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Abstract

The author introduced previously a fast �xed-point algorithm for in-

dependent component analysis. The algorithm was derived from objective

functions motivated by projection pursuit. In this paper, it is shown that

the algorithm is closely connected to maximum likelihood estimation as

well. The basic �xed-point algorithm maximizes the likelihood under the

constraint of decorrelation, if the score function is used as the nonlin-

earity. Modi�cations of the algorithm maximize the likelihood without

constraints.

Keywords: independent component analysis, blind source separation, �xed-point

algorithm
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1 Introduction

Independent component analysis (ICA) [10] is a statistical technique whose main

applications are blind source separation, blind deconvolution, and feature ex-

traction. In the simplest form of ICA [5], one observesm scalar random variables

x

1

; x

2

; :::; x

m

which are assumed to be linear combinations of n unknown inde-

pendent components, denoted by s

1

; s

2

; :::; s

n

. The independent components s

i

are assumed to be mutually statistically independent, and zero-mean. Arranging

the observed variables x

j

into a vector x = (x

1

; x

2

; :::; x

m

)

T

and the component

variables s

i

into a vector s, the linear relationship can be expressed as

x = As (1)

Here, A is an unknown m � n matrix of full column rank, called the mixing

matrix. The basic problem of ICA is then to estimate both the mixing matrix

A and the realizations of the independent componets s

i

using only observations

of the mixtures x

j

.

Several estimation methods for ICA have been proposed recently. The two

methods most widely used in practice seem to be the �xed-point algorithm [7,

8, 9] and the maximum likelihood (or infomax) stochastic gradient algorithm [1,

2, 3, 4]. The �xed-point algorithm was originally derived [7, 8, 9] from objective

functions motivated by projection pursuit [6], and therefore its connection to

estimation of the ICA data model has been rather indirect. Maximum likelihood

estimation is, in contrast, the mainstream method of statistical estimation.

The purpose of this paper is to show that the �xed-point algorithm is very

closely connected to maximum likelihood estimation of the ICA model. It is

shown that if the nonlinearity used is chosen correctly, the �xed-point algorithm

maximizes the likelihood approximately, i.e. under constraint of decorrelation.

Hybrid versions between the �xed-point algorithm and the ML stochastic gra-

dient algorithm are proposed for exact and fast maximization of the likelihood.
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2 A new form of �xed-point algorithm

To begin with, we shall derive the �xed-point algorithm for one unit, using an

objective function motivated by projection pursuit (see [8] for details). Con-

sider one neural unit with weight vector w and input x. The goal is to �nd

the extrema of EfG(w

T

x)g for a given non-quadratic function G, under the

constraint Ef(w

T

x)

2

g = 1. According to the Kuhn-Tucker conditions [12], the

extrema are obtained at points where

Efxg(w

T

x)g � �Cw = 0 (2)

where C = Efxx

T

g, and � is a constant that can be easily evaluated to give

� = Efw

T

0

xg(w

T

0

x)g, where w

0

is the value of w at the optimum. Let us try to

solve this equation by Newton's method. Denoting the function on the left-hand

side of (2) by F , we obtain its Jacobian matrix JF (w) as

JF (w) = Efxx

T

g

0

(w

T

x)g � �C (3)

To simplify the inversion of this matrix, we decide to approximate the �rst term

in (3). A reasonable approximation isEfxx

T

g

0

(w

T

x)g = Efxx

T

gEfg

0

(w

T

x)g =

Efg

0

(w

T

x)gC. The obtained approximation of the Jacobian matrix can be in-

verted easily:

JF (w)

�1

� C

�1

=(Efg

0

(w

T

x)g � �): (4)

We also approximate � using the current value of w instead of w

0

. Thus we

obtain the following approximative Newton iteration:

w

+

= w � [C

�1

Efxg(w

T

x)g � �w]=[Efg

0

(w

T

x)g � �]

(5)

where w

+

denotes the new value of w, � = Efw

T

xg(w

T

x)g. After every step,

w

+

is normalized by dividing it by

p

(w

+

)

T

Cw

+

to improve stability. This

algorithm can be further algebraically simpli�ed (see [8]) to obtain the original

form of the �xed-point algorithm [7]:

w

+

= C

�1

Efxg(w

T

x)g �Efg

0

(w

T

x)gw: (6)

3



These two forms are equivalent. Note that for prewhitened data, C

�1

dis-

appears, giving an extremely simple form of the Newton iteration. In [9], this

learning rule (for kurtosis only) was derived as a �xed-point iteration of a neural

learning rule; hence the name of the algorithm.

To use the �xed-point algorithm for several units, the iteration in (5) is ap-

plied separately for the weight vector of each unit. Let us assume, as usual in

ML estimation, that the number of independent components to be estimated

equals the number of observed variables, i.e. n = m and A is square. Denote by

W the matrix whose columns are the weight vectors: W = (w

1

; :::;w

n

). Fur-

thermore, to avoid the inversion of the covariance matrix, we can approximate

it as C

�1

� WW

T

, since C = AA

T

and W

T

is an estimate of A. Thus we

obtain the following novel form of the �xed-point algorithm:

W

+

=W+W[Efyg(y

T

)g � diag(�

i

)]D (7)

where y = W

T

x, �

i

= Efy

i

g(y

i

)g, and D = diag(1=(�

i

� Efg

0

(y

i

)g)). After

every iteration of (7), the outputs y

i

are decorrelated and normalized to unit

variance; simple decorrelation algorithms that require neither matrix inversion

nor eigen-value decomposition are given in [7, 8]. Note that for prewhitened

data, this form is still equivalent to the original (generalized) �xed-point algo-

rithm in [7].

3 The Fixed-point Algorithm as Maximum Like-

lihood Estimation

The connection between (7) and the maximum likelihood algorithm is made

obscure by di�erences in notation. We used here (and in previous papers) the

convention y =W

T

x whereas in the context of maximum likelihood estimation,

one de�nes y =Wx, without transpose. Let us denote V =W

T

, and express

(7) in the notation used in [1, 2, 3, 4]; we get

V

+

= V +D[diag(��

i

) +Efg(y)y

T

g]V: (8)
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This is to be compared with the form of the stochastic gradient method for

maximizing likelihood:

V

+

= V + �[I+ g(y)y

T

]V: (9)

where � is the learning rate, not necessarily constant in time. If g is the

true score function, i.e. the derivative of the log-likelihood of the indepen-

dent components (assumed to be identically distributed for simplicity), we have

��

i

= 1; i = 1; ::; n. Thus it is seen that the �xed-point algorithm in Eq. (8) or

(7) is essentially a batch version of the ML stochastic gradient method in (9),

with the following di�erences:

1. In (8), an optimal step size is used. It is given separately for each row of

V by the elements in D.

2. Replacing I by diag(��

i

) is also bene�cial for convergence speed. Though

these expressions are equal when the nonlinearity is the true score func-

tion of the independent components, in practice they are at least slightly

di�erent. This is equivalent using rescaled version of the nonlinearity g.

3. In the �xed-point algorithm, the outputs y

i

are decorrelated and normal-

ized to unit variance after every step. No such operations are needed in

the gradient descent rule. The �xed-point algorithm in (8) is not stable if

these additional operations are omitted.

4. The �xed-point algorithm can estimate both sub- and super-gaussian inde-

pendent components. The reason is clear from (8): The matrixD contains

estimates on the nature (sub- or super-gaussian) of the independent com-

ponents. Such estimates are implicit in the simple form given in (6). For

the gradient descent algorithm, the nature of the independent components

has to estimated separately, as in the so-called 'extended' ICA algorithms

[11].

This results suggests also how to construct a hybrid learning rule that max-

imizes the likelihood without constraints, yet converging faster in batch mode
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than simple gradient descent. This is obtained by introducing a step size coef-

�cient � in (7):

V

+

= V + �D[diag(��

i

) +Efg(y)y

T

g]V: (10)

Taking a su�ciently small � (e.g. 0.1), this algorithm is stable without ad-

ditional decorrelation or normalization. This algorithm maximizes likelihood

almost exactly; if diag(��

i

) is further replaced by the identity matrix, it maxi-

mizes likelihood exactly. It is assumed here that the non-linearity is chosen as

a good approximation of the score function, as usual in maximum likelihood

estimation. Prewhitening of the data greatly improves the stability of (10). It

is to be expected that (10) has faster convergence than the ordinary gradient

descent rule because the step size is adapted separately for each component,

as a function of the pdf's of the independent components. Moreover, the re-

placement of the identity matrix by the diagonal matrix in (10) should further

improve convergence speed.

4 Conclusion

It was shown that the �xed-point algorithm for ICA [7, 8, 9] can be interpreted

as maximizing the likelihood of the parameters of the ICA data model under the

constraint of decorrelation, which is equivalent to maximizing the information

ow in a neural network [2, 13]. Modi�cations of the �xed-point algorithm give

hybrids of gradient descent and �xed-point methods, and maximize the likeli-

hood exactly. It is thus seen that the di�erence between the �xed-point algo-

rithm and the (stochastic) gradient method for maximizing likelihood [1, 2, 3, 4]

is not so much in the objective function as in the method of optimization. The

�xed-point algorithm provides a very fast method for maximization of likelihood

in batch (or block) mode; it has been found in simulations to be 10{100 times

faster than gradient methods [9]. The stochastic gradient methods maximizing

likelihood, on the other hand, provide a simple adaptive learning rule that may

also be biologically more plausible.
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As a spin-o� of these mathematical developments, we proposed a new ver-

sion of the �xed-point algorithm that requires neither prewhitening nor matrix

inversion.
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