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Abstract

Previous work has shown that independent component analysis (ICA) applied to feature extraction
from natural image data yields features resembling Gabor functions and simple-cell receptive fields. This
article considers the effects of including chromatic and stereo information. The inclusion of colour leads
to features divided into separate red/green, blue/yellow, and bright/dark channels. Stereo image data, on
the other hand, leads to binocular receptive fields which are tuned to various disparities. The similarities
between these results and observed properties of simple cells in primary visual cortex are further evidence
for the hypothesis that visual cortical neurons perform some type of redundancy reduction, which was
one of the original motivations for ICA in the first place. In addition, ICA provides a principled method
for feature extraction from colour and stereo images; such features could be used in image processing
operations such as denoising and compression, as well as in pattern recognition.

Short title: ICA features of colour and stereo images
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1 Introduction

Ever since Hubel and Wiesel’s classic experiments (1962, 1968), there have been a large number of stud-
ies (e.g. DeValois et al., 1982; DeAngelis et al., 1993a) in which the receptive field properties of neurons
in primary visual cortex have been measured.1 The general concensus is that most receptive fields are
localised in space and time, have band-pass characteristics in spatial and temporal frequency and are se-
lective to some preferred orientation. In addition, many are selective to direction of movement, chromatic
contrast, and/or binocular disparity; see e.g. (DeValois et al., 1982; Livingstone and Hubel, 1984; Barlow
et al., 1967).

Why do the neurons respond the way they do? Barlow’s (1989) proposal is that the neurons perform
redundancy reduction, and make up a factorial code for the input data, i.e. a representation with independent
components. Representing the data in this way would be useful for detecting new patterns, or ‘suspicious
coincidences’. Field (1994) has argued that oriented edge features constitute a sparse representation of
the images. This means that for any one image, only a few of the features are needed to represent that
particular image; and that over an ensemble of images a particular feature will seldom be significantly
active. The possible benefits of sparse coding include increasing the signal-to-noise ratio and aiding in
pattern recognition (Field, 1994).

Recently, these theories have been tested experimentally. Olshausen and Field (1996, 1997) applied a
sparseness-maximization network to input data consisting of image patches from natural images. Basically,
one attempts to represent each image patch as a linear combination of ‘basis’ patches, such that the mixing
coefficients are as sparse as possible. In other words,

x = As =
n

∑
i=1

aisi, (1)

where we have denoted the input image by x, and the basis images are the ai, the columns of A (see
Figure 1). One then optimizes the ai such that for typical x, most of the si will be close to zero and
only a few will have significantly non-zero values. This led to features qualitatively similar to simple cell
receptive fields.

Subsequently, Bell and Sejnowski (1997) as well as Hurri et al. (1997) applied independent component
analysis (ICA) to similar data. In ICA, the decomposition is also linear as in (1), but now the purpose is
to seek mutually independent components si. In other words, we seek a factorial code for the data. This
leads to a local representation quite similar to that obtained through sparse coding. In fact, it has been
shown (Olshausen and Field, 1997) that the sparseness-maximization network and ICA are very closely
related. Later, van Hateren and van der Schaaf (1998) quantitatively compared the filters learned by ICA
to measurements of neural receptive fields, and found a good match for most parameters.

The extension of the above experiments into the spatio-temporal domain was performed in (van Hateren
and Ruderman, 1998). Instead of considering only static image patches, they took sequential patches from
video sequences to take into account temporal redundancy. Again, the found ICA decomposition seemed
to fit the receptive field properties found in the cortex, giving features tuned to temporal as well as spatial
frequencies.

This article reports on similar numerical experiments on two of the remaining dimensions of our visual
input: chromatic contrast and stereopsis. We extract features from natural colour and stereo images using
ICA, and compare the results to known receptive field properties of neurons found in the visual cortex.
The paper is structured as follows: Section 2 discusses the ICA model and how it is usually applied to
image data. In Section 3, we report on experiments with colour images as input data, whereas Section 4
is devoted to stereo image results. Section 5 states the connections to previous work while Section 6 gives
some conclusions.

1Most investigations have concerned the visual cortex of cats and monkeys. It is generally believed that the receptive fields of
neurons in human primary visual cortex are qualitatively similar.
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2 ICA and image data

2.1 Preprocessing and estimation

As discussed in the introduction, in ICA (Jutten and Herault, 1991; Comon, 1994) we attempt to linearly
transform the data to obtain statistically independent components. Recently, there has been a considerable
amount of research on algorithms for performing ICA (Amari et al., 1996; Bell and Sejnowski, 1995;
Cardoso and Laheld, 1996; Cichocki and Unbehauen, 1996; Hyvärinen and Oja, 1997; Hyvärinen, 1999a;
Karhunen et al., 1997; Oja, 1997; Pajunen, 1998). For a survey of research on ICA we refer the reader to
(Hyvärinen, 1999c). Here, we will only give a brief introduction to ICA in the context of image data. For
a more detailed discussion, see e.g. (Bell and Sejnowski, 1997; Hyvärinen et al., 2000).

Assume that image patches of the type shown in Figure 1 are represented as samples of a random vector
x. The goal then is to express the data by a linear generative model (1) where the stochastic sources (si) are
as mutually independent as possible. This is what ICA algorithms attempt to perform. There are two quite
standard preprocessing steps in ICA. First, the mean of the data is usually subtracted to center the data on
the origin. In other words,

x := x−E{x}. (2)

This does not alter the ICA model (1) except that we now have zero-mean sources: E{s} = 0. The second
step is to whiten the data. This means that we transform the data so the components are uncorrelated and
have unit variance:

z = Vx, so that E{zzT} = I, (3)

where V is the whitening matrix and z the whitened data. This does not completely specify V; in fact, if V
is any solution then WV is also a whitening matrix for any orthogonal W, as

E{WzzT WT} = WE{zzT}WT = WWT = I. (4)

For image data there are two commonly used and analytically available solutions (Bell and Sejnowski,
1997). First, there is the symmetric whitening matrix VZCA = E{xxT}−1/2. This is the local solution,
where each filter whitens a local region of the input. Each filter is identical (neglecting border effects);
basically a center-on surround-off filter. It has been suggested that the center-surround receptive fields of
neurons in the retina and the lateral geniculate nucleus (LGN) perform something similar to symmetric
whitening (Atick and Redlich, 1993; Dan et al., 1996).

Second, there is the principal component analysis (PCA) solution. Here, VPCA = D−1/2ET , where
EDET = E{xxT} is the eigensystem of the correlation matrix of x. In PCA, the filters (rows of VPCA) are
orthogonal. On image data, PCA yields global Fourier filters, due to the stationarity of image statistics
(Field, 1994). PCA has the nice property that it allows one to optimally (linearly) reduce the dimension by
selecting only a subset of the components of z = VPCA x. For gray-scale patches, reducing the dimension
this way while whitening is essentially equivalent to a combined low-pass and whitening filter which has
been shown to be an optimal whitening filter assuming a finite noise level (Atick and Redlich, 1992),
and has been used for example in (Olshausen and Field, 1996; Olshausen and Field, 1997). In addition,
reducing the dimension also lowers the computational costs (running time and memory consumption) of
the ICA estimation. We will exploit this property when working on colour and stereo data.

Having preprocessed the data, the goal of ICA is a transform W which minimizes the statistical depen-
dencies between the estimated sources

ŝ = Wz = WVPCAx = WD−1/2
n ET

n x, (5)

where we have by Dn denoted the diagonal matrix containing the n largest eigenvalues (of the correlation
matrix E{xxT}) and En the matrix with corresponding eigenvectors as columns. Optimally, the dependen-
cies are measured by the mutual information of the sources (Hyvärinen, 1999a). However, to obtain a fast
and simple algorithm, we constrain W to be orthogonal (i.e. our estimated sources are constrained to be
uncorrelated), and approximate the mutual information as suggested in (Hyvärinen, 1999a). Thus, we use
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the FastICA algorithm (Hyvärinen and Oja, 1997; Hyvärinen, 1999a), with nonlinearity g1(u) = tanh(u)
(Hyvärinen, 1999a), starting from a random orthogonal matrix W. In essence, each iteration of the algo-
rithm consists of updating each row wT

i of W by

wi := E{zg1(wT
i z)}−E{g′1(w

T
i z)}wi (6)

followed by orthonormalization of the matrix through W := (WWT )−1/2W. After convergence, the esti-
mated basis is constructed as

A = EnD1/2
n WT (7)

and each column ai of A can be identified as the basis patch of one independent component, as in Figure 1.

2.2 The ICA basis: Properties and relation to neural receptive fields

A typical ICA basis of image patches, when trained on natural gray-scale images, is given in Figure 2.
The features (basis vectors) are Gabor-like filters at various positions, orientations, spatial frequencies and
phases. One of the features codes the average gray level (DC-component).

Note also the resemblance to ‘wavelets’ (Mallat, 1989; Daubechies, 1992) (and related multiresolution
representations), which have received significant attention lately as useful features in image processing.
Indeed, one can argue that the reason wavelets are so successful is precisely the fact that they form a sparse
representation for the images (Mallat, 1989; Hurri et al., 1997).

The striking resemblance of the ICA features to receptive fields of neurons in primary visual cortex
suggests that the neurons do indeed perform some type of independent component analysis, and that the
receptive fields are optimized for processing natural images (Olshausen and Field, 1996; Bell and Se-
jnowski, 1997). It is important to understand that this does not mean that the ‘learning rule’ or ‘algorithm’
actually operating in the cortex is anything like ours; rather it lets us understand the purpose of the compu-
tations as finding independent components of the input data. In the terminology of Marr (1982), we model
the computational level instead of the algorithmic or implementation levels.

Note that if we want to establish a firm connection between ICA results and receptive fields we have to
select our input images to be as close as possible to those which neurons would receive as input. Luckily,
it seems that the ICA basis is not very sensitive to the particular set of natural images used, as earlier work
on ICA for feature extraction of natural images has given qualitatively quite similar features using different
data sets (Olshausen and Field, 1997; Bell and Sejnowski, 1997; Hurri et al., 1997; van Hateren and van der
Schaaf, 1998). Thus, the selection of a reasonable dataset does not seem to be all that difficult.

An additional issue is whether one should compare the independent component filters or the basis vec-
tors to the receptive fields of primary visual cortical neurons. Although previous studies (van Hateren and
van der Schaaf, 1998; van Hateren and Ruderman, 1998) have compared the filters (rows of the separating
matrix WV) to measured receptive fields we feel that it is perhaps often more useful to look at the basis
vectors (columns of A). Although the filters can be equated with the feedforward connections of the neu-
rons, the basis vectors form the ‘optimal stimuli’, in the sense that basis vector ai gives a non-zero response
only in unit i. This means that the relative response of that unit is maximized for input ai.2 In addition, the
visualization of the filters is not nearly as straightforward as visualization of the optimal stimuli, at least in
the case of colour data.

A final question is how well the receptive fields of simple cells can be described using linear models.
Simple cell responses are certainly not completely linear; they show significant nonlinearities such as
rectification and response saturation. However, it seems that such nonlinearities can be thought of as
operating ‘on top’ of a linear representation: Models employing an underlying linear mechanism followed
by some form of rectification and gain control have been quite successful (Heeger, 1992; DeAngelis et al.,
1993b; Carandini et al., 1997). Thus, it makes sense to compare linear ICA features to the representation
given by simple cells.

2This argument is even stronger if one takes into account normalization mechanisms (Heeger, 1992; Carandini et al., 1997) which
suppress neuronal responses when a large number of neurons are simultaneously activated. Such mechanisms may favor inputs which
activate only single (or few) units.
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3 Colour image experiments

In this section, we extend the gray-scale ICA image model to include colours. Thus, for each pixel we have
three values (red, green, blue), instead of one (gray-scale). The corresponding ICA model is illustrated in
Figure 3. First, we discuss the selection of data, then we analyse its second-order statistics and finally show
the features found using ICA.

3.1 Choice of data

As discussed in Section 2, we should as input data select as ‘natural’ images as possible if we wish to make
any connection between our results and properties of neurons in the visual cortex. When analysing colours,
the spectral composition of the images becomes important in addition to the spatial structure.

It is clear that the colour content of images varies widely with the environment in which the images are
taken. Thus we do not pretend to find some universally optimal basis in which to code all natural colour
images. Rather, we seek the general qualitative properties of an ICA decomposition of such images. In
other words, we hope to find answers to questions such as: “How are colours coded in such a basis; separate
from, or multiplexed onto achromatic channels?” and “What kind of spatial configuration do colour-coding
basis vectors have?”

Neurons of course receive their information ultimately from the outputs of the cones in the retina.
Thus our data should consist of the hypothetical outputs of the three types of cones in response to our
images. However, any three linear combinations of these outputs is just as good an input data, since we
are applying ICA: Linearly transforming the data transforms the mixing matrix, but does not alter the
independent components (sources).

We choose to use standard red/green/blue (RGB) values as inputs, assuming the transformation to
cone outputs to be roughly linear. This has the advantage that the features found are directly comparable
to features currently in use in image processing operations such as compression or denoising, and could
straightforwardly be applied in such tasks. The drawback of using RGB values as inputs is of course that
any nonlinearities inherent in the conversion from RGB to cone responses will affect the ICA result and
a comparison to properties of neurons may not be warranted. To test the effect of nonlinearities, we have
experimented with transforming the RGB values using the well-known gamma-nonlinearity3 of CRTs. This
did not qualitatively change the results, and therefore we are confident that our results would be similar if
we had used estimated cone outputs as inputs.

Our main data consists of colour versions of natural scenes (depicting forest, wildlife, rocks, etc.)
which we have used in previous work as well (Hyvärinen, 1999b; Hyvärinen and Hoyer, 2000). The data
is in the form of 20 RGB images (of size 384×256-pixels) in standard TIFF format; an example is given
in Figure 4.

3.2 Preprocessing

From the images, a total of 50 000 12-by-12 pixel image patches were sampled randomly. Since each
channel yields 144 pixels, the dimensionality was now 3× 144 = 432. Next, the mean value of each
component was subtracted from that component, centering the dataset on the origin. As mentioned in
Section 2, this is a standard preprocessing step in ICA.

Then, we calculated the correlation matrix and its eigenvectors. These are shown in Figure 5. The
eigenvectors consist of global features, resembling 2D Fourier bases. The variance decreases with increas-
ing spatial frequency, and when going from grayscale to blue/yellow to red/green features.4 These results
were established by Ruderman et al. (1998), who used hyperspectral images as their original input data.

3The gamma-nonlinearity is the most significant nonlinearity of the CRT monitor. After gamma-correction the transform from
RGB to cone responses is roughly linear; see the appendix in (Wandell, 1995).

4It should be noted that chromatic aberration in the eye might have an effect of additionally reducing signal energy at high spatial
frequencies.
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To analyse the colour content of the PCA filters in more detail, we will show the pixels of a few filters
plotted in a coloured hexagon. In particular, each pixel (RGB-triplet) is projected onto a plane given by

R+G+B = constant. (8)

In other words, the luminance is ignored, and only the colour content is used in the display. Figure 6 shows
the colours in this hexagon. Note that this is a very simple 2D projection of the RGB colour cube and
should not directly be compared to any psychophysical colour representations.

Figure 7 shows a bright/dark filter (no. 3), a blue/yellow filter (nr. 15), a red/green filter (nr. 432, the
last one), and a mixture (nr. 67). Most filters are indeed exclusively opponent colours, as was found in
(Ruderman et al., 1998). However, there are also some mixtures of these in the transition zones of main
opponent colours.

As described earlier, we project the data onto the n first principal components before whitening (we
have experimented with n = 100, 160, 200, and 250). This is done for two reasons. First, something
similar is probably done in real neurons, as amplifying directions with small variance would be disastrous
in terms of signal-to-noise ratio (Atick and Redlich, 1992). Second, the dimension is dropped to lower
computational costs.

As can be seen from Figure 5, dropping the dimension mostly discards blue/yellow features of high
spatial frequency and red/green features of medium to high frequency. This already gives a hint as to why
the blue/yellow and the red/green systems have a much lower resolution than the bright/dark system, as
has been observed in psychophysical experiments (Mullen, 1985). As explained in Section 2, the projected
data is now whitened, and the FastICA algorithm run on the whitened data.

3.3 Results and discussion

The columns ai of the estimated ICA mixing matrix A, as given by (7) with n = 160, are shown in Figure 8.
Before analysing it further, one should consider the following question: How does the basis shown relate
to the receptive fields we would have obtained had we used cone outputs as input data? A moment of
reflection should convince you that since we have here used the RGB values to generate the image for your
visual system, we are actually providing what would have been the optimal stimuli for our ‘model neurons’
had they learnt from cone outputs. The basis can thus directly be compared to the receptive fields of real
neurons. (See Section 2.2 for a discussion of whether to compare receptive fields to the basis vectors or the
filters.)

Examining Figure 8 closely reveals that the features found are very similar to earlier results (Olshausen
and Field, 1996; Bell and Sejnowski, 1997) on gray-scale image data, i.e. the patches resemble Gabor-
functions. Note that most units are (mainly) achromatic, so they only represent brightness (luminance)
variations. This is in agreement with the finding that a large part of the neurons in the primary visual
cortex seem to respond equally well to different coloured stimuli, i.e. are not selective to colour (Hubel
and Wiesel, 1968; Livingstone and Hubel, 1984). In addition, there is a small number of red/green and
blue/yellow patches. These are also oriented, but of much lower spatial frequency, similar to the gray-scale
patches of lowest frequency. One could think that the low frequency patches together form a ‘colour’
(including brightness) system, and the high-frequency gray-scale patches a channel analysing form. Also
note that the average colour (DC-value) of the patches is represented by 3 separate basis vectors, just as the
average brightness in an ICA decomposition of gray-scale images is usually separate from the other basis
vectors.

We now show typical ICA basis patches plotted in the colour-hexagon (Figure 9), as we did with the
PCA basis. The figure shows a bright/dark patch, a blue/yellow patch, and a red/green patch. There were
no ‘mixtures’ of the type seen for PCA; in other words each patch clearly belonged to one of these groups.
(Note that the bright/dark patches also contained blue/yellow to a quite small degree.)

The dominance of bright/dark patches is largely due to the dimension reduction performed while
whitening. To test the dependence of the group sizes on the value of n used, we estimated the ICA ba-
sis for different values of n and counted the group sizes in each case. The results can be seen in Figure 10.
Clearly, when n is increased, the proportion of colour-selective units increases. However, even for the case
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of keeping over half of the dimensions of the original space (n = 250), the bright/dark features still make
up over 60% of all units.

Another thing to note is that each ICA basis patch is ’double-opponent’: For blue/yellow patches
stimulating with a blue spot always gives an opposite sign in the response compared to stimulating with a
yellow spot. Red/green and bright/dark features behave similarly. This is in fact a direct consequence of
the linear ICA model. It would be impossible to have completely linear filters function in any other way.

Although early results (Livingstone and Hubel, 1984) on the chromatic properties of neurons suggested
that most colour-sensitive cells were unoriented, and exhibited center-surround receptive fields, more recent
studies have indicated that there are also oriented colour-selective neurons (Ts’o and Gilbert, 1988). The
fact that our colour-features are mostly oriented is thus at least in partial agreement with neurophysiological
data.

In any case, there is some agreement that most neurons are not selective to chromatic contrast, rather
are more concerned about form (Hubel and Wiesel, 1968; Livingstone and Hubel, 1984; Ts’o and Roe,
1995). Our basis is in agreement with these findings. In addition, the cytochrome oxidase blobs which
have been linked to colour processing (Livingstone and Hubel, 1984) have also been associated with low
spatial frequency tuning (Tootell et al., 1988; Shoham et al., 1997). In other words, colour selective cells
should be expected to be tuned to lower spatial frequencies. This is also seen in our features.

As stated earlier, we do not pretend that our main image set is representative of all natural enviroments.
To check that the results obtained do not vary wildly with the image set used, we have performed the
same experiments on another dataset: single-eye colour versions of the 11 stereo images described in
Section 4.1. The found ICA basis (not shown) is in most aspects quite similar to that shown in Figure 8:
Features are divided into bright/dark, blue/yellow and red/green channels, of which the bright/dark group
is the largest, containing Gabor-like filters of mostly higher frequency than the features coding colours.
The main differences are that (a) there is a slightly higher proportion of colour-coding units, and (b) the
opponent colours they code are slightly shifted in colour space from those found from our main data. In
other words, the qualitative aspects, answering questions such as those proposed in Section 3.1, are quite
similar. However, quantitative differences do exist.

4 Stereo image experiments

Another interesting extension of the basic gray-scale image ICA model can be made by modeling stereop-
sis, the extraction of depth cues from binocular disparity. Now, our artificial neurons are attempting to learn
the dependencies of corresponding patches from natural stereo images. The model is shown in Figure 11.

4.1 Stereo image data

Again, the choice of data is an important step for us to get realistic results. Previous studies have used
different approaches. In some early work, a binocular correlation function was estimated from actual
stereo image data, and subsequently analysed (Li and Atick, 1994). In addition, at least one investigation
of receptive field development used artificially generated disparity from monocular images (Shouval et al.,
1996). We have chosen to use 11 images from a commercial collection5 of stereo images of natural scenes;
a typical image is given in Figure 12.

To simulate the workings of the eyes, we selected 5 focus points at random from each image and
estimated the disparities at these points. We then randomly sampled 16× 16-pixel corresponding image
patches in an area of 300× 300 pixels centered on each focus point, obtaining a total of 50 000 samples.
Because of the local fluctuations in disparity (due to the 3D imaging geometry) corresponding image
patches often contained similar, but horizontally shifted features; this is of course the basis of stereopsis.

Note that in reality the ‘sampling’ is quite different. Each neuron sees a certain area of the visual
field which is relatively constant with respect to the focus point. Thus a more realistic sampling would
be to randomly select 50 000 focus points and from each take corresponding image patches at some given

5Available at http://members.home.net/holographics/cd˜1.htm
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constant positional offset. However, the binocular matching is computationally slow and we thus opted for
the easier approach, which should give the same distribution of disparities.

4.2 Preprocessing

The same kind of preprocessing was used in these experiments as for colour, in Section 3. Since each
sample consisted of corresponding left and right 16× 16-patches our original data was 512-dimensional.
First, the local mean was removed from each component, to center the data on the origin. Next, we
calculated the correlation matrix of the data, and its eigenvalue decomposition. Due to space limitations
we show here (in Figure 13) the principal components for a window size of 8× 8 pixels (the result for
16×16 is qualitatively very similar).

The most significant feature is that the principal components are roughly ordered according to spatial
frequency, just as in PCA on standard (monocular) image patches. However, in addition early components
(low spatial frequency) are more binocular than late ones (high frequency). Also note that binocular com-
ponents generally consist of patches of identical or opposite phases. This is in agreement with the binocular
correlation function described in (Li and Atick, 1994).

As before, we select the first 160 principal components for further analysis by ICA. Again, this is
plausible as a coding strategy for neurons, but is mainly done to lower the computational expenses and
thus running time and memory consumption. Due to the structure of the correlation matrix, dropping the
dimension to 160 is similar to low-pass filtering.

4.3 Results and discussion

Figure 14 shows the estimated basis vectors after convergence of the FastICA algorithm. Each pair of
patches represents one basis vector ai. First, note that pairs have varying degrees of binocularity. Many
of our ‘model neurons’ respond equally well to stimulation from both eyes, but there are also many which
respond much better to stimulation of one eye than to stimulation of the other. This is shown quantitatively
in Figure 15, which gives an ‘ocular-dominance’ histogram of the features.

The histogram depends strongly on the area of the sampling around the focus points (which in these
experiments was 300× 300 pixels). Sampling a smaller area implies that the correlation between the
patches is higher and a larger number of features fall into the middle bin of the histogram. In theory, if we
chose to sample only exactly at the fixation point, we would obtain (ignoring factors such as occlusion)
identical left-right image patches; this would in turn make all basis vectors completely binocular with
identical left-right patches, as there would be no signal variance in the other directions of the data space.
On the other hand, sampling a larger area leads to a spreading of the histogram towards the edge bins.
As the area gets larger, the dependencies between the left and right patches get weaker. In the limit of
unrelated left and right windows, all features fall into bins 1 and 7 of the histogram. This was confirmed in
experiments (results not shown).

Taking a closer look at the binocular pairs reveals that for most pairs the left patch is similar to the
right patch both in orientation and spatial frequency. The positions of the features inside the patches are
close, when not identical. In some pairs the phases are very similar, while in others they are quite different,
even completely opposite. These properties make the features sensitive to different degrees of binocular
disparity. Identical left-right receptive fields make the feature most responsive to zero disparity, while
receptive fields that are identical except for a phase reversal show strong inhibition (a response smaller
than the ‘base-line’ response given by an optimal monocular stimulus) to zero disparity.

To analyse the disparity tuning we first estimated several ICA bases using different random number
seeds. We then selected only relatively high frequency, well localized, binocular basis vectors which had
a clear Gabor filter structure. This was necessary because filters of low spatial frequency were not usually
well confined within the patch and thus cannot be analysed as complete neural receptive fields. The set of
selected basis vectors is shown in Figure 16.

For each stereo pair, we presented an identical stimulus at different disparities to both the left and right
parts of the filter corresponding to the pair. For each disparity, the maximum over translations was taken
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as the response of the pair at that disparity. This gave a disparity tuning curve. For stimuli we used the
optimal stimuli (basis vectors) themselves, first presenting the left patch of the pair to both ‘eyes’, then the
right. The tuning curves were usually remarkably similar, and we took the mean of these as the final curve.

We then classified each curve as belonging to one of the types ‘tuned excitatory’, ‘tuned inhibitory’,
‘near’, or ‘far’, which have been identified in physiological experiments (Poggio and Fischer, 1977; Fischer
and Kruger, 1979; LeVay and Voigt, 1988). Tuned excitatory units showed a strong peak at zero, usually
with smaller inhibition at either side. Tuned inhibitory units on the other hand showed a marked inhibition
(cancelling) at zero disparity, with excitation at small positive or negative disparities. Features classified
as ‘near’ showed a clear positive peak at crossed (positive) disparity while those grouped as ‘far’ a peak
for uncrossed (negative) disparity. Some tuning curves that did not clearly fit any of these classes were
grouped into ‘others’.

In Figure 17 we give one example from each class. Shown are the basis vectors and the corresponding
tuning curves. It is fairly easy to see how the organization of the patches gives the tuning curves. The tuned
excitatory (top) unit has almost identical left-right profiles and thus shows a strong preference for stimuli
at zero disparities. The tuned inhibitory (second) unit has nearly opposite polarity patches which implies
strong inhibition at zero disparity. The near (third) unit’s right receptive field is slightly shifted (positional
offset) to the left compared with the left field, giving it a positive preferred disparity. On the other hand,
the far unit (bottom) has an opposite positional offset and thus responds best to negative disparities.

Figure 18 shows the relative number of units in the different classes. Note that the most common
classes are ‘tuned excitatory’ and ‘near’. One would perhaps have expected a greater dominance of the
tuned excitatory over the other groups. The relative number of tuned vs. untuned units probably depends
to a great deal on the performance of the disparity estimation algorithm in the sampling procedure. We
suspect that with a more sophisticated algorithm (we have used a very simple window-matching technique)
one would get a larger number of tuned cells. The clear asymmetry between the ’near’ and ’far’ groups
is probably due to the much larger range of possible disparities for near than for far stimuli: Disparities
for objects closer than fixation can in principle grow arbitrarily large whereas disparities for far objects are
limited (Barlow et al., 1967).

It is important to note that completely linear units (simple cells) cannot have very selective disparity
tuning. Also, since the disparity tuning curves vary with the stimulus, the concept ‘disparity tuning curve’
is not even well-defined (Zhu and Qian, 1996). However, disparity tuning is still measurable so long as one
keeps in mind that the curve depends on the stimulus. Our tuning curves are ‘simulations’ of experiments
where a moving stimulus is swept across the receptive field at different binocular disparities, and the
responses of the neuron in question is measured. As such, it is appropriate to use the optimal stimuli (basis
vectors) as input. To obtain stimulus-invariant disparity tuning curves (as well as more complex binocular
interactions than those seen here) one would need to model nonlinear (complex) cells.

Overall, the properties of the found features correspond quite well to those of receptive fields measured
for neurons in the visual cortex. The features show varying degrees of ocular dominance, just as neuronal
receptive fields (Hubel and Wiesel, 1962). Binocular units have interocularly matched orientations and
spatial frequencies, as has been observed for real binocular neurons (Skottun and Freeman, 1984). It
is easy by visual inspection to see that there exist both interocular position and phase differences, which
seems to be the case for receptive fields of cortical neurons (Anzai et al., 1999). Finally, simulated disparity
tuning curves of the found features are also similar to tuning curves measured in physiological experiments
(Poggio and Fischer, 1977).

5 Relation to previous work

Numerous models have been proposed for the development of visual receptive fields, and the neuronal
learning of input statistics. Early work concentrated on the second-order statistics of the input, giving
solutions closely related to PCA (Oja, 1982; Miller, 1990; Hancock et al., 1992). In addition, many
authors have developed optimal information processing frameworks assuming Gaussian input data and
additive Gaussian noise (Linsker, 1988; Atick and Redlich, 1990; van Hateren, 1992).
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Recently, however, it has been argued that natural image data is actually far from Gaussian (Field,
1994). Thus, the second-order statistics fail to describe important aspects of the data, and one must use
higher-order information to get an efficient representation. ICA is a fundamental method for such learning,
and the match of the ICA representation to neuronal receptive fields is impressive, if not complete (van
Hateren and van der Schaaf, 1998).

Although there have been numerous studies of learning gray-scale receptive fields, not many have
attempted the analysis of colour or stereopsis. There has been some work concerning the second-order
statistics of colour (Atick et al., 1992; van Hateren, 1993; Ruderman et al., 1998). In addition, coloured
input was used in (Barrow et al., 1996) to emerge a topographic map of receptive fields. Again, that work
basically concerns only the second-order structure of the data, as the correlation-based learning used relies
only on this information. The current work is thus the first (to the knowledge of the authors) to work with
higher-order statistics of colour images.6

Emerging receptive fields from stereo input has been considered in (Li and Atick, 1994; Shouval et al.,
1996; Erwin and Miller, 1996; Erwin and Miller, 1998). As with colour, most studies have explicitly or
implicitly used only second-order statistics (Li and Atick, 1994; Erwin and Miller, 1996; Erwin and Miller,
1998). The exception is (Shouval et al., 1996) which used the BCM learning rule (Bienenstock et al.,
1982) which is a type of projection pursuit learning closely linked to ICA. The main difference between
their work and ours is that we use data from actual stereo images whereas they used horizontally shifted
(misaligned) data from regular images. In addition, we estimate a complete basis for the data, whereas they
studied only single receptive fields.

6 Conclusions

We have investigated the use of independent component analysis for decomposing natural colour and stereo
images. ICA applied to colour images yields basis vectors which resemble Gabor functions, with most
features achromatic, and the rest red/green- or blue/yellow-opponent. When ICA is applied on stereo
images we obtain feature pairs which exhibit various degrees of ocular dominance and are tuned to various
disparities.

These results are significant for two reasons. First, the features learned by ICA could be straightfor-
wardly applied in denoising, compression, or pattern recognition of colour or stereo data. In each of these
tasks it is important to model the statistical structure of the data; ICA has been successfully used to model
that structure (Hyvärinen, 1999b). Second, ICA can be used to model computational properties of V1
cells. The similarity of the ICA features to optimal stimuli measured for neurons in the primary visual cor-
tex using single-cell recordings suggest that these neurons perform some form of redundancy reduction, as
proposed by Barlow (1989). It seems likely that information processing strategies successful in the primary
visual cortex would also be useful in higher visual processing, and indeed in processing of other sensory
signals; thus it seems probable that ICA or related methods could be applied in modeling these functions
as well.
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= s1· + s2· + · · ·+ sn·

Figure 1: The linear image synthesis model. Each patch is represented as a linear combination of basis
patches. In sparse coding, one attempts to find a representation such that the coefficients si are as ‘sparse’
as possible, meaning that for most image patches only a few of them are significantly active. In ICA, the
purpose is to find a representation such that they are mutually as statistically independent as possible. Cf.
equation (1).

Figure 2: ICA basis of patches from gray-scale images. 16-by-16 patches were sampled, and the dimension
was reduced to 160 as described in Section 2. The data was whitened and the FastICA algorithm was used
to estimate the mixing matrix A. Each patch corresponds to one column ai of the estimated mixing matrix.

= s1· + s2· + · · ·+ sn·

Figure 3: The colour image ICA model. Again, we model the data as a linear combination of ‘basis
patches’, as in Figure 1. Here, each patch consists of the three colour planes (red, green and blue), shown
separately to clearly illustrate the linear model. In ICA, the purpose is to find the basis which minimizes
the statistical dependencies between the coefficients si.
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Figure 4: One of the colour images used in the experiments.
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Figure 5: PCA basis of colour images. These are the eigenvectors of the correlation matrix of the data,
from left-to-right and top-to-bottom in order of decreasing corresponding eigenvalues. As explained in the
main text, we projected the data on the first 160 principal components (top 8 rows) before performing ICA.
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Figure 6: The colour hexagon used for analyzing the colour content of the PCA and ICA basis patches. The
hexagon is the projection of the RGB cube onto a plane orthogonal to the luminance (R + G + B) vector.
Thus achromatic RGB triplets map to the center of the hexagon while highly saturated ones are projected
close to the edges.

Figure 7: Colour content of four PCA filters. From left to right: Component no. 3, 15, 432, and 67. All
pixels of each filter have been projected onto the colour hexagon shown in Figure 6. See main text for a
discussion of the results.

Figure 8: ICA basis of colour images. Each patch corresponds to one of the columns ai of the estimated
mixing matrix. Note that each patch is equally well represented by its negation, i.e. switching each pixel to
its opponent colour in any one patch is equivalent to changing the sign of ai and does not change the ICA
model (assuming components with symmetric distributions).
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Figure 9: Colour content of three ICA filters, projected onto the colour hexagon of Figure 6. From left to
right: no. 24, 82, and 12.
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Figure 10: Percentages of achromatic, blue/yellow, and red/green basis vectors for different numbers of
retained PCA components (100, 160, 200 and 250). (In each case, the three patches giving the mean colour
have been left out of this count.)

= s1· + s2· + · · ·+ sn·

Figure 11: The ICA model for corresponding stereo image patches. The top row contains the patches from
left image and the bottom row corresponding patches from the right image. Just as for gray and color
patches, we model the data as a linear combination of basis vectors with independent coefficients.
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Figure 12: One of the stereo images used in the experiments. The left image should be seen with the left
eye, and the right image with the right eye (i.e. uncrossed viewing).
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Figure 13: PCA basis of stereo images, ie. the eigenvectors of the correlation matrix of the data, from left-
to-right and top-to-bottom in order of decreasing corresponding eigenvalues. See main text for discussion.
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Figure 14: ICA basis of stereo images. Each pair of patches represents one basis vector ai of the estimated
mixing matrix A. Note the similarity of these features to those obtained from standard image data. In
addition, these exhibit various degrees of binocularity and varying relative positions and phases.
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Figure 15: Ocular dominance histogram of the ICA features. For each pair, we cal-
culated the value of (‖aleft‖ − ‖aright‖)/(‖aleft‖ + ‖aright‖), and used the bin boundaries
[−0.85,−0.5,−0.15,0.15,0.5,0.85] as suggested in (Shouval et al., 1996). Although many units where
quite monocular (as can be seen from Figure 14), no units fell into bins 1 or 7. This histogram is quite
dependent on the sampling window around fixation points, as discussed in the main text.
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Figure 16: Units selected for disparity tuning analysis. These were selected from bases such as the one in
Figure 14 on the basis of binocularity, frequency content and localization (only well-localized Gabor filters
were suitable for further analysis).
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Figure 17: Disparity tuning curves for units belonging to different classes. Top row: A ‘tuned excitatory’
unit (no. 4 in Figure 16). Second row: a ‘tuned inhibitory’ unit (12). Third row: a ‘near’ unit (38). Bottom
row: a ‘far’ unit (47). Crossed disparity (‘near’) is labeled positive and uncrossed (‘far’) negative in the
figures. The horizontal dotted line gives the ‘base-line’ response (the optimal response to one-eye only)
and the vertical dotted line the position of maximum deviation from that response.

0

10

20

30

40

50

Far Tuned Near

Figure 18: Disparity tuning histogram. The histogram shows the relative amounts of ‘tuned excitatory’
(44), ‘near’ (44), ‘far’ (17) units (in black) and ‘tuned inhibitory’ units (25) in white. Not shown are those
which did not clearly fit into any of these categories (15).
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