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ABSTRACT

The author introduced previously a large family of one-unit contrast functions
to be used in independent component analysis (ICA). In this paper, the family
is analyzed mathematically in the case of a finite sample. Two aspects of the
estimators obtained using such contrast functions are considered: asymptotic
variance, and robustness against outliers. An expression for the contrast
function that minimizes the asymptotic variance is obtained as a function
of the probability densities of the independent components. Combined with
robustness considerations, these results provide strong arguments in favor of
the use of contrast functions based on slowly growing functions, and against
the use of kurtosis, which is the classical contrast function.

1. INTRODUCTION

Independent Component Analysis (ICA) [1] is a statistical signal processing
technique whose main applications are blind source separation, blind de-
convolution, and feature extraction. In the simplest form of ICA [2], one
observes m scalar random variables x, s, ..., T, which are assumed to be
linear combinations of n unknown independent components, or ICs, denoted
by 1,82, ...,8,. These ICs s; are assumed to be mutually statistically inde-
pendent, and zero-mean. Arranging the observed variables z; into a vector
x = (21,22, ...,7m)T and the IC variables s; into a vector s, the linear rela-
tionship can be expressed as

x = As (1)

Here, A is an unknown m x n matrix of full column rank, called the mixing
matrix. The basic problem of ICA is then to estimate both the mixing matrix
A and the realizations of the ICs s; using only observations of the mixtures
zj.



Estimation of ICA requires the use of higher-order information, i.e., other
information than that contained in the covariance matrix of x. This higher-
order information is usually incorporated in the estimation procedures by
means of ’contrast’ functions based on higher-order cumulants [2, 3]. How-
ever, little justification has been provided in the literature for the choice of
using higher-order cumulants for the construction of the contrast functions.
The main reason for their popularity seems to be that they are easy to analyze
mathematically. No statistical or practical arguments in favor of cumulants
have been put forth, except for the fact that they may be more resistant to
Gaussian noise, because the higher-order cumulants of Gaussian noise vanish.

In this paper, we analyze mathematically a large family of one-unit con-
trast functions introduced in [4]. The asymptotic variance of the obtained es-
timators is evaluated, and it is shown that for super-Gaussian ICs, the asymp-
totic variance is minimized for contrast functions that grow much slower than
the 4-th power inherent in the fourth-order cumulant or kurtosis. Further-
more, robustness against outliers also requires slowly growing contrast func-
tions. As most ICs encountered in practice seem to be super-Gaussian, this
means that kurtosis may be a rather inadequate contrast function in most
cases. For neural learning rules, the results imply that better estimates are
usually obtained using (anti-)Hebbian learning functions that are sigmoidal,
or even go to zero at infinity. Simulations back up our theoretical arguments.

2. GENERAL ONE-UNIT CONTRAST FUNCTIONS

Consider a linear combination of the observed mixtures z;, say w’x, where
the (weight) vector w is constrained so that E{(wlx)?} = 1. Many ICA
algorithms are based on finding the extrema of the square of the kurtosis
kurt?(wl'x) = (E{(wTx)*} —3)? of such a linear combination [2, 3]. This can
be motivated by information-theoretic arguments: the square of the kurtosis
can be shown to approximate the negentropy of wlx [2]. Moreover, it can
be proven that the square of the kurtosis of w’x is maximized exactly in the
points where the linear combination equals, up to the sign, one of the ICs,
i.e., wl'x = +s; for some i [3, 5].

This approach was generalized in [4, 6, 7], where it was shown that instead
of kurtosis, practically any non-quadratic, well-behaving even function, say
G, can be used to construct a contrast function for ICA. Such a general
contrast function can be defined as

Ja(w) = [Ex{G(WTx)} - E{G(v)}]? (2)

where v is a standardized Gaussian variable. The second term in brackets is
a normalization constant that makes Jg equal to zero if w’ x has a Gaussian
distribution. Clearly, Jg can be considered a generalization of the square of
kurtosis, as for G(u) = u*, Jg becomes simply the square of kurtosis of w7 x.
It was shown in [6], using a generalization of the Gram-Charlier expansion,
how Jg approximates the negentropy of w!x in the same way as the square of
the kurtosis. Furthermore, it was shown in [7] that under weak assumptions,



Jg is locally maximized when w?x = =+s;, i.e. when the linear combination

equals one of the ICs. Therefore, Jg can be used as a contrast function for
ICA in the same way as the square of the kurtosis. Note that for simplicity,
we shall also refer to G as a contrast function.

Thus, we estimate one IC by solving the following optimization problem:

Ja(w) (3)

W =arg  max
E{(wTx)2}=1

where in practice the expectations are replaced by sample averages. Note that
this boils down to maximizing or minimizing E{G(wTx)}, where the type
of extrema searched for depends on the sign of Ex{G(w'x)} — E,{G(v)}.
To estimate all the ICs, one needs only to find all the local solutions of this
optimization problem. We shall not consider here in detail how to solve this
optimization. Two simple methods are possible. First, one can use a simple
gradient descent/ascent with a decreasing learning rate, as is considered in
more detail in [7]. In that case it may be useful to first whiten (or sphere)
the data, which simplifies the constraint to ||w|| = 1. A second possibility
is the fixed-point algorithm introduced for kurtosis in [8] and generalized for
any G in [4]. However, the statistical properties of the estimator defined in
(3) do not depend on the method of optimization.

In the following, we shall analyze two fundamental statistical properties of
w, which are asymptotic variance and robustness. Though in principle almost
any non-quadratic even function G can be used, in practice the performance
of different contrast functions may be very different due to limited sample
sizes and deviations from the model (1). Therefore, some analysis is needed
to provide guidelines on how to choose the function G to obtain a statistically
adequate estimator.

3. ASYMPTOTIC VARIANCE

In practice, one usually has only a finite sample of N observations of the
vector Xx. Therefore, the expectations in the definition of Jg are in fact
replaced by sample averages. This results in certain errors in the estimator
w, and it is desired to make these errors as small as possible. A classical
measure of this error is asymptotic (co)variance, which means the limit of
the covariance matrix of Wwv/N as N — co. This gives an approximation of
the mean-square error of w. Comparison of, say, the traces of the asymptotic
variances of two estimators enables direct comparison of the accuracy of two
estimators. One can solve analytically for the asymptotic variance of w,
obtaining the following theorem:

Theorem 1 The trace of the asymptotic variance of W as defined in (3) for
the estimation of the independent component s;, equals

E{g*(si)} — (B{sig(si)})?
(E{sig(si) —g'(si)})>

Ve =C(A) (4)



where g is the derivative of G, and C(A) is a constant that depends only on
A.

Proof: Making the change of variable z = AT w, the equation defining the optimal
solutions z becomes
Zstg(iTst) = )\ZststTﬁ (5)
¢ t

where t = 1,..,T is the sample index, T is the sample size, and A is a Lagrangian
multiplier.. Without loss of generality, let us assume that z is near the ideal solution
z = (1,0,0,..). Note that due to the constraint E{(w”x)?} = ||z||*> = 1, the
variance of the first component of z, denoted by 2;, is of a smaller order than
the variance of the vector of other components, denoted by z_;. Excluding the
first component in (5), and making the first-order approximation g(z7s) = g(s1) +
g'(s1)2T1s_1, where also s_; denotes s without its first component, one obtains
after some simple manipulations

1 1
— s_1[g(s1) — As1] = = s_1[—sl1g'(s1) + AsZ1]z_1 VT (6)
5 5> f

where the sample index t has been dropped for simplicity. Making the first-order
approximation A = E{s19(s1)}, one can write (6) in the form u = vz_1+/T where
v converges to the identity matrix multiplied by E{s1g(s1)} — E{¢’(s1)}, and u
converges to a variable that has a normal distribution of zero mean whose covariance
matrix equals the identity matrix multiplied by E{g?(s1)} — (E{s1g(s1)})?. This
implies the theorem, since z_; = Bw, where B is the inverse of AT without its
first row.

Thus the comparison of the asymptotic variances of two estimators of
the form in (3), but for two different contrast functions G, boils down to a
comparison of the Viz’s. In particular, one can use variational calculus to find
a G that minimises Viz. Thus one obtains the following theorem:

Theorem 2 The trace of the asymptotic variance of W is minimized when
G is of the form

Gopt(u) = c1log f(u) + cau® + c3 (7
where f is the density function of s;, and ¢y,co,c3 are arbitrary constants.

For simplicity, one can choose Gopi(u) = log f(u). Thus one sees that the
optimal contrast function is the same as the one obtained for several units by
the maximum likelihood approach [9], or the infomax approach [10]. Almost
identical results have also been obtained in [11] for another multi-unit algo-
rithm. Our results treat, however, the one-unit case instead of the multi-unit
case, and are thus applicable to estimation of a subset of the ICs, and to
blind deconvolution [7].

4. ROBUSTNESS

Another very desirable property of an estimator is robustness against outliers
[12]. This means that single, highly erroneous observations do not have much
influence on the estimator.



In this paper, we shall treat the question: How does the robustness of the
estimator w depend on the choice of the function G? Note that the robustness
of w depends also on the method of estimation used in constraining the
variance of w’'x to equal unity in (3). This is a problem independent of the
choice of G. In the following, we assume that this constraint is implemented
in a robust way. In particular, we assume that the data is sphered (whitened)
in a robust manner, in which case the constraint reduces to |[w|| = 1. Several
robust estimators of the variance of w’x or of the covariance matrix of x are
presented in the literature; see [12].

The robustness of the estimator w in (3) can be analyzed using the theory
of M-estimators [12]. Without going into technical details, the definition of
an M-estimator can be formulated as follows: an estimator is called an M-
estimator if it is defined as the solution 6 for 6 of

E{(x,0)} =0 ®)

where x is a random vector and 1 is some function defining the estimator.
The estimator w in (3) is an M-estimator. To see this, define 8 = (w, ),
where A is the Lagrangian multiplier associated with the constraint. Using
the Kuhn-Tucker conditions, the estimator W can then be formulated as the
solution of equation (8) where 1 = 1 is defined as follows (for sphered data):

xg(wl'x) + cdw ) 9)

Yi(x,0) = ( ”WHZ ~1

where ¢ = (Ex{G(WTx)} — E,{G(v)})~! is an irrelevant constant.

The analysis of robustness of an M-estimator is based on the concept of
an infuence function, IF(x,6). Intuitively speaking, the influence function
measures the influence of single observations on the estimator. It would be
desirable to have an influence function that is bounded as a function of x, as
this implies that even the influence of a far-away outlier is 'bounded’, and can-
not change the estimate too much. This requirement leads to one definition
of robustness, which is called B-robustness. An estimator is called B-robust,
if its influence function is bounded as a function of x, i.e., sup, ||IF(x,80)|| is
finite for every 6. Even if the influence function is not bounded, it should
grow as slowly as possible when ||x|| grows, to reduce the distorting effect of
outliers.

It can be shown [12] that the influence function of an M-estimator equals

IF(x,0) = Bi(x,0) (10)
where B is an irrelevant invertible matrix that does not depend on x. On

the other hand, using our definition of ¢, and denoting by v = wlx/||x||
the cosine of the angle between x and w , one obtains easily

1, (w, )2 = c%hZ(wa) + Coh(w''x) + C (11)



where C4,Cy,Cs3 are constants that do not depend on x, and h(u) = ug(u).
Thus on sees that the robustness of w essentially depends on the behavior
of the function h(u). The slower h(u) grows, the more robust the estimator.
However, the estimator cannot be really B-robust, because the « in the de-
nominator prevents the influence function from being bounded for all x. In
particular, outliers that are almost orthogonal to W, and have large norms,
may still have a large influence on the estimator. These results are stated in
the following theorem:

Theorem 3 Assume that the data x is whitened (sphered) in a robust man-
ner. Then the influence function of the estimator W is never bounded for all
x. However, if h(u) = ug(u) is bounded, the influence function is bounded in
sets of the form {x | Wwlx/||x|| > €} for every e > 0, where g is the derivative

of G.

In particular, if one chooses a contrast function G(u) that is bounded, h is
also bounded, and W is quite robust against outliers. If this is not possible,
one should at least choose a contrast function G(u) that does not grow very
fast when |u| grows. If, in contrast, G(u) grows very fast when |u| grows,
the estimates depend mostly on a few observations far from the origin. This
leads to highly non-robust estimators, which can be completely ruined by
just a couple of bad outliers. This is the case, for example, when kurtosis is

used as a contrast function, which is equivalent to using W with G(u) = u*.

5. CHOOSING THE CONTRAST FUNCTION IN PRACTICE

It is useful to analyze the implications of the theoretical results of the pre-
ceding sections by considering the following family of density functions:

fa(z) = Crexp(Calz]) (12)

where « is a positive constant, and C7, Cs are normalization constants that
ensure that f, is a probability density of unit variance. For different values of
alpha, the densities in this family exhibit different shapes. For .5 < a < 2, one
obtains a sparse, super-Gaussian density (i.e. a density of positive kurtosis).
For @ = 2, one obtains the Gaussian distribution, and for a > 2, a sub-
Gaussian density (i.e. a density of negative kurtosis). Thus the densities in
this family can be used as examples of different non-Gaussian densities.
Using Theorem 2, one sees that in terms of asymptotic variance, an opti-
mal contrast function for estimating an IC whose density function equals f,,
is of the form:
Gopt(u) = [ul* (13)

where the arbitrary constants have been dropped for simplicity. This im-
plies roughly that for super-Gaussian (resp. sub-Gaussian) densities, the
optimal contrast function is a function that grows slower than quadratically
(vesp. faster than quadratically). Next, recall from Section 4 that if G(u)



grows fast with |u|, the estimator becomes highly non-robust against out-
liers. Taking also into account the fact that most ICs encountered in practice
are super-Gaussian, one reaches the conclusion that as a general-purpose
contrast function, one should choose a function GG that resembles rather

Gopt(u) = |u|®, where a < 2. (14)

The problem with such contrast functions is, however, that they are not
differentiable at 0 for & < 1. Thus it is better to use approximating differen-
tiable functions that have the same kind of qualitative behavior. Considering
a = 1, in which case one has a double exponential density, one could use
instead the function G1(u) = log cosh a;u where a; > 1 is a moderately large
constant. Note that the derivative of GG; is then the familiar tanh function
(for a; = 1). In the case of a < 1, i.e. highly super-Gaussian ICs, one could
approximate the behavior of G, for large u using a Gaussian function (with
a minus sign): G2(u) = — exp(—azu?/2) where as is a constant. The deriva-
tive of this function is like a sigmoid for small values, but goes to 0 for larger
values. Note that this function also fulfills the condition in Theorem 3, thus
providing an estimator that is as robust as possible in this framework. We
have found a; = 2 and a2 = 1 to provide ’good’ approximations of Gy and
G2. Note that there is a trade-off between the precision of the approximation
and the smoothness of the resulting objective function.
Thus, we reach the following general conclusion:

e a good general-purpose contrast function is G(u) = log cosh a;u, where
ay > 1 is a constant.

e when the ICs are highly super-Gaussian, or when robustness is very
important, G(u) = — exp(—asu?/2) with a» ~ 1 may be better.

e using kurtosis is justified only if the ICs are sub-Gaussian and there are
no outliers.

In this paper, we have used purely statistical criteria for choosing the
contrast function. One important criterion that is completely independent of
statistical considerations is computational simplicity. For example, the calcu-
lation of the tanh function is rather slow in many environments. The conver-
gence may be speeded up if one uses instead piecewise linear approximations
of the derivatives of the contrast functions. In the case of g(u) = tanh(asu),
one may define g so that g(u) = asu for |u| < 1/a3 and g(u) = sign(u) other-
wise, where az > 1 is a constant. This amounts to using the so-called Huber
function [12] as G.

6. SIMULATIONS

We performed simulations in which 3 different contrast functions were used
to estimate one IC from a mixture of 4 i.i.d. ICs. The contrast functions
used were kurtosis, and the two functions proposed in the preceding section:



log cosh (or G1) and the Gaussian function (or G2). The constants were set as
suggested in the preceding section. We also used three different distributions
of the ICs: uniform, double exponential (or Laplace), and the distribution of
the third power of a Gaussian variable. The sample size was fixed at 1000 and
the fixed-point algorithm in [4] was used to maximize the contrast function.
The asymptotic mean absolute deviations (MAD) between the components of
the obtained vectors and the correct solutions were estimated and averaged
over 1000 runs for each combination of non-linearity and distribution of IC.
MAD was used instead af variance because it is a more robust measure of
deviation.

The results in the basic, noiseless case are depicted in Fig. 1. As one can
see, the estimates using kurtosis were essentially worse for super-Gaussian
ICs. Especially the strongly super-Gaussian IC (cube of Gaussian) was es-
timated considerably worse using kurtosis. Only for the sub-Gaussian IC,
kurtosis was better than the other contrast functions. There was no clear
difference between the performances of the contrast functions Gy and Gs.

Next, the experiments were repeated with added Gaussian noise whose
energy was 10% of the energy of the ICs. The results are shown in Fig. 2. This
time, kurtosis did not perform better even in the case of the sub-Gaussian
density. This result goes against the view that kurtosis would tolerate Gaus-
sian noise well. Indeed, the theoretical arguments supporting that view ne-
glect any finite-sample effects, and may thus have rather limited validity.

No outliers were added in these experiments. Experiments confirming the
robustness of the non-linearities proposed in section 5 can be found in [4].

7. CONCLUSION

The problem of choosing the contrast function for ICA was treated. The
behavior of a large family of contrast functions, which includes kurtosis as
a special case, was analyzed. Combining the results on asymptotic variance
and robustness against outliers, it was shown that the use of kurtosis is not
justified on statistical grounds, except perhaps for sub-Gaussian independent
components. Instead, contrast functions that grow slower than quadratically
were found to be better approximations of the optimal ones in most cases.
In neural learning rules, this leads, e.g., to the use of tanh-like sigmoids, or
functions resembling the derivative of a Gaussian function.
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