixture samples. Fig. 9 shows the

observed data, i.e., the obtained mixture samples, together with the estimated sup-
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port of the (mapped) densities. The actual compact support of the mixture densities
is depicted in Fig. 10. Our estimation of the support was very coarse, but this did not
significantly deteriorate the results. Then, a conformal separating mapping go was
computed using the Schwarz-Christoffel formula (Churchill and Brown, 1990; Driscoll,
1996) to the domain [—1,1] x [—1,1]. This enabled the estimation of the mapping
up to a rotation, as explained in Section 3.2. The composite mapping h = gg o f; is
depicted in Fig. 11. It is clearly a rotation. The second part of the estimation was
to determine the (inverse) rotation needed to obtain the independent components,
using some statistical criteria of independence, as explained in Section 3.3. Here, we
determined directions in which the kurtosis in minimized; this criterion is closely re-
lated to minimization of mutual information (Comon, 1994; Hyvérinen, 1998). Thus
we obtained a separating function g, which gave a very good approximation of the
inverse of the mixing mapping f.. This can be seen in Fig. 12, where the final com-
posite function g o f, is depicted. This function is essentially equal to identity, up to

some estimation errors, which appear near the boundaries.

5 Discussion

In this paper, we treated the problems of existence and uniqueness of the solutions
for the nonlinear ICA problem, i.e., the problem of nonlinearly transforming an n-
dimensional random vector into components that are statistically independent. This
is the nonlinear generalization of the ICA problem treated in, e.g., (Comon, 1994;
Jutten and Herault, 1991), and can also be interpreted as the estimation of a nonlinear
generative model for the data.

First, we showed that there exists always a solution to the nonlinear ICA prob-
lem. In particular, we showed how to construct a solution. Using this construction,
we showed that the solution is not unique, and that the non-uniqueness cannot be
reduced to some trivial indeterminacies, like component-wise transformations. Two
solutions for the problem may be completely different from each other. This result has
important implications in the design of algorithms for nonlinear ICA: any algorithm

for (general) nonlinear ICA should specify which solution it tries to find. At the same
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time, our construction gives a practical method for finding one of the solutions.
Second, we used some results from complex analysis to achieve uniqueness of the
solution. If the dimension of the problem is constrained to be two, we conjectured that
the solution is unique under some assumptions. In particular, we made the assumption
that the mixing mapping is a conformal mapping. This is a strong assumption: Not
all linear mappings R? — R? are conformal mappings for the corresponding complex
variables. The conformal mappings are, however, a rather large class of functions
(Ahlfors, 1979). For example, any simply connected domain can be mapped onto
another one by a conformal mapping. This result shows that it is possible to obtain
uniqueness in nonlinear ICA by restricting the mixing function f to a certain class,

thus complementing the uniqueness results in (Taleb and Jutten, 1997).
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. The mapping is

Figure 1: The nonlinear mixing mapping f; used in the simulations
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Figure 3: The nonlinear mapping f3 used in the simulations. The mapping is very

nonlinear; in fact, it is not even bijective.
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Figure 7: The composite mapping g3 ofs obtained by finding independent components

from mixtures defined by the mixing function f3, using the construction of Theorem 1.
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Figure 9: The mixture samples, i.e., the observed data used in determining the sepa-
rating conformal mapping, together with our estimation of the support of the mixture

densities.
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Figure 10: The true compact support of the densities of the mixtures.
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Figure 12: The final composite mapping, obtained by determining the correct rota-

tion. Indeed, we found the original independent components.
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Figure captions:

Fig. 1. The nonlinear mixing mapping fi used in the simulations. The mapping is
only moderately nonlinear.

Fig. 2. The nonlinear mapping f; used in the simulations. The mapping rather
strongly nonlinear.

Fig. 3. The nonlinear mapping f3 used in the simulations. The mapping is very
nonlinear; in fact, it is not even bijective.

Fig. 4. The joint density of the obtained independent components for mixtures ob-
tained by fj.

Fig. 5. The composite mapping g; o f; obtained by finding independent components
from mixtures defined by the mixing function f;, using the construction of Theorem 1.
Fig. 6. The composite mapping g» o f; obtained by finding independent components
from mixtures defined by the mixing function f, using the construction of Theorem 1.
Fig. 7. The composite mapping g3 o f3 obtained by finding independent components
from mixtures defined by the mixing function f3, using the construction of Theorem 1.
Fig. 8. The conformal mixing mapping f.. The mixing mapping was clearly quite
nonlinear.

Fig. 9. The mixture samples, i.e., the observed data used in determining the separat-
ing conformal mapping, together with our estimation of the support of the mixture
densities.

Fig. 10. The true compact support of the densities of the mixtures.

Fig. 11. The mapping h, i.e., the composite mapping after the first part of the
estimation procedure (determination of the inverse conformal mapping).

Fig. 12. The final composite mapping, obtained by determining the correct rotation.

Indeed, we found the original independent components.
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